LYNDONTREE \& BINARY SEARCH TREE

LUCAS MERCIER

\&

PHILIPPE CHASSAING INSTITUT ELIE CARTAN

GLOSSARYAlphabetn-letters long wordsLanguageU is a factor of $W$$U$ is a Prefix of $W$$U$ is a suffix of WRotationNecklace, circular wordPrimitive word

GLOSSARYAlphabet

$$
\mathcal{A}=\left\{a_{1}<a_{2}<\cdots<a_{k}<\cdots\right\}
$$$n$-letters long wordsLanguageU is a factor of $W$$U$ is a Prefix of $W$$U$ is a suffix of wRotationNecklace, circular wordPrimitive word

GLOSSARY

\square Alphabet

$$
\mathcal{A}=\left\{a_{1}<a_{2}<\cdots<a_{k}<\cdots\right\}
$$$n$-letters long words $\omega=\omega_{1} \omega_{2} \ldots \omega_{n}, \omega_{i} \in \mathcal{A},|\omega|=n, \omega \in \mathcal{A}^{n}$

\square LanguageU is a factor of W
\square Uis a Prefix of W
$\square U$ is a suffix of WRotationNecklace, círcular wordPrimitive word

GLOSSARY

\square Alphabet

$$
\mathcal{A}=\left\{a_{1}<a_{2}<\cdots<a_{k}<\cdots\right\}
$$n-letters long words

$$
\omega=\omega_{1} \omega_{2} \ldots \omega_{n}, \omega_{i} \in \mathcal{A},|\omega|=n, \omega \in \mathcal{A}^{n}
$$

$$
\mathcal{A}^{*}=\{\emptyset\} \cup \mathcal{A}^{1} \cup \mathcal{A}^{2} \cup \mathcal{A}^{3} \cup \ldots
$$$U$ is a factor of w

\square Uis a Prefix of W
$\square U$ is a suffix of WRotationNecklace, círcular wordPrimitive word

GLOSSARY

\square Alphabetn-letters long words
\square Language
\square
U is a factor of W
\square Uis a Prefix of w
$\square U$ is a suffix of WRotationNecklace, círcular wordPrimitive word

GLOSSARY

\square Alphabet

$$
\mathcal{A}=\left\{a_{1}<a_{2}<\cdots<a_{k}<\cdots\right\}
$$

\square n-letters long words
\square LanguageU is a factor of W
\square Uis a Prefix of W

$$
\omega=\omega_{1} \omega_{2} \ldots \omega_{n}, \omega_{i} \in \mathcal{A},|\omega|=n, \omega \in \mathcal{A}^{n}
$$

$$
\mathcal{A}^{*}=\{\emptyset\} \cup \mathcal{A}^{1} \cup \mathcal{A}^{2} \cup \mathcal{A}^{3} \cup \ldots
$$

$$
\exists r, s \in \mathcal{A}^{\star} \text { such that } w=r u s
$$

$\square U$ is a suffix of wRotationNecklace, círcular wordPrimitive word

GLOSSARY

\square Alphabet

$$
\mathcal{A}=\left\{a_{1}<a_{2}<\cdots<a_{k}<\cdots\right\}
$$

\square n-letters long words $\omega=\omega_{1} \omega_{2} \ldots \omega_{n}, \omega_{i} \in \mathcal{A},|\omega|=n, \omega \in \mathcal{A}^{n}$ $\mathcal{A}^{*}=\{\emptyset\} \cup \mathcal{A}^{1} \cup \mathcal{A}^{2} \cup \mathcal{A}^{3} \cup \ldots$
$\exists r, s \in \mathcal{A}^{\star}$ such that $w=r u s$

$$
r=\emptyset
$$

\square Uis a suffix of w

$$
s=\emptyset
$$RotationNecklace, círcular wordPrimitive word

GLOSSARY

\square Alphabet

$$
\mathcal{A}=\left\{a_{1}<a_{2}<\cdots<a_{k}<\cdots\right\}
$$

\square
n-letters long words

$$
\omega=\omega_{1} \omega_{2} \ldots \omega_{n}, \omega_{i} \in \mathcal{A},|\omega|=n, \omega \in \mathcal{A}^{n}
$$

\square Language

$$
\mathcal{A}^{*}=\{\emptyset\} \cup \mathcal{A}^{1} \cup \mathcal{A}^{2} \cup \mathcal{A}^{3} \cup \ldots
$$

\square
U is a factor of W $\exists r, s \in \mathcal{A}^{\star}$ such that $w=r u s$
U is a Prefix of W

$$
r=\emptyset
$$

\square Uis a suffix of w

$$
s=\emptyset
$$Rotation

$$
\omega=\omega_{1} \omega_{2} \ldots \omega_{n} \rightarrow \tau \omega=\omega_{2} \omega_{3} \ldots \omega_{n} \omega_{1}
$$Necklace, círcular wordPrimitive word

GLOSSARY

\square Alphabet
\square n-letters long words
\square Language

$$
\mathcal{A}=\left\{a_{1}<a_{2}<\cdots<a_{k}<\cdots\right\}
$$

$$
\omega=\omega_{1} \omega_{2} \ldots \omega_{n}, \omega_{i} \in \mathcal{A},|\omega|=n, \omega \in \mathcal{A}^{n}
$$

$$
\mathcal{A}^{*}=\{\emptyset\} \cup \mathcal{A}^{1} \cup \mathcal{A}^{2} \cup \mathcal{A}^{3} \cup \ldots
$$$U$ is a factor of W

$$
\exists r, s \in \mathcal{A}^{\star} \text { such that } w=r u s
$$

$\square U$ is a Prefix of W
\square Uis a suffix of w
\square Rotation

$$
\omega=\omega_{1} \omega_{2} \ldots \omega_{n} \rightarrow \tau \omega=\omega_{2} \omega_{3} \ldots \omega_{n} \omega_{1}
$$Necklace, círcular word

Primitive word

GLOSSARYAlphabetn-letters long wordsLanguageU is a factor of W $\exists r, s \in \mathcal{A}^{\star}$ such that $w=r u s$Uis a Prefix of W

$$
r=\emptyset
$$Uis a suffix of wRotation

$$
\omega=\omega_{1} \omega_{2} \ldots \omega_{n} \rightarrow \tau \omega=\omega_{2} \omega_{3} \ldots \omega_{n} \omega_{1}
$$Necklace, circularword

Primitive word

$$
\begin{array}{r}
\langle\omega\rangle=\left\{\tau^{k} \omega \mid k \in \mathbb{Z}\right\} \\
\#\langle\omega\rangle=|\omega|
\end{array}
$$

GLOSSARYAlphabetn-letters long wordsLanguageU is a factor of W $\exists r, s \in \mathcal{A}^{\star}$ such that $w=r u s$Uis a Prefix of W

$$
r=\emptyset
$$Uis a suffix of wRotation

$$
\omega=\omega_{1} \omega_{2} \ldots \omega_{n} \rightarrow \tau \omega=\omega_{2} \omega_{3} \ldots \omega_{n} \omega_{1}
$$Necklace, circularword

Primitive word

$$
\begin{array}{r}
\langle\omega\rangle=\left\{\tau^{k} \omega \mid k \in \mathbb{Z}\right\} \\
\#\langle\omega\rangle=|\omega|
\end{array}
$$

LYNDON WORDS

\square Lexicographic Order

LYNDON WORDS

\square Lexicographic Order
$\mathrm{a} \prec \mathrm{b}$
if $\left\{\begin{array}{l}\text { either } \exists p, \alpha, \beta \in \mathcal{A}^{\star}, a_{i}, a_{j} \in \mathcal{A} \text { s.t. } i<j,\left\{\begin{array}{l}\mathbf{a}=p a_{i} \alpha, \\ \mathbf{b}=p a_{j} \beta,\end{array}\right. \\ \text { or } \mathbf{a} \text { is a prefix of } \mathbf{b}\end{array}\right.$

LYNDON WORDS

\square Lexicographic Order
$\mathrm{a} \prec \mathrm{b}$
if $\left\{\begin{array}{l}\text { either } \exists p, \alpha, \beta \in \mathcal{A}^{\star}, a_{i}, a_{j} \in \mathcal{A} \text { s.t. } i<j,\left\{\begin{array}{l}\mathbf{a}=p a_{i} \alpha, \\ \mathbf{b}=p a_{j} \beta,\end{array}\right. \\ \text { or } \mathbf{a} \text { is a prefix of } \mathbf{b}\end{array}\right.$
\square w is a Lyndon word if w is primitive, and is the smallest word in its necklace

LYNDON WORDS

\square Lexicographic Order
$\mathrm{a} \prec \mathrm{b}$

$$
\text { if }\left\{\begin{array}{l}
\text { either } \exists p, \alpha, \beta \in \mathcal{A}^{\star}, a_{i}, a_{j} \in \mathcal{A} \text { s.t. } i<j,\left\{\begin{array}{l}
\mathbf{a}=p a_{i} \alpha, \\
\mathbf{b}=p a_{j} \beta,
\end{array}\right. \\
\text { or } \mathbf{a} \text { is a prefix of } \mathbf{b}
\end{array}\right.
$$

\square w is a Lyndon word if w is primitive, and is the smallest word in its necklace
\square cbaa, baac, aacb, acba: aacb is a Lyndon word,

LYNDON WORDS

\square Lexicographic Order
$\mathrm{a} \prec \mathrm{b}$

$$
\text { if }\left\{\begin{array}{l}
\text { either } \exists p, \alpha, \beta \in \mathcal{A}^{\star}, a_{i}, a_{j} \in \mathcal{A} \text { s.t. } i<j,\left\{\begin{array}{l}
\mathbf{a}=p a_{i} \alpha, \\
\mathbf{b}=p a_{j} \beta,
\end{array}\right. \\
\text { or } \mathbf{a} \text { is a prefix of } \mathbf{b}
\end{array}\right.
$$

\square w is a Lyndon word if w is primitive, and is the smallest word in its necklace
\square cbaa, baac, aacb, acba: aacb is a Lyudon word,
\square aabaab, baac

FACTORIZATIONS

\square The standard right factor v of a word w is its smallest proper suffix.

FACTORIZATIONSThe standard right factor v of a word w is its smallest proper suffix.The related factorization $w=u v$ is often called the standard factorization of w.

FACTORIZATIONSThe standard right factor v of a word w is its smallest proper suffix.The related factorization $w=u v$ is often called the standard factorization of w.$w=a b a a b b a b a a b b \quad u=a b a a b b a b \quad v=a a b b$

FACTORIZATIONS

\square The standard right factor v of a word w is its smallest proper suffix.
\square The related factorization $w=u v$ is often called the standard factorization of w.
$\square w=a b a a b b a b a a b b \quad u=a b a a b b a b \quad v=a a b b$
$\square \mathrm{w}=a b a a b b a b a a b b \quad u^{\prime}=a b \quad v^{\prime}=a a b b a b a a b b \quad v<v^{\prime}$

FACTORIZATIONSThe standard right factor v of a word w is its smallest proper suffix.The related factorization $w=u v$ is often called the standard factorization of w.$w=a b a a b b a b a a b b \quad u=a b a a b b a b \quad v=a a b b$$w=a b a a b b a b a a b b \quad u^{\prime}=a b \quad v^{\prime}=a a b b a b a a b b \quad v<v^{\prime}$Theorem (Lyndon, 1954) Any word w may be written uniquely as a non-increasing product of Lyndon words (by iteration of a variant of the standard factorization).

FACTORIZATIONS

\square The standard right factor v of a word w is its smallest proper suffix.
\square The related factorization $w=u v$ is often called the standard factorization of w.
$\square w=a b a a b b a b a a b b \quad u=a b a a b b a b \quad v=a a b b$
$\square w=a b a a b b a b a a b b \quad u^{\prime}=a b \quad v^{\prime}=a a b b a b a a b b \quad v<v^{\prime}$
\square Theorem (Lyndon, 1954) Any word w may be written uniquely as a non-increasing product of Lyndon words (by iteration of a variant of the standard factorization).

aabbaaababbaaabaa

FACTORIZATIONS

\square The standard right factor v of a word w is its smallest proper suffix.
\square The related factorization $w=u v$ is often called the standard factorization of w.
$\square w=a b a a b b a b a a b b \quad u=a b a a b b a b \quad v=a a b b$
$\square w=a b a a b b a b a a b b \quad u^{\prime}=a b \quad v^{\prime}=a a b b a b a a b b \quad v<v^{\prime}$
\square Theorem (Lyndon, 1954) Any word w may be written uniquely as a non-increasing product of Lyndon words (by iteration of a variant of the standard factorization).

aabbaaababbaaabaa

FACTORIZATIONS

\square The standard right factor v of a word w is its smallest proper suffix.
\square The related factorization $w=u v$ is often called the standard factorization of w.
$\square w=a b a a b b a b a a b b \quad u=a b a a b b a b \quad v=a a b b$
$\square w=a b a a b b a b a a b b \quad u^{\prime}=a b \quad v^{\prime}=a a b b a b a a b b \quad v<v^{\prime}$
\square Theorem (Lyndon, 1954) Any word w may be written uniquely as a non-increasing product of Lyndon words (by iteration of a variant of the standard factorization).

aabbaaababbaaabaa

FACTORIZATIONS

\square The standard right factor v of a word w is its smallest proper suffix.
\square The related factorization $w=u v$ is often called the standard factorization of w.
$\square w=a b a a b b a b a a b b \quad u=a b a a b b a b \quad v=a a b b$
$\square w=a b a a b b a b a a b b \quad u^{\prime}=a b \quad v^{\prime}=a a b b a b a a b b \quad v<v^{\prime}$
\square Theorem (Lyndon, 1954) Any word w may be written uniquely as a non-increasing product of Lyndon words (by iteration of a variant of the standard factorization).

aabbaaababbaaabaa

FACTORIZATIONS

\square The standard right factor v of a word w is its smallest proper suffix.
\square The related factorization $w=u v$ is often called the standard factorization of w.
$\square w=a b a a b b a b a a b b \quad u=a b a a b b a b \quad v=a a b b$
$\square w=a b a a b b a b a a b b \quad u^{\prime}=a b \quad v^{\prime}=a a b b a b a a b b \quad v<v^{\prime}$
\square Theorem (Lyndon, 1954) Any word w may be written uniquely as a non-increasing product of Lyndon words (by iteration of a variant of the standard factorization).

aabbaaababbaaabaa

FACTORIZATIONS

\square The standard right factor v of a word w is its smallest proper suffix.
\square The related factorization $w=u v$ is often called the standard factorization of w.
$\square w=a b a a b b a b a a b b \quad u=a b a a b b a b \quad v=a a b b$
$\square w=a b a a b b a b a a b b \quad u^{\prime}=a b \quad v^{\prime}=a a b b a b a a b b \quad v<v^{\prime}$
\square Theorem (Lyndon, 1954) Any word w may be written uniquely as a non-increasing product of Lyndon words (by iteration of a variant of the standard factorization).

aabbaaababbaaabaa

FACTORIZATIONSThe standard right factor v of a word w is its smallest proper suffix.The related factorization $w=u v$ is often called the standard factorization of w.$w=a b a a b b a b a a b b \quad u=a b a a b b a b \quad v=a a b b$$w=a b a a b b a b a a b b \quad u^{\prime}=a b \quad v^{\prime}=a a b b a b a a b b \quad v<v^{\prime}$Theorem (Lyndon, 1954) Any word w may be written uniquely as a non-increasing product of Lyndon words (by iteration of a variant of the standard factorization).
aabbaaababbaaabaaThe standard factorization of a Lyndon word is the first step in the construction of some basis of the free Lie algebra over A

Lyndon tree

- If $w=l r$ is the standard decomposition of w, then the Lyndon tree of $\omega, \mathcal{L}(\omega)$, is given by:

$$
\mathscr{L}(\omega)=
$$

- Examples:

$$
\mathscr{L}\left(a^{3} b^{4}\right)=
$$

Lyndon tree

* If $w=l r$ is the standard decomposition of w, then the Lyndon tree of $\omega, \mathscr{L}(\omega)$, is given by:

- Examples:

$$
\left.\mathscr{L}\left(a^{3} b^{4}\right)=\&(a)\right]
$$

Lyndon tree

- If $w=l r$ is the standard decomposition of w, then the Lyndon tree of $\omega, \mathcal{L}(\omega)$, is given by:

- Examples:

$$
\mathscr{L}\left(a^{3} b^{4}\right)=\&(a)
$$

Lyndon tree

* If $w=l r$ is the standard decomposition of w, then the Lyndon tree of $\omega, \mathcal{L}(\omega)$, is given by:

$$
\mathscr{L}(\omega)=\underbrace{\omega}_{\mathscr{L}(0)}
$$

- Examples:

$$
\left.\mathscr{L}\left(a^{3} b^{4}\right)=\mathscr{L}^{2}(a)=a^{2} b^{4}\right)=
$$

Lyndon tree

- If $w=l r$ is the standard decomposition of w, then the Lyndon tree of $\omega, \mathcal{L}(\omega)$, is given by:
- Examples:

$$
\mathscr{L}\left(a^{3} b^{4}\right)=\mathscr{B}(a)
$$

Lyndon tree

- If $w=l a$ is the standard decomposition of w, then the Lyndon tire of $\omega, \mathcal{L}(\omega)$, is given by: $\mathscr{L}(\omega)=$
- Examples: σ a random permutation:

$$
\sigma=174352698
$$

Lyndon tree

* If $w=l r$ is the standard decomposition of w, then the Lyndon tree of $\omega, \mathcal{L}(\omega)$, is given by: $\mathscr{L}(\omega)=$
- Examples: σ a random permutation:

$$
\sigma=174352698
$$

Lyndon tree

- If $w=l r$ is the standard decomposition of w, then the Lyndon tie of $\omega, \mathcal{L}(\omega)$, is given by: $\mathscr{L}(\omega)=$
- Examples: σ a random permutation:

$$
\sigma=174352698
$$

Lyndon tree

- If $w=l a$ is the standard decomposition of w, then the Lyndon tire of $\omega, \mathcal{L}(\omega)$, is given by: $\mathscr{L}(\omega)=$
- Examples: σ a random permutation:

$$
\sigma=174352698
$$

Binary search Free! (BT)

Binary search tree (BST)

Binary search tree (BST)

Binary search tree (BST)

LUC DEVROYE, A Note on the Height of Binary Search Trees, 1986
Journal of the Association for Computing Machinery, Vol. 33, No. 3, July 1986, pp. 489-498

Binary search tree (BST)
LUC DEVROYE, A Note on the Height of Binary Search Trees, 1986 Journal of the Association for Computing Machinery, Vol. 33, No. 3, July 1986, pp. 489-498
η_{λ} : Creamer transform of the Poisson distribution of parameter $\boldsymbol{\lambda}$ c and c ' are the rooks of $\eta_{\eta_{2}}(x)=1$

$$
\eta_{\lambda}(x)=x \ln \left(\frac{x}{\lambda}\right)-x+\lambda
$$

see also Pitted 1984

$$
4
$$

Binary search tree (BST)

LUC DEVROYE, A Note on the Height of Binary Search Trees, 1986 Journal of the Association for Computing Machinery, Vol. 33, No. 3, July 1986, pp. 489-498
B. CHAUVIN, M. DRMOTA, J. JABBOUR-HATTAB, The Profile of Binary Search Trees, zooi Ann. Appl. Prob., II:IO42-IO62.

Binary search tree (BST)

LUC DEVROYE, A Note on the Height of Binary Search Trees, 1986
Journal of the Association for Computing Machinery, Vol. 33, No. 3, July 1986, pp. 489-498
B. CHAUVIN, M. DRMOTA, J. JABBOUR-HATTAB, The Profile of Binary Search Trees, zooi An. Appl. Prob, ri:104-7 1062.
J. JABBOUR-HATTAB, Martingales and large deviations for binary search trees, 200I

Binary search tree (BST)
LUC DEVROYE, A Note on the Height of Binary Search Trees, 1986 Journal of the Association for Computing Machinery, Vol. 33, No. 3, July 1986, pp. 489 -498
B. CHAUVIN, M. DRMOTA, J. JABBOUR-HATTAB, The Profile of Binary Search Trees, 200 I Ann. Apply. Prob., 1:1042-1062.
J. JABBOUR-HATTAB,

Martingales and large deviations for binary search trees, 2001 Random Structure and Algorithms, 19:II2-127.
fine study of the Top level: see Matthew Robert, 2010.

Lyndon trees on the alphabet $\{a, b\}$
L_{n} : set of n letters long Lyndon words, uniform probability distribution \mathbb{L}_{n}

Lyndon trees on the alphabet $\{a, b\}$
\mathcal{L}_{n} : ser of n letters long Lyndon words, uniform probability distribution \mathbb{L}_{n} $T h m U_{n} d e r \mathbb{U}_{n}(d \omega), \frac{|l|}{n} \xrightarrow{(d)} \frac{1}{2} S_{0}+\frac{1}{2} U_{[0,1]}$ Mondoud Zohooriom

Lyndon trees on the alphabet $\{a, b\}$
\mathcal{L}_{n} : ser of n letters long Lyndon words, uniform probability distribution \mathbb{L}_{n} Thm Under $U_{n}(d \omega), \frac{|e|}{n} \xrightarrow{(d)} \frac{1}{2} S_{0}+\frac{1}{2} U_{[0,1]}$ Mardound Zohoorion $\infty^{\text {k }}$ alphabet, Poisson Dirichlet dist ${ }^{n} \rightarrow$ Chassainy Zohoorion

Lyndon trees on the alphabet $\{a, b\}$
L_{n} : set of a letters long Lyndon words, uniform probability distribution \mathbb{L}_{n} Thm Under $U_{n}(d \omega), \frac{|e|}{n} \xrightarrow{(d)} \frac{1}{2} S_{0}+\frac{1}{2} U_{[0,1]}$ Mardound Zohoorion $\infty^{k_{k}}$ alphabet, Poisson Divichet dist \rightarrow Chassainy Zohoorion
Idea: the positions of the $\log _{2} n$ long runs of " a " are uniform on $[1, n] 1$, approximately. They give the sizes of the factors (Esubtraes).

Lyndon trees on the alphabet $\{a, b\}$
L_{n} : set of n letters long lyndon words, uniform probability distribution \mathbb{L}_{n} Thm Under $\mathbb{U}_{n}(d \omega), \frac{|l|}{n} \xrightarrow{(d)} \frac{1}{2} S_{0}+\frac{1}{2} U_{[0,1]}$ Mondoud Zohooriom ∞^{k} alphabet, Poisson Dirichlet dist ${ }^{n} \rightarrow$ Chassainy Zohoorion
Idea: the positions of the $\log _{2} n$ long runs of " a " are uniform on $[1, n] 1$, approximately. They give the sizes of the factors (Esubtraes).
Problems: \# Lb n and L_{n} unfriendly.

Lyndon trees on the alphabet $\{a, b\}$
L_{n} : set of n letters long lyndon words, uniform probability distribution \mathbb{L}_{n} Thm Under $\mathbb{U}_{n}(d \omega), \frac{|l|}{n} \xrightarrow{(d)} \frac{1}{2} S_{0}+\frac{1}{2} U_{[0,1]}$ Mondoud Zohooriom $\infty^{k_{k}}$ alphabet, Poisson Divichet dist \rightarrow Chassainy Zohoorion
Idea: the positions of the $\log _{2} n$ long runs of " a " are uniform on $[1, n] 1$, approximately. They give the sizes of the factors (Esubtraes).
Problems: \# Lb and L_{n} unfriendly.

* lexicographic order nor easy to handle.

Lyndon trees on the alphabet $\{a, b\}$
L_{n} : set of n letters long lyndon words, uniform probability distribution \mathbb{L}_{n} $T h m U_{n} d e r \mathbb{L}_{n}(d \omega), \frac{|l|}{n} \xrightarrow{(d)} \frac{1}{2} S_{0}+\frac{1}{2} U_{[0,1]}$ Mondoud Zohoorion $\infty^{k_{k}}$ alphabet, Poisson Divichet dist \rightarrow Chassainy Zohoorion
Idea: the positions of the $\log _{2} n$ long runs of " a " are uniform on $[1, n] 1$, approximately. They give the sizes of the factors (Esubtraes).
Problems: \# Lb and L_{n} unfriendly.

* lexicographic order nor easy to handle.
* many tied for the title of longest run: To break the tie, one has to look at the suffix.

Lyndon trees on the alphabet $\{a, b\}$
L_{n} : set of n letters long lyndon words, uniform probability distribution \mathbb{L}_{n} $T h m U_{n} d e r \mathbb{L}_{n}(d \omega), \frac{|l|}{n} \xrightarrow{(d)} \frac{1}{2} S_{0}+\frac{1}{2} U_{[0,1]}$ Mondoud Zohoorion $\infty^{k_{k}}$ alphabet, Poisson Divichet dist \rightarrow Chassainy Zohoorion
Idea: the positions of the $\log _{2} n$ long runs of "a" are uniform on $[1, n] 1$, approximately. They give the sizes of the factors ($=$ subtraes).
Problems: \# Lb and L_{n} unfriendly.

* lexicographic order not easy to handle.
* many tied for the title of longest run: To break the tie, one has to look at the suffix.

$$
\mathbb{U}_{n}\left(k k_{i e} 1\right) \simeq \sum_{l \in \pi} e^{-2^{\alpha+e}} \frac{\left(2^{\alpha+l-1}\right)^{k}}{k!} \text { if }\left\{\log _{2} n\right\} \simeq \alpha \text {. }
$$

The height th of the Lyndon tree
Thm Under $U_{n}, \frac{M_{n}}{\log n} \xrightarrow{(P)} 5,09 \ldots$.

The height Hl of the Lyndon tree
Chm Under $U_{n}, \frac{M_{n}}{\log n} \xrightarrow{(P)} 5,09 \ldots$.
Ideas: To find a BST somewhere

The height th of the Lyndon tree
Thm Under $\Psi_{n}, \frac{M_{n}}{\log n} \xrightarrow{(P)} 5,09 \ldots$.
Ideas: To find a BST somewhere

* Fo use Jobbrour LD results.

The height tn of the Lyndon tree Th m U_{n} der $\mathbb{U}_{n}, \frac{M_{n}}{\log n} \xrightarrow{(P)}>5,09 \ldots$. Ideas: T_{o} find a BST somewhere * To use Jablioar LD remold.
$w=a^{5} b^{3} a^{3} b a b^{4} a^{4} b^{2} a^{2} b^{8}$

$$
a^{5} b^{3} a^{3} b a b^{4} \quad a^{4} b^{2} a^{2} b^{8}
$$

The height Hin of the Lyndon tree
 * To ute Jabber LD rentals. $w=a^{5} b^{3} a^{3} a b^{4} a^{4} b^{2} a^{2} b^{8}$

The height H_{n} of the Lyndon tree
The Under $\mathbb{U}_{n}, \frac{H_{n}}{\log n} \xrightarrow{(P)} 5,09 \ldots$. Ideas: To find a BST somewhere

The height H_{n} of the Lyndon tree
The Under $\mathbb{U}_{n}, \frac{T_{n}}{\log n} \xrightarrow{(P)} 5,09 \ldots$. Ideas: To find a BST somewhere

The height H_{n} of the Lyndon tree
The Under $U_{n}, \frac{T_{n}}{\log n} \xrightarrow{(P)} 5,09 \ldots$. Ideas: to find a BST somewhere

Lyudon tree \& BST
 * Fo use Jabbour LD results.

$$
w=a^{5} b^{3} a^{3} b a b^{4} a^{4} b^{2} a^{2} b^{8}
$$

Lyudon tree \& BST
 * To use Jabbrour LD rewalk.

$$
w=a^{5} b^{3} a^{3} b a b^{4} a^{4} b^{2} a^{2} b^{8}
$$

Lyudon tree \& BST
Thm Under $L_{n}, \frac{M_{n}}{\log n} \xrightarrow{(P)} 5,09 \ldots$. Ideas: * To find a BST somewhere * To use Jabbour LD resulte. $w=a^{5} b^{3} a^{3} b a b^{4} a^{4} b^{2} a^{2} b^{8}$
\rightarrow Assume n leaves of rype EO

Lyudon tree \& BST
Thm Under $U_{n}, \frac{M_{n}}{\log n} \xrightarrow{(P)} 5,09 \ldots$. Ibleas: ${ }^{\log }$ To find a BST somewhere * To use Jabhour LD retulk. $w=a^{5} b^{3} a^{3} b a b^{4} a^{4} b^{2} a^{2} b^{8}$, Assume n leaves of rype $\varepsilon 0 \rightarrow$ Jabbour: $n^{1-\eta(\alpha)}$
 of them ar level $\alpha \log n$

Lyudon tree \& BST
Thm Under $U_{n}, \frac{M_{n}}{\log n} \xrightarrow{(P)} 5,09 \ldots$. Ibleas: ${ }^{\log }$ To find a BST somewhere * To use Jabhowr LD resulk. $w=a^{5} b^{3} a^{3} b a b^{4} a^{4} b^{2} a^{2} b^{8}$, Assume n leaves of rype $\varepsilon 0 \rightarrow$ Jabbour: $n^{1-\eta(\alpha)}$
 of them ar level $\alpha \log n$ $n^{1-\eta_{2}^{(x)}}$ shmbes bchowing like i.i.d geometric $1 / 2$ the highest is $\left(1-\eta_{2}(\alpha)\right) \log _{2} n$ high

Lyndon tree \& BST
Th Under $U_{n}, \frac{M_{n}}{\log n} \xrightarrow{(P)} 5,09 \ldots$. Ideas: ${ }^{\log }$ To find a BST somewhere * To use Jabhowr LD result.
$w=a^{5} b^{3} a^{3} b a b^{4} a^{4} b^{2} a^{2} b^{8}$, Assume n leaves of type $\varepsilon 0 \rightarrow$ Jabbour: $\eta^{1-\eta(\alpha)}$
 of them at level $\alpha \log n$ $n^{1-n(\alpha)}$ shmbes behoving like i.i.d geometric $1 / 2$ the highest is $\left(1-\eta_{2}(\alpha)\right) \log _{2} n$ high \downarrow
contribution to H_{n} :

$$
\left(\alpha+\frac{1-\eta_{2}(\alpha)}{\ln 2}\right) \times \log n
$$

Lyndon tree \& BST
Th Under $U_{n}, \frac{M_{n}}{\log n} \xrightarrow{(P)} 5,09 \ldots$. Ideas: ${ }^{\log }$ To find a BST somewhere * To use Jabhour LD result.
$w=a^{5} b^{3} a^{3} b a b^{4} a^{4} b^{2} a^{2} b^{8}$, Assume n leaves of type $\varepsilon 0 \rightarrow$ Jabbour: $\eta^{1-\eta(\alpha)}$
 of them at level $\alpha \log n$ $n^{1-\eta_{2}^{(x)}}$ shmeer behoving like i.i.d geometric $1 / 2$ the highest is $\left(1-\eta_{2}(\alpha)\right) \log _{2} n$ high \downarrow

$$
\sup _{\alpha}\left\{\alpha+\frac{1-\eta_{2}(\alpha)}{\ln 2}\right\} \simeq 5,09 \ldots
$$

$$
\left(\alpha+\frac{1-\eta_{2}(\alpha)}{\ln 2}\right) \times \log n
$$

Lyudon tree \& BST
Thm Under $U_{n}, \frac{M_{n}}{\log n} \xrightarrow{(P)} 5,09 \ldots$. Ibleas: ${ }^{\log }$ To find a BST somewhere * To use Jabhour LD resulk. $w=a^{5} b^{3} a^{3} b a b^{6} a^{4} b^{2} a^{2} b^{8}$, Assume n leaves of rype $\varepsilon 0 \rightarrow$ Jabb, $h: n^{1-\eta(\alpha)}$ \rightarrow Assume n leaves of rype E \rightarrow Jabl $a n^{1-\eta(\alpha)}$

Lyudon tree \& BST
Thm Under $U_{n}, \frac{M_{n}}{\log n} \xrightarrow{(P)} 5,09 \ldots$. Ibleas: ${ }^{\log }$ To find a BST somewhere * To use Jabhour LD remalk. $w=a^{5} b^{3} a^{3} b a b^{4} a^{4} b^{2} a^{2} b^{8}$, Assume n leaves of rype $\rightarrow 0 \rightarrow$ Jabb $l: n^{1-\eta\left(2^{(\alpha)}\right.}$
 of them recrel $\alpha \log n$

Lyudon tree \& BST
Thm Under $U_{n}, \frac{M_{n}}{\log n} \xrightarrow{(P)} 5,09 \ldots$. Ibleas: ${ }^{\log }$ To find a BST somewhere * To use Jabtrour LD rewalk. $w=a^{5} b^{3} a^{3} b a b^{4} a^{4} b^{2} a^{2} b^{8}$

Problem: ried factors $a^{k} b^{e}$

Lyudon tree \& BST
Thm Under $U_{n}, \frac{M_{n}}{\log n} \xrightarrow{(P)} 5,09 \ldots$. Ibleas: ${ }^{\log }$ To find a BST somewhere * To use Jabtrour LD remults.
$w=a^{5} b^{3} a^{3} b a b^{4} a^{4} b^{2} a^{2} b^{8}$

Problem: ried factors $a^{k} b^{l}$ Solution: $a^{k_{i}} b^{\ell_{i}} a^{l_{i}} b^{\ell_{i}} \omega_{i}$, in which $w_{i} \infty^{\text {k }}$ i id linary words

Lyndon tree \& BST
Th Under $U_{n}, \frac{M_{n}}{\log n} \xrightarrow{(P)} 5,09 \ldots$. Ibleas: ${ }^{\log }$ To find a BST somewhere * To use Jabhour LD result.
$w=a^{5} b^{3} a^{3} b a b^{4} a^{4} b^{2} a^{2} b^{8}$

Problem: Hied factors $a^{k} b^{l}$ Solution: $a^{k_{i}} b^{l_{i}} a^{l_{i}} b^{\ell_{i}} w_{i}$, in which $w_{i} \infty^{\text {k }}$ i id binary words Problem: Fer $w \in \mathcal{L}_{n}$, the $\#$ of factors is not easy to handle.

Lyndon tree \& BST
Th Under $U_{n}, \frac{M_{n}}{\log n} \xrightarrow{(P)} 5,09 \ldots$. Ibleas: ${ }^{\log }$ To find a BST somewhere * To use Jobbrour LD results.
$w=a^{5} b^{3} a^{3} b a b^{4} a^{4} b^{2} a^{2} b^{8}$

Problem: Tied factors $a^{k} b^{e}$
Solution: $a^{k_{i}} b^{l_{i}} a^{k_{i}} b^{\ell_{i}} w_{i}$, in which $w_{i} \infty^{r^{r}}$ i id binary words
Problem: Fer $w \in \mathscr{L}_{n}$, the $\#$ of factors is not easy to handle.

Solution: Consider We the random $\infty^{\text {te }}$ binary word truncated after the $1^{\text {tr }}$ occurrence of a^{l}, then reversed (rob eLyndon).

Lyndon tree \& BST
Th Under $U_{n}, \frac{M_{n}}{\log n} \xrightarrow{(P)} 5,09 \ldots$. Ibleas: ${ }^{\log }$ To find a BST somewhere * To use Jabhour LD result.
$u=a^{5} b^{3} a^{3} b a b^{6} a^{4} b^{2} a^{2} b^{8}$

Problem: Fer $w \in \mathscr{L}_{n}$, the $\#$ of factors is not easy to handle.

Solution: Consider W_{l} the random os te binary word truncated after the 1 tr occurrence of a^{l}, then reversed (robe Lyndon).

Assumption: $\left|W_{l}\right| \simeq 2^{l}$ and $H\left(\mathscr{L}\left(W_{l}\right)\right) \simeq \alpha l$

Lyndon tree \& BST
Th Under $U_{n}, \frac{M_{n}}{\log n} \xrightarrow{(P)} 5,09 \ldots$. Ibleas: ${ }^{\log }$ To find a BST somewhere $w=a^{5} b^{3} a^{3} b a b^{4} a^{4} b^{2} a^{2} b^{8}$

Problem: Fer $w \in \mathscr{L}_{n}$, the $\#$ of factors is not easy to handle.

Solution: Consider W_{l} the random os te binary word truncated after the 1 tr occurrence of a^{l}, then reversed (robe Lyndon).

Assumption: $\left|W_{l}\right| \simeq 2^{l}$ and $H\left(\mathcal{L}\left(W_{e}\right)\right) \simeq \alpha l$

$$
\Rightarrow H_{n} \simeq \alpha \log _{2} n
$$

Lyndon tree \& BST

* To ute Jabber LD remelt. $\omega=a^{8} b^{2} a^{2}=a_{a}^{4} a^{4} a^{8} \varepsilon^{2} a^{2} b^{8}$

Problem: Fer $w \in \mathscr{L}_{n}$, the $\#$ of faction is not easy i - handle.
Solution: Comider W_{l} the random ob le binary word truncated after the $1^{\text {Et }}$ occurrence of a^{l}, then reversed (robe Landon).

Assumption: $\left|W_{l}\right| \simeq 2^{l}$ and $H\left(\mathcal{L}_{\left(w_{l}\right)}\right) \simeq \alpha l$

$$
\Rightarrow H_{n} \simeq \alpha \log _{2} n \Rightarrow \frac{\alpha}{\ln 2}=5,09 \ldots
$$

Lyndon tree \& Yule

$$
\begin{aligned}
& U^{(l)}=\left(U_{1}, U_{2}, \ldots . ., U_{T_{e}}\right) \rightarrow\left\{\begin{array}{l}
T_{e}=\inf \left\{k / U_{k}<2^{-l}\right\} \\
u_{i} i . i . d .
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { sequence of } 1 / U_{i} \text {, reversed. } \\
& a b c d e f g h i j k l m n o p
\end{aligned}
$$

Lyndon tree \& Yule

Lyndon tree \& Yule.

Lyudon tree \& Yule.

$$
\begin{array}{r}
-\log _{2} U_{x}>-\log _{2} U_{y}+1 \Rightarrow+1 \text { (@) } \\
Y_{x}=-\log _{2} U_{x} \sim \text { loi exponentielle } \\
\mathbb{E}\left[y_{x}\right]=\frac{1}{\ln ^{2}}
\end{array}
$$

Lyndon tree \& Yule.

Lyndon tree \& Yule

Lyndon tree \& Yule.

Lyndon tree \& Yule.

!

Lyndon tree \& Yule.

Lyndon tree \& Yule.

Lyndon tree \& Yule.
depth of $m=5 \cdot+3-1+\sum\left\lfloor x_{i}\right\rfloor$
Π_{m}^{0} : red point process l Auth endpoints Π_{m}° green point process

Lyndon tree \& Yule.

$$
\begin{aligned}
& \text { depth of } m=\left|\pi_{m}^{0}\right|+\left|\pi_{m}^{0}\right|+1+G\left(\pi_{m}^{*}\right) \quad \sum\left\lfloor x_{i j}=G\left(\pi_{m}^{0}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{n} \ln L_{\lambda n, n, \nu n}, G=\mu n \rightarrow \psi(\lambda, \mu, \nu) \\
& x_{4} \sup _{i \mu} \frac{1}{\sqrt{\ln 2}}\left(1+\mu+\nu+\frac{\psi(\lambda, \mu, \nu)}{\ln 2}\right)=5,09 \ldots
\end{aligned}
$$

