Distances in random Apollonian network structures

urmc

A random Apollonian network structure (RANS) R is recursively defined as:

Δeither an empty triangle,
or a triangle T split in three parts, by placing a vertex v inside T and connect it to the three vertices of the triangle; each sub-triangle being substituted by a RANS.
$\mathcal{O}(R)=\left\{O_{1}(R), O_{2}(R), O_{3}(R)\right\}$: the three vertices of the outermost triangle of RANS R. $d(v, w)$: length of shortest path joining v to w

Theorem 1

Given R a RANS of order n and v a random internal vertex of R, the distance from v to $O_{1}(R)$ has a Rayleigh limit distribution:

$$
\operatorname{Pr}\left(d\left(v, O_{1}(R)\right)=x \sqrt{n}\right)=c \frac{x}{\sqrt{n}} e^{-c^{2 x^{2}}} \frac{1}{4}
$$

and a mean value of $\frac{\sqrt{3 \pi}}{11} \sqrt{n}+\frac{277}{363}+O\left(\frac{1}{\sqrt{n}}\right)$.

Proposition

Multivariate generating function:

$$
\begin{aligned}
T_{d}\left(z, u_{1}, \ldots, u_{d}\right) & \equiv \sum r_{n, k_{1}, \ldots, k_{d}} u_{1}^{k_{1}} u_{2}^{k_{2}} \ldots u_{d}^{k_{d}} z^{n}, \quad r_{n, k_{1}, \ldots, k_{d}} \\
& =\#\left\{R \in \mathcal{R}_{n} \mid k_{j} \text { vert. dist. } j \text { from } O_{1}\right\} .
\end{aligned}
$$

Recurrence relation

$T_{d}\left(z, u_{1}, \ldots, u_{d}\right)=1+z u_{1} T_{d}^{2}\left(z, u_{1}, \ldots, u_{d}\right)\left(1+z u_{2} \frac{1}{\left(1-z u_{2} T_{d-1}^{2}\left(z, u_{2}, \ldots, u_{d}\right)\right)^{3}}\right)$

$$
\text { and } T_{1}\left(z, u_{1}\right)=1+z u_{1} T_{1}^{2}\left(z, u_{1}\right) T_{0}(z) \quad \text { with } \quad T_{0}(z)=T(z) .
$$

Lemma

Generating function for the number of vertices at distance i from O_{1} :
$D_{i}(z)=\left.\frac{\partial}{\partial u_{i}} T_{i}\left(z, u_{1}, \ldots, u_{i}\right)\right|_{u_{j}=1, \forall j}=\sum_{n} k_{i} r_{n, k_{i}} z^{n}$.
D_{i} express as a function of z and $T(z)$

$$
D_{i+1}(z)=H^{i}(z) \times \frac{\left(1+2 z^{2} T^{4}(z)\right)}{6 z T(z)\left(1-2 z T^{2}(z)\right)}, \quad \text { for } i \geq 2
$$

where $H(z)=1-\frac{11}{\sqrt{3}} \sqrt{1-z / \rho}+\frac{2}{3}(1-z / \rho)+(1-z / \rho)^{3 / 2}+O\left((1-z / \rho)^{2}\right), \rho=4 / 27$.

Sketch of proof

The full singular expansion of $D_{i}(z)$ can be derived from its expression in terms of H and D_{2}. Thus the proportion of vertices at distance i from O_{1}, that is $\frac{1}{n T_{n}}\left[z^{n}\right] D_{i}(z)$ can be evaluated:

$$
\operatorname{Pr}\left(d\left(v, O_{1}(R)\right)=i\right)=\frac{1}{n T_{n}}\left[z^{n}\right] D_{i}(z)=\frac{1}{n T_{n}}\left[z^{n}\right] H^{i-2}(z) D_{2}(z) .
$$

The result follows from theorem IX. 16 (Semi-large powers) of [1]: the singular exponent $1 / 2$ for $H(z)$ implies a Rayleigh distribution for $k=x \sqrt{n}$.
Rr(d(v,O$(R))=k)$

References

[1] P. Flajolet and R. Sedgewick. Analytic Combinatorics, web edition, 809+xii pages (available [1] P. Flajolet and R. Sedgewick. Analytic Combinatorics, web edition, 809+xii
from the authors' web sites). To be published in 2008 by Cambridge University Press.
from the authors' web sites). To be published in 2008 by Cambridge University Press.
[2] M.E.J. Newman, A.L. Barabấsi and D.J. Watts. The structure and dynamics of networks. [2] M.E.J. NEWMAN, A.L. BARAB
Princeton University Press, 2006
[3] T. Zhou, G. Yan, and B.-H. Wang. Maximal planar networks with large clustering coefficient and power-law degree distribution journal. Physical Review E, 71(4):46141, 2005.

Theorem 2

Let R be a RANS of order n and v, w two random vertices of R, the distance from v to w has mean value

$$
E_{v, w \in R}(d(v, w))=\frac{\sqrt{3 \pi}}{11} \sqrt{n}+\frac{376}{363}+\frac{17 \sqrt{3 \pi}}{72} \frac{1}{\sqrt{n}}+\frac{25858246}{1185921} \frac{1}{n}+O\left(n^{-\frac{3}{2}}\right) .
$$

Definitions

Distances to one or two or three outermost vertices:
$\Delta_{\mathbb{Q}}(R)=\sum_{x \in R} d\left(x, O_{1}(R)\right), \quad \Delta_{\mathfrak{Q}}(R)=\sum_{x \in R} d\left(x,\left\{O_{1}(R), O_{2}(R)\right\}\right), \quad \Delta_{\mathfrak{Z}}(R)=\sum_{x \in R} d(x, \mathcal{O}(\mathcal{R}))$.

Proposition

$$
\begin{aligned}
& \text { Multivariate generating function: } \\
& \qquad \Delta\left(z, d_{\mathbb{Q}}, d_{\mathscr{Q}}, d_{\mathbb{\Omega}}\right) \equiv \sum_{R \in \mathcal{R}} d_{\mathbb{Q}}^{\Delta_{\bullet}(R)} d_{\overparen{Q}}^{\Delta_{2}(R)} d_{\overparen{\Omega}}^{\Delta_{3}(R)} z^{|R|}=\sum_{n, i, j, k=0}^{\infty} \alpha_{n, i, j, k} d_{\mathbb{Q}}^{i} d_{\mathbb{Q}}^{j} d_{\overparen{\mathfrak{O}}}^{k} z^{n},
\end{aligned}
$$

with $\alpha_{n, i, j, k}=\#$ RANS of order $n \mid \Delta_{\mathbb{D}}=i, \Delta_{\mathbb{Q}}=j, \Delta_{\mathbb{Q}}=k$.
Recursive equation:
$\Delta\left(z, d_{\mathbb{Q}}, d_{\mathbb{Q}}, d_{\mathbb{B}}\right)=1+z d_{\mathbb{1}} d_{(2)} d_{\sqrt{3}} \times \Delta\left(z d_{\mathbb{1}}, d_{\mathbb{Q}}, d_{\mathbb{3}}, d_{\mathbb{1}}\right)$
$\times \Delta\left(z, d_{\mathbb{Q}}, d_{\mathbb{Q}} d_{\mathbb{3}}, 1\right)$
$\times \Delta\left(z, d_{\mathbb{D}} d_{\mathbb{Q}}, d_{\mathfrak{Q}}, 1\right)$.

Top level:
Intradistances

$$
\begin{aligned}
\delta(z)=\sum(3 & +\Delta_{\sqrt[3]{ }}\left(S_{1}(R)\right)+\left|S_{1}(R)\right| \\
& +\Delta_{\sqrt[3]{ }}\left(S_{2}(R)\right)+\left|S_{2}(R)\right| \\
& \left.+\Delta_{\mathfrak{B}}\left(S_{3}(R)\right)+\left|S_{3}(R)\right|\right) z^{|R|}
\end{aligned}
$$

$$
=3 T(z)+3 z T^{2}(z) \Delta_{\sqrt{3}}(z)+3 z^{2} T^{2}(z) T^{\prime}(z)
$$

Recursively:

$$
\text { Intra }(z)=\delta(z) \frac{T^{\prime}(z)}{T^{3}(z)} \sim 3 z \Delta_{\mathfrak{B}}(z) T^{\prime}(z) / T(z) \Rightarrow \frac{\left[z^{n}\right] \operatorname{Intra}(z)}{\left[z^{n}\right] T(z)} \sim \frac{1}{44} n^{2}
$$

$$
\begin{aligned}
& \text { Top level: } \\
& \begin{aligned}
\gamma^{-}(z) & =3 \sum_{R \in \mathcal{R}} \Delta_{\overparen{B}}\left(S_{1}(R)\right) \times\left(\left|S_{2}(R)\right|+\left|S_{3}(R)\right|\right) z^{|T|} \\
& =6 z^{2} T(z) T^{\prime}(z) \Delta_{\overparen{\overparen{V}}}(z)
\end{aligned}
\end{aligned}
$$

Recursively:

$\operatorname{Inter}^{-}(z)=\gamma^{-}(z) \frac{T^{\prime}(z)}{T^{3}(z)}=6 \Delta_{\mathscr{Q}}(z) z^{2} T^{\prime 2}(z) / T^{2}(z) \Rightarrow \frac{\left[z^{n}\right] \operatorname{Inter}^{-}(z)}{\left[z^{n}\right] T(z)} \sim \frac{\sqrt{3 \pi}}{22} n^{2} \sqrt{n}$

