
Verifying the Safety of User Pointers Using Static Typing
Etienne Millon1,2 Emmanuel Chailloux1 Sarah Zennou2

1Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France 2 Airbus Group Innovations

Separation in operating systems

User programs Kernel
System calls

Privileged instructions

Hardware

Only the kernel can access the
hardware.
User programs have to use sys-
tem calls (open, read, . . .).

0 3 Go 4 Go

Execution of a piece of code:

I with processor at level P
I with privilege level C
I accessing data with level D

is possible iff

P ≤ min{C;D}

On x86, levels are rings:
Kernel = 0 and User = 3.

P C D Access

Kernel Kernel Kernel OK
Kernel Kernel User OK
Kernel User Kernel OK
Kernel User User OK
User Kernel Kernel –
User Kernel User –
User User Kernel –
User User User OK

The confused deputy problem

User programs can pass structures to system calls by pointer:

struct timeval tv;

int z = gettimeofday(&tv, NULL);

The kernel fills in tv with its own privileges (not the caller’s).
A user can write the current time of the day at any address.
This is the confused deputy problem.
The kernel should check at run time that pointers controlled by userspace
point to userspace (copy {from,to} user).
We detect the places where this dynamic check is omitted,
using static typing of C code.

Pointer types

Depending on who controls their value, i.e. how they are created:

I kernel pointers: & x, etc. They can be dereferenced.

Γ ` e : t ∗
Γ ` ∗ e : t

I user pointers: system call arguments . They need a dynamic check.

Γ ` e1 : t ∗ Γ ` e2 : t @

Γ ` copy from user(e1 , e2) : Int

User pointer sources require annotations: one per system call.

Example: freedesktop.org bug #29340

int radeon_info_ioctl(struct drm_device *dev,

void *data,

struct drm_file *filp) {

/*!npk userptr_fieldp data value*/

struct drm_radeon_info *info = data;

uint32_t *value_ptr = (uint32_t *)

((unsigned long)info->value);

uint32_t value = *value_ptr;

/* ... */

}

Inference output – error:

05-drm.c:17#10 - Type clash between :

KPtr (_a15)

UPtr (_a8)

But if we replace last line by the following:

if (copy_from_user(&value, value_ptr,

sizeof(value)))

return -14;

Inference output – fully annotated program:

(06-drm-ok.c:17#6)^{

Int tmp_cir!0;

(06-drm-ok.c:17#6)^tmp_cir!0 <-

copy_from_user

(&(value) : KPtr (d),

value_ptr_UPtr (d) : UPtr (d),

4 : Int); }

Compilation

int f (int* x) {

return (*x + 1);

}

let f =

fun (x) ->

return (*x + 1)

let f : Int* -> Int =

fun (x : Int) ->

return ((((*x) : Int)

+ (1 : Int)) : Int)

Input is C code.
GNU extensions used in the
kernel are handled.

C type annotations are removed.
The intermediate language has first-
order functions and left-values (for
partial updates).

Every subexpression gets a type.
This is more precise than C types since
abstract types (e.g. user pointers) can
be inferred.

Type erasure Type inference

Bibliography

N. Hardy.
The confused deputy (or why capabilities might have been invented).
ACM Operating Systems Review, 1988.

C. Hymans and O. Levillain.
Newspeak, Doubleplussimple Minilang for Goodthinkful Static Analysis of C.
Technical Note 2008-IW-SE-00010-1, EADS IW/SE, 2008.

R. Johnson and D. Wagner.
Finding user/kernel pointer bugs with type inference.
In USENIX Security Symposium, 2004.

GDR GPL 2014, Paris https://bitbucket.org/iwseclabs/c2newspeak etienne.millon@lip6.fr

https://bitbucket.org/iwseclabs/c2newspeak

