Bijections autour des bois de Schnyder

Éric Fusy (LIX, École Polytechnique)
travaux avec Olivier Bernardi, Dominique Poulalhon et Gilles Schaeffer

Séminaire Philippe Flajolet, IHP, 31 janvier 2013

Schnyder structures on simple triangulations Let T be a simple triangulation (topological, up to isotopy)

[Schnyder'89]
T can be endowed with a labelling of the corners by $\{1,2,3\}$ such that
inner faces

inner vertices

outer vertices

Schnyder structures on simple triangulations

1) Schnyder labellings

[Schnyder'89]
T can be endowed with a labelling of the corners by $\{\boldsymbol{x}, \boldsymbol{x}, \boldsymbol{x}\}$ such that
inner faces
inner vertices

outer vertices

Schnyder structures on simple triangulations

2) Schnyder woods
[Schnyder'89]

T can be endowed with a tricoloration +orientation of the inner edges such that
inner vertices

outer vertices

Schnyder structures on simple triangulations

2) Schnyder woods
[Schnyder'89]

T can be endowed with a tricoloration +orientation of the inner edges such that
inner vertices

outer vertices

Schnyder woods \leftrightarrow Schnyder labellings

Schnyder structures on simple triangulations

2) Schnyder woods
[Schnyder'89]

T can be endowed with a tricoloration +orientation of the inner edges such that
inner vertices

outer vertices

3) Schnyder woods
[Schnyder'89]

T can be endowed with a tricoloration +orientation of the inner edges such that
inner vertices

outer vertices

yields a spanning tree in each color

Schnyder structures on simple triangulations

2) Schnyder woods
[Schnyder'89]

T can be endowed with a tricoloration +orientation of the inner edges such that
inner vertices

outer vertices

Schnyder structures on simple triangulations

3) 3-orientations

[Schnyder'89]
T can be endowed with an orientation of its inner edges such that

outer vertices

Schnyder structures on simple triangulations The 3 incarnations of Schnyder structures:

Schnyder labelling

Schnyder wood

3-orientation

Schnyder structures on simple triangulations
The 3 incarnations of Schnyder structures:
Schnyder labelling

3-orientation

Applications of Schnyder woods [Schnyder'89,90] Associate 3 coordinates to each vertex of T (mapping from V to \mathbf{R}^{3})

9 inner faces

$a_{1} \rightarrow(9,0,0)$
$a_{2} \rightarrow(0,9,0)$
$a_{3} \rightarrow(0,0,9)$
$A \rightarrow(4,2,3)$
$B \rightarrow(5,3,1)$
$C \rightarrow(1,4,4)$
$D \rightarrow(2,1,6)$

Applications of Schnyder woods
[Schnyder'89,90] Associate 3 coordinates to each vertex of T (mapping from V to \mathbf{R}^{3})

$$
\begin{gathered}
\begin{array}{|c}
\begin{array}{c}
a_{1} \rightarrow(9,0,0) \\
a_{2} \rightarrow(0,9,0) \\
a_{3} \rightarrow(0,0,9) \\
A \rightarrow(4,2,3) \\
B \rightarrow(5,3,1) \\
C \rightarrow(1,4,4) \\
D \rightarrow(2,1,6) \\
\hline
\end{array} \\
\text { all in } x+y+z=9
\end{array}
\end{gathered}
$$

Straight-line drawing algo

Planarity criterion

$G=(V, E)$ is planar iff
$\exists \Phi: V \cup E \rightarrow \mathbf{R}^{3}$ such that
$\forall p \neq q \in(V \cup E)^{2}$

$$
\Phi(p) \leq_{\mathbf{R}^{3}} \Phi(q)
$$ I

$p \in V, q \in E$ and $p \in q$

Take the (3-regular) dual of the triangulation

In black the dual tree of the red tree
In orange the dual of the red edges

move corner-labels toward black vertices

Erase the triangulation, keep the dual

Cut the orange edges at their middle

Cut the orange edges at their middle \Rightarrow binary tree such that there is a parenthesis matching of the leaves

binary tree such that there is a parenthesis matching of the leaves
rectilinear representation

binary tree such that there is a parenthesis matching of the leaves
rectilinear representation

binary tree such that there is a parenthesis matching of the leaves
rectilinear representation (encoded by two words)

\Rightarrow

rectilinear representation (encoded by two words)

rectilinear representation (encoded by two words)

binary tree such that there is a parenthesis matching of the leaves
rectilinear representation (encoded by two words)

non-crossing pair of Dyck paths
binary tree such that there is a parenthesis matching of the leaves
rectilinear representation (encoded by two words)

Total number s_{n} of Schnyder woods over triangulations with $n+3$ vertices is

$$
\begin{aligned}
s_{n} & =\text { Cat }_{n} \text { Cat }_{n+2}-\text { Cat }_{n+1} \text { Cat }_{n+1} \\
& =\frac{6(2 n)!(2 n+2)!}{n!(n+1)!(n+2)!(n+3)!}
\end{aligned}
$$

non-crossing pair of Dyck paths

Lattice property for Schnyder woods [Ossona de Mendez'94], [Brehm'03]
Theorem: Let T be a simple triangulation. Then the set of Schnyder structures of T is a distributive lattice

Lattice property for Schnyder woods

 [Ossona de Mendez'94], [Brehm'03]Theorem: Let T be a simple triangulation. Then the set of Schnyder structures of T is a distributive lattice

Flip:

Lattice property for Schnyder woods

 [Ossona de Mendez'94], [Brehm'03]Theorem: Let T be a simple triangulation. Then the set of Schnyder structures of T is a distributive lattice

Flip: $\because \xlongequal[y]{c}$ to $" \bumpeq$

Lattice property for Schnyder woods

 [Ossona de Mendez'94], [Brehm'03]Theorem: Let T be a simple triangulation. Then the set of Schnyder structures of T is a distributive lattice

The min is the unique 3-orientation of T with no clockwise circuit

Orientations and mobiles

Let \mathcal{O} be the set of orientations on planar maps such that:

- there is no clockwise circuit
- Each inner vertex can access the outer (unoriented simple) cycle
- the outer cycle is a sink

Orientations and mobiles

Let \mathcal{O} be the set of orientations on planar maps such that:

- there is no clockwise circuit
- Each inner vertex can access the outer (unoriented simple) cycle
- the outer cycle is a sink

Let \mathcal{M} be the set of mobiles, i.e., bipartite plane trees with arrows (called buds) at black vertices

Theorem: The above construction Φ is a bijection between \mathcal{O} and \mathcal{M}. Moreover,
degrees of inner faces \longleftrightarrow degrees of black vertices outdegrees of inner vertices \longleftrightarrow degrees of white vertices

Specialization to simple triangulations

- From the lattice property (taking the min) we have family of simple triangulations \leftrightarrow subfamily \mathcal{F} of \mathcal{O} where:

- faces have degree 3
- inner vertices have outdegree 3

Specialization to simple triangulations

- From the lattice property (taking the min) we have family of simple triangulations \leftrightarrow subfamily \mathcal{F} of \mathcal{O} where:

- From the master bijection specialized to \mathcal{F}, we have $\mathcal{F} \leftrightarrow$ subfamily of mobiles where all vertices have degree 3

[F, Poulalhon, Schaeffer'08], other bijection in [Poulalhon, Schaeffer'03]

Counting formula

The bijection when there is a marked inner face:

Counting formula

The bijection when there is a marked inner face:

Each of the 3 parts (when non empty) is of the form

Counting formula

The bijection when there is a marked inner face:

Each of the 3 parts (when non empty) is of the form

Let $t_{n}=\#\{$ (rooted) triang. with $n+3$ vertices $\}, F(x)=\sum_{n} t_{n} x^{2 n+1}$
Then $F^{\prime}(x)=(1+u)^{3}$ where $u=u(x)$ is specified by $\underbrace{u=x^{2}(1+u)^{4}}$

Counting formula

The bijection when there is a marked inner face:

Each of the 3 parts (when non empty) is of the form

Let $t_{n}=\#\{$ (rooted) triang. with $n+3$ vertices $\}, F(x)=\sum_{n} t_{n} x^{2 n+1}$ Then $F^{F^{\prime}(x)=(1+u)^{3}}$ where $u=u(x)$ is specified by $\underbrace{u=x^{2}(1+u)^{4}}_{\text {quat. trees }}$ (Lagrange)

$$
t_{n}=\frac{2(4 n+1)!}{(n+1)!(3 n+2)!}
$$

[Tutte'62]

Colored formulation of the bijection

Take the Schnyder labelling corresponding to the minimal 3-orientation

Colored formulation of the bijection

Take the Schnyder labelling corresponding to the minimal 3-orientation

Colored formulation of the bijection

Colored formulation of the bijection

Replace each

Local rules:

Colored formulation of the bijection

- Apply

to each inner white vertex
- Erase the 3 outer vertices and their incident half-edges

Colored formulation of the bijection

- Apply

to each inner white vertex
- Erase the 3 outer vertices and their incident half-edges

Same bijection as before, because

Summary and extensions

- We have two formulations of a bijection for (simple) triangulations

Summary and extensions

- We have two formulations of a bijection for (simple) triangulations

Let $t_{n}=\#\{($ rooted $)$ triang. with $n+3$ vertices $\}, F(x)=\sum_{n} t_{n} x^{2 n+1}$

- Yields the counting formulas (one for GF, one for coefficients):
(1) $F^{\prime}(x)=(1+u)^{3}$ where $u=x^{2}(1+u)^{4}$
(2) $t_{n}=\frac{2(4 n+1)!}{(n+1)!(3 n+2)!}$

Summary and extensions

- We have two formulations of a bijection for (simple) triangulations

Let $t_{n}=\#\{($ rooted $)$ triang. with $n+3$ vertices $\}, F(x)=\sum_{n} t_{n} x^{2 n+1}$

- Yields the counting formulas (one for GF, one for coefficients):
(1) $F^{\prime}(x)=(1+u)^{3}$ where $u=x^{2}(1+u)^{4}$
(2) $t_{n}=\frac{2(4 n+1)!}{(n+1)!(3 n+2)!}$
- We now give two extensions:

3 -connected maps

Bijection extends
Counting: (bivariate) extends (2)
d-angulations of girth d

Bijection extends (A)
Counting: (bivariate) extends (1)

Extension to 3-connected maps

3-connectivity

3-connected graph $=$ needs delete at least 3 vertices to disconnect it

not 3 -connected

3-connected

3-connectivity

3-connected graph $=$ needs delete at least 3 vertices to disconnect it

3-connectivity

3-connected graph $=$ needs delete at least 3 vertices to disconnect it

not 3-connected

3 -connected
$\mathbf{R k}$: a triangulation is 3-connected iff it is simple

3-connectivity

3-connected graph $=$ needs delete at least 3 vertices to disconnect it

not 3-connected

3 -connected
$\mathbf{R k}$: a triangulation is 3-connected iff it is simple

Quasi 3-connected maps
A planar map G with 3 marked outer vertices $\{R, B, G\}$ is called quasi 3-connected if $G+$ triangle formed by $\{R, B, G\}$ is 3-connected

Quasi 3-connected maps

A planar map G with 3 marked outer vertices $\{R, B, G\}$ is called quasi 3 -connected if $G+$ triangle formed by $\{R, B, G\}$ is 3 -connected

Quasi 3-connected maps

A planar map G with 3 marked outer vertices $\{R, B, G\}$ is called quasi 3-connected if $G+$ triangle formed by $\{R, B, G\}$ is 3-connected

quasi 3 -connected

Quasi 3-connected maps

A planar map G with 3 marked outer vertices $\{R, B, G\}$ is called quasi 3-connected if $G+$ triangle formed by $\{R, B, G\}$ is 3-connected

quasi 3 -connected

Let $\mathcal{Q}_{i, j}=$ set quasi 3-conn. maps with $i+3$ vertices and j inner faces

Quasi 3-connected maps

A planar map G with 3 marked outer vertices $\{R, B, G\}$ is called quasi 3-connected if $G+$ triangle formed by $\{R, B, G\}$ is 3-connected

Let $\mathcal{Q}_{i, j}=$ set quasi 3-conn. maps with $i+3$ vertices and j inner faces $\mathbf{R k}$: Extremal case $j=2 i+1$ gives triangulations with $i+3$ vertices

The family of quasi 3 -connected maps is stable by duality

$$
\mathcal{Q}_{i, j}^{*}=\mathcal{Q}_{j, i}
$$

Duality seen with the corner-map
Corner-map: obtained by replacing each face by a star (3 outer faces)

Duality seen with the corner-map
Corner-map: obtained by replacing each face by a star (3 outer faces)

Corner-map: obtained by replacing each face by a star (3 outer faces)

C is a dissection of an hexagon by quadrangular faces Rk: quasi 3 -connectivity of $G \Leftrightarrow$ each 4-cycle of C delimits a face

Corner-map: obtained by replacing each face by a star (3 outer faces)

G and G^{*} have the same corner-map

G can be endowed with a labelling of the corners by $\{\star, \star, \star\}$ such that
inner faces
inner vertices

outer vertices

outer face(s)

3-connected Schnyder labellings Let G be a quasi 3-connected map. [Miller'02], [Felsner'04]

G can be endowed with a labelling of the corners by $\{\boldsymbol{*}, *, \infty\}$ such that
inner faces
inner vertices

outer vertices

outer face(s)

Rk: also incarnations as Schnyder woods, 3-orientations (ommited)

Duality for 3-connected Schnyder labellings

Local rule:

Lattice property in the 3-connected case

[Felsner'04] formulated on the associated corner map C
Theorem: Let G be a quasi 3-connected map. Then the set of Schnyder labellings of G is a distributive lattice

Lattice

[Felsner'04] formulated on the associated corner map C
Theorem: Let G be a quasi 3 -connected map. Then the set of Schnyder labellings of G is a distributive lattice

Rk: extends flip for triangulations

Lattice property in the 3-connected case

[Felsner'04] formulated on the associated corner map C
Theorem: Let G be a quasi 3 -connected map. Then the set of Schnyder labellings of G is a distributive lattice

Rk: extends flip for triangulations

Bijection for quasi 3-connected maps [F, Poulalhon, Schaeffer'08]

Counting formula

G with a marked inner face

3 rooted binary trees

Counting formula

G with a marked inner face

3 rooted binary trees

Let $q_{i, j}=\#$ \{quasi 3-conn. maps with $i+3$ vertices and j inner faces $\}$
Let $F\left(x_{\circ}, x_{\bullet}\right)=\sum_{i, j} q_{i, j} x_{\circ}^{i} x_{\bullet}^{j}$

$$
\frac{\partial}{\partial x_{\bullet}} F\left(x_{\circ}, x_{\bullet}\right)=(1+U)^{3}, \text { where }\left\{\begin{aligned}
U & =x_{\circ} \cdot(1+V)^{2} \\
V & =x_{\bullet} \cdot(1+U)^{2}
\end{aligned}\right.
$$

Counting formula

G with a marked inner face

3 rooted binary trees

Let $q_{i, j}=\#$ \{quasi 3-conn. maps with $i+3$ vertices and j inner faces $\}$
Let $F\left(x_{\circ}, x_{\bullet}\right)=\sum_{i, j} q_{i, j} x_{\circ}^{i} x_{\bullet}^{j}$

$$
\frac{\partial}{\partial x_{\bullet}} F\left(x_{\circ}, x_{\bullet}\right)=(1+U)^{3}, \text { where }\left\{\begin{aligned}
U & =x_{\circ} \cdot(1+V)^{2} \\
V & =x_{\bullet} \cdot(1+U)^{2}
\end{aligned}\right.
$$

$$
\Rightarrow \quad q_{i, j}=\frac{3}{(2 i+1)(2 j+1)}\binom{2 i+1}{j}\binom{2 j+1}{i}
$$

[Mullin\& Schellenberg'68]
recover triangulations counting formula in the (extremal) case $j=2 i+1$

Extension to d-angulations of girth d

The girth parameter

The girth of a graph is the length of a shortest cycle within the graph

Girth $=3$

Rk: Simple \Leftrightarrow girth ≥ 3
If girth $=d$ then all faces have degree at least d
(in particular a triangulation is simple iff it has girth 3)

d-angulations of girth d

For $d \geq 3$ we consider d-angulations (all faces have degree d) of girth d

a pentagulation of girth 5

d-angulations of girth d

For $d \geq 3$ we consider d-angulations (all faces have degree d) of girth d

a pentagulation of girth 5
$\mathbf{R k}:$ By the Euler relation, $\frac{\# \text { (inner edges) }}{\# \text { (inner vertices) }}=\frac{d}{d-2}$
$d /(d-2)$-orientations for d-angulations of girth d
[Bernardi-F'10]: Let G be a d-angulation of girth d. Then $(d-2) G$ admits an orientation where each inner vertex has outdegree d

Such an orientation is called a $d /(d-2)$-orientation

$d /(d-2)$-orientations for d-angulations of girth d

[Bernardi-F'10]: Let G be a d-angulation of girth d. Then $(d-2) G$ admits an orientation where each inner vertex has outdegree d

Such an orientation is called a $d /(d-2)$-orientation
\Leftrightarrow assignment of (outgoing) flows to half-edges

total flow at inner edge $=d-2$ total flow at inner vertex $=d$

$d /(d-2)$-orientations for d-angulations of girth d

 [Bernardi-F'10]: Let G be a d-angulation of girth d. Then $(d-2) G$ admits an orientation where each inner vertex has outdegree dSuch an orientation is called a $d /(d-2)$-orientation
\Leftrightarrow assignment of (outgoing) flows to half-edges

Rk: also formulations as Schnyder labellings/woods

total flow at inner edge $=d-2$ total flow at inner vertex $=d$

Lattice property for $d /(d-2)$-orientations

flow:

flip:

increase flow by 1 clockwise

Lattice property for $d /(d-2)$-orientations

The set of $d /(d-2)$-orientations of a fixed d-angulation of girth d is a distributive lattice

unique one with no "clockwise circuit"
flow:

increase flow by 1 clockwise

Master bijection in the flow-formulation

degrees of inner faces \longleftrightarrow degrees of black vertices total flows at inner vertices \longleftrightarrow total weights at white vertices

Specialization to d-angulations of girth d

Bijection d-angulations of girth $d \leftrightarrow$ weighted mobiles such that

- each black vertex has degree d
- each white vertex has total weight d
- each edge has total weight $d-2$ (weight >0 at \bigcirc, weight $=0$ at \bullet)
[Albenque, Poulalhon'11]: other bijection (with blossoming tree)

Generating function expression

For $i \in[0 . . d], \mathcal{L}_{i}:=$ family of such mobiles with a root-leg of weight i Let $L_{i}(x)$ be the GF of \mathcal{L}_{i} where x marks black nodes

Examples:
$d=5$

For $d \geq 3, F_{d}(x):=\mathrm{GF}$ of (rooted) d-angulations of girth d by inner faces

- Bijection when an inner face is marked

$$
\Rightarrow F^{\prime}(x)=\left(1+L_{d-2}\right)^{d}
$$

- Root-decomposition of mobiles in $\mathcal{L}_{i} \Rightarrow\left(L_{0}, L_{1}, \ldots, L_{d}\right)$ are given by

$$
\left\{\begin{aligned}
L_{0} & =x \cdot\left(1+L_{d-2}\right)^{d-1}, \\
L_{d} & =1, \\
L_{i} & =\sum_{j>0} L_{d-2-j} L_{i+j} \text { for } i=1 . . d-1
\end{aligned}\right.
$$

