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I. Generalities



Self-avoiding walks (SAW)

What is c(n), the number of n-step SAW?
c(1) = 4
c(2) = c(1)× 3 = 12
c(3) = c(2)× 3 = 36
c(4) = c(3)× 3− 8 = 100Not so easy! c(n) is only known up to n = 71 [Jensen 04℄Problem: a highly non-markovian model



Some (old) 
onje
tures/predi
tions

• The number of n-step SAW behaves asymptoti
ally as follows:

c(n) ∼ (κ)µn nγ
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Some (old) 
onje
tures/predi
tions

• The number of n-step SAW behaves asymptoti
ally as follows:

c(n) ∼ (κ)µn nγwhere- γ = 11/32 for all 2D latti
es (square, triangular, honey
omb) [Nienhuis 82℄

- µ =
√

2 +
√
2 on the honey
omb latti
e [Nienhuis 82℄(proved this summer [Duminil-Copin & Smirnov℄)



Some (old) 
onje
tures/predi
tions

• The number of n-step SAW behaves asymptoti
ally as follows:

c(n) ∼ (κ)µn nγ

⇒ The probability that two n-step SAW starting from the same point do notinterse
t is

c(2n)

c(n)2
∼ n−γ



Some (old) 
onje
tures/predi
tions

• The end-to-end distan
e is on average

E(Dn) ∼ n3/4 (vs. n1/2 for a simple random walk)[Flory 49, Nienhuis 82℄
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Some (re
ent) 
onje
tures/predi
tions

• Limit pro
ess: The s
aling limit of SAW is SLE8/3.(proved if the s
aling limit of SAW exists and is 
onformally invariant[Lawler, S
hramm, Werner 02℄)This would imply
c(n) ∼ µnn11/32 and E(Dn) ∼ n3/4



In 5 dimensions and above

• The 
riti
al exponents are those of the simple random walk:

c(n) ∼ µnn0, E(Dn) ∼ n1/2.

• The s
aling limit exists and is the d-dimensional brownian motion[Hara-Slade 92℄Proof: a mixture of 
ombinatori
s (the la
e expansion) and analysis



II. Exa
tly solvable models

⇒ Design simpler 
lasses of SAW, that should be natural, as general aspossible... but still tra
table
• solve better and better approximations of real SAW
• develop new te
hniques in exa
t enumeration



II.0. A toy model: Partially dire
ted walks

De�nition: A walk is partially dire
ted if it avoids (at least) one of the 4 stepsN, S, E, W.Example: A NEW-walk is partially dire
ted
"Markovian with memory 1"

The self-avoidan
e 
ondition is lo
al.



A toy model: Partially dire
ted walks

• Let a(n) be the number of n-step NEW-walks, and A(t) =
∑

n≥0 a(n)t
n theasso
iated generating fun
tion.

• Re
ursive des
ription of NEW-walks:
4 5 6

2 31

• Generating fun
tion:

A(t) = 1+ 2
t

1− t
+ tA(t) + 2A(t)

t2

1− t

A(t) =
1+ t

1− 2t− t2
⇒ a(n) ∼ (1 +

√
2)n ∼ (2.41...)n



A toy model: Partially dire
ted walks

• Asymptoti
 properties: 
oordinates of the endpoint

E(Xn) = 0, E(X2
n) ∼ n, E(Yn) ∼ n

• Random NEW-walks:
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II.1. Weakly dire
ted walks

(joint work with Axel Ba
her)



Bridges

• A walk with verti
es v0, . . . , vi, . . . , vn is a bridge if the ordinates of its verti
essatisfy y0 ≤ yi < yn for 1 ≤ i ≤ n.
• There are many bridges:

b(n) ∼ µnbridgen
γ′where

µbridge = µSAW



Irredu
ible bridges

Def. A bridge is irredu
ible if it is not the 
on
atenation of two bridges.Observation: A bridge is a sequen
e of irredu
ible bridges



Weakly dire
ted bridges

De�nition: a bridge is weakly dire
ted if ea
h of its irredu
ible bridges avoidsat least one of the steps N, S, E, W.This means that ea
h irredu
ible bridge is a NES- or a NWS-walk.

vn

v0

⇒ Count NES- (irredu
ible) bridges



Enumeration of NES-bridges

Proposition
• The generating fun
tion of NES-bridges of height k+1 is

B(k+1)(t) =
∑

n
b
(k+1)
n tn =

tk+1

Gk(t)
,where G−1 = 1, G0 = 1− t, and for k ≥ 0,

Gk+1 = (1− t+ t2 + t3)Gk − t2Gk−1.



Enumeration of NES-bridges

Proposition
• The generating fun
tion of NES-bridges of height k+1 is

B(k+1)(t) =
∑

n
b
(k+1)
n tn =

tk+1

Gk(t)
,where G−1 = 1, G0 = 1− t, and for k ≥ 0,

Gk+1 = (1− t+ t2 + t3)Gk − t2Gk−1.

• The generating fun
tion of NES-ex
ursions of height at most k is

E(k)(t) =
1

t

(

Gk−1

Gk
− 1

)

.

Ex
ursion: y0 = 0 = yn and yi ≥ 0 for 1 ≤ i ≤ n.



Enumeration of NES-bridges

Last return to height 0

First return to height 0

• Bridges of height k +1:
B(k+1) = tB(k) + E(k)t2B(k)

• Ex
ursions of height at most k

E(k) = 1+ tE(k) + t2
(

E(k−1) − 1
)

+ t3
(

E(k−1) − 1
)

E(k)

• Initial 
onditions: E(−1) = 1, B(1) = t/(1− t).
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Enumeration of weakly dire
ted bridges

• GF of NES-bridges:
B(t) =

∑

k≥0

tk+1

Gk

• GF of irredu
ible NES-bridges:
B(t) =

I(t)

1− I(t)
⇒ I(t) =

B(t)

1 +B(t)

• GF of weakly dire
ted bridges (sequen
es of irredu
ible NES- or NWS-bridges):

W (t) =
1

1− (2I(t)− t)
=

1

1−
(

2B(t)
1+B(t)

− t
)

with G−1 = 1, G0 = 1− t, and for k ≥ 0,
Gk+1 = (1− t+ t2 + t3)Gk − t2Gk−1.[Ba
her-mbm 10℄



Asymptoti
 results and nature of the generating fun
tions

B(t) =
∑

k≥0

tk+1

Gk
, W (t) =

1

1−
(

2B(t)
1+B(t)

− t
)with G−1 = 1, G0 = 1− t, and for k ≥ 0,

Gk+1 = (1− t+ t2 + t3)Gk − t2Gk−1.

The zeroes of Gk (here, k = 20):
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Asymptoti
 results and nature of the generating fun
tions

B(t) =
∑

k≥0

tk+1

Gk
, W (t) =

1

1−
(

2B(t)
1+B(t)

− t
)

• The series B(t) and W (t) are meromorphi
 in C \ E, where E 
onsists of thetwo real intervals [−
√
2− 1,−1] and [

√
2− 1,1], and of the 
urve

E0 =

{

x+ iy : x ≥ 0, y2 =
1− x2 − 2x3

1+ 2 x

}

.This 
urve is a natural boundary of B and W . These series thus have in�nitelymany singularities.
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Asymptoti
 results and nature of the generating fun
tion
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∑
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• The series B(t) has radius √
2− 1, while W (t) has a simple pole ρ of smallermodulus (for whi
h 1 = 2B(ρ)

1+B(ρ)
− ρ).



Asymptoti
 results and nature of the generating fun
tion

B(t) =
∑

k≥0

tk+1

Gk
, W (t) =

1

1−
(

2B(t)
1+B(t)

− t
)

• The series B(t) and W (t) are meromorphi
 in C \ E where E 
onsists of thetwo real intervals [−
√
2− 1,−1] and [

√
2− 1,1], and of the 
urve

E0 =

{

x+ iy : x ≥ 0, y2 =
1− x2 − 2x3

1+ 2 x

}

.This 
urve is a natural boundary of B and W . These series thus have in�nitelymany singularities.

• The series B(t) has radius √
2− 1, while W (t) has a simple pole ρ of smallermodulus (for whi
h 1 = 2B(ρ)

1+B(ρ)
− ρ).

• The number w(n) of weakly dire
ted bridges of length n satis�es

w(n) ∼ µn,with µ ≃ 2.54 (the 
urrent re
ord).



The number of irredu
ible bridges

• The generating fun
tion of weakly dire
ted bridges, 
ounted by the lengthand the number of irredu
ible bridges, is

W (t, x) =
1

1− x
(

2B(t)
1+B(t)

− t
)

• Let Nn denote the number Nn of irredu
ible bridges in a random weaklydire
ted bridge of length n. Then
E(Nn) ∼ mn, V(Nn) ∼ s

2 n,where

m ≃ 0.318 and s
2 ≃ 0.7,and the random variable Nn−mn

s

√
n


onverges in law to a standard normal distribu-tion. In parti
ular, the average end-to-end distan
e, being bounded from belowby E(Nn), grows linearly with n.



Random weakly dire
ted bridges



Random weakly dire
ted bridges

• Use a re
ursive Boltzmann sampler to sample non-negative NES-walks:



Random weakly dire
ted bridges

• Use a re
ursive Boltzmann sampler to sample non-negative NES-walks:
• If the �rst irredu
ible fa
tor is a bridge, keep it, oth-erwise, dis
ard the whole walk.
• Form a sequen
e of irredu
ible NES- or NWS-bridges.



II. 2. Prudent self-avoiding walks

Self-dire
ted walks [Turban-Debierre 86℄Exterior walks [Préa 97℄Outwardly dire
ted SAW [Santra-Seitz-Klein 01℄Prudent walks [Du
hi 05℄, [Dethridge, Guttmann, Jensen 07℄, [mbm 08℄



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.
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Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.

not prudent!
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Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Remark: Partially dire
ted walks are prudent



A property of prudent walks



A property of prudent walks

The box of a prudent walk

The endpoint of a prudent walk is always on the border of the box



Re
ursive 
onstru
tion of prudent walks

Ea
h new step either in�ates the box or walks (prudently) along the border.



Re
ursive 
onstru
tion of prudent walks

i

h

j
• Three more parameters(
atalyti
 parameters)
• Generating fun
tion of prudent walks ending on the top of their box:

T(t; u, v,w) =
∑

ω
t|ω|ui(ω)vj(ω)wh(ω)Series with three 
atalyti
 variables u, v, w



Re
ursive 
onstru
tion of prudent walks

i

h

j
• Three more parameters(
atalyti
 parameters)
• Generating fun
tion of prudent walks ending on the top of their box:

(

1− uvwt(1− t2)

(u− tv)(v − tu)

)

T(t; u, v, w) =

1+ T (t;w, u) + T (t;w, v)− tv
T (t; v,w)

u− tv
− tu

T (t;u,w)

v − tuwith T (t;u, v) = tvT(t; u, tu, v).

• Generating fun
tion of all prudent walks, 
ounted by the length and thehalf-perimeter of the box:

P(t; u) = 1+ 4T(t; u, u, u)− 4T(t; 0, u, u)



Simpler families of prudent walks [Préa 97℄

ij i

3-sided 2-sided 1-sided

• The endpoint of a 3-sided walk lies always on the top, right or left side ofthe box

• The endpoint of a 2-sided walk lies always on the top or right side of the box

• The endpoint of a 1-sided walk lies always on the top side of the box (=partially dire
ted!)



Fun
tional equations for prudent walks:The more general the 
lass, the more additional variables(Walks ending on the top of the box)

• General prudent walks: three 
atalyti
 variables

(

1− uvwt(1− t2)

(u− tv)(v − tu)

)

T(t; u, v, w) = 1+T (w, u)+T (w, v)−tv
T (v, w)

u− tv
−tu

T (u,w)

v − tuwith T (u, v) = tvT(t; u, tu, v).
• Three-sided walks: two 
atalyti
 variables
(

1− uvt(1− t2)

(u− tv)(v − tu)

)

T(t; u, v) = 1 + · · · − t2v

u− tv
T(t; tv, v) − t2u

v − tu
T(t; u, tu)

• Two-sided walks: one 
atalyti
 variable
(

1− tu(1− t2)

(1− tu)(u− t)

)

T(t; u) =
1

1− tu
+ t

u− 2t

u− t
T(t; t)



Two- and three-sided walks: exa
t enumeration

Proposition1. The generating fun
tion of 2-sided walks is algebrai
:

P2(t) =
1

1− 2t− 2t2 +2t3






1+ t− t3 + t(1− t)

√

√

√

√

1− t4

1− 2t− t2





[Du
hi 05℄2. The generating fun
tion of 3-sided prudent walks is...



Two- and three-sided walks: exa
t enumeration

2. The generating fun
tion of 3-sided prudent walks is:

P3(t) =
1

1− 2t− t2

(

1+ 3t+ tq(1− 3t− 2t2)

1− tq
+2t2q T(t; 1, t)

)

where

T(t; 1, t) =
∑

k≥0

(−1)k
∏k−1
i=0

(

t
1−tq − U(qi+1)

)

∏k
i=0

(

tq
q−t − U(qi)

)

(

1+
U(qk)− t

t(1− tU(qk))
+

U(qk+1)− t

t(1− tU(qk+1))

)

with

U(w) =
1− tw + t2 + t3w −

√

(1− t2)(1 + t− tw + t2w)(1− t− tw − t2w)

2t
,and

q = U(1) =
1− t+ t2 + t3 −

√

(1− t4)(1− 2t− t2)

2t
.

A series with in�nitely many poles.[mbm 08℄



Two- and three-sided walks: asymptoti
 enumeration

• The numbers of 2-sided and 3-sided n-step prudent walks satisfy

p2(n) ∼ κ2 µ
n, p3(n) ∼ κ3 µ

nwhere µ ≃ 2.48... is su
h that
µ3 − 2µ2 − 2µ+2 = 0.Compare with 2.41... for partially dire
ted walks, 2.54... for weakly dire
tedbridges, but 2.64... for general SAW.

• Conje
ture: for general prudent walks
p4(n) ∼ κ4 µ

nwith the same value of µ as above [Dethridge, Guttmann, Jensen 07℄.



Two-sided walks: properties of large random walks(uniform distribution)

• The random variables Xn, Yn and δn satisfy

E(Xn) = E(Yn) ∼ n E((Xn − Yn)
2) ∼ n, E(δn) ∼ 4.15 . . .

Xn

Yn

δn



Two-sided walks: random generation (uniform distribution)
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• Re
ursive step-by-step 
onstru
tion à la Wilf ⇒ 500 steps(pre
omputation of O(n2) large numbers)
• Boltzmann sampling via a 
ontext-free grammar[Du
hon-Flajolet-Lou
hard-S
hae�er 02℄

E(Xn) = E(Yn) ∼ n E((Xn − Yn)
2) ∼ n, E(δn) ∼ 4.15 . . .



Three-sided prudent walks:random generation and asymptoti
 properties

• Asymptoti
 properties: The average width of the box is ∼ κn

• Random generation: Re
ursive method à la Wilf ⇒ 400 steps(pre-
omputation of O(n3) numbers)
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Four-sided (i.e. general) prudent walks

• An equation with 3 
atalyti
 variables:

(

1− uvwt(1− t2)

(u− tv)(v − tu)

)

T(u, v, w) = 1+ T (w, u)+ T (w, v)− tv
T (v, w)

u− tv
− tu

T (u,w)

v − tuwith T (u, v) = tvT(u, tu, v).
• Conje
ture:

p4(n) ∼ κ4 µ
nwhere µ ≃ 2.48 satis�es µ3 − 2µ2 − 2µ+2 = 0.

• Random prudent walks: re
ursive generation, 195 steps (si
! O(n4) numbers)
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II.3. Another distribution: Kineti
 prudent walks

At time n, the walk 
hooses one of the admissible steps with uniform probability.[An admissible step is one that gives a prudent walk℄1/3 1/2

Remark: Walks of length n are no longer uniform
1

4
· 1
3
· 1
3
· 1
3

1

4
· 1
3
· 1
3
· 1
2



Another distribution: Kineti
 prudent walks

• Kineti
 model: re
ursive generation with no pre
omputation
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• Theorem: The walk 
hooses uniformly one quadrant, say the NE one, andthen its s
aling limit is given by

Z(u) =

∫ 3u/7

0

(1W(s)≥0 e1 + 1W(s)<0 e2
)

dswhere e1, e2 form the 
anoni
al basis of R2 and W (s) is a brownian motion.[Be�ara, Friedli, Velenik 10℄



A kineti
, 
ontinuous spa
e version: The ran
her's walk

At time n, the walk takes a uniform unit step in R2, 
onditioned so that thenew step does not interse
t the 
onvex hull of the walk.

Theorem: the end-to-end distan
e is linear. More pre
isely, there exists a
onstant a > 0 su
h that
lim inf

||ωn||
n

≥ a.[Angel, Benjamini, Virág 03℄, [Zerner 05℄Conje
tures

• Linear speed: There exists a > 0 su
h that ||ωn||
n → a a.s.

• Angular 
onvergen
e: ωn
||ωn|| 
onverges a.s.



What's next?

• Exa
t enumeration: General prudent walks on the square latti
e � Growth
onstant?
• Uniform random generation: better algorithms (maximal length 200 for gen-eral prudent walks...)
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• A mixture of both models: walks formed of a sequen
e of prudent irredu
iblebridges?



Triangular prudent walksThe length generating fun
tion of triangular prudent walks is

P(t; 1) =
6t(1 + t)

1− 3t− 2t2

(

1 + t (1 + 2t)R(t; 1, t)
)

with

R(t; 1, t) = (1+ Y )(1 + tY )
∑

k≥0

t(
k+1
2 )

(

Y (1− 2t2)
)k

(Y (1− 2t2); t)k+1

(

Y t2

1− 2t2
; t

)

kand

Y =
1− 2t− t2 −

√

(1− t)(1− 3t− t2 − t3)

2t2Notation:

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1).

• The series P(t; 1) is neither algebrai
, nor even D-�nite (in�nitely many polesat Y tk(1− 2t2) = 0)


