Law of large numbers for matchings, extensions and applications

Marc Lelarge

INRIA \& ENS

Joint works with Charles Bordenave (CNRS \& Uni. Toulouse), Justin Salez (Paris 7), Mathieu Leconte (Technicolor-INRIA), Laurent Massoulié (MSR-INRIA) and Hang Zhou (ENS).

HASHING

CONTENT PLACEMENT

HASH TABLE

- m balls and n bins
- each ball chooses a bin uniformly at random
- Goal: avoid collisions.

This is known as the Birthday problem. The probability of no collision is given by

$$
\begin{aligned}
p(n, m) & =\left(\frac{n-1}{n}\right)\left(\frac{n-2}{n}\right) \ldots\left(\frac{n-m+1}{n}\right) \\
& \approx \exp \left(-\frac{1+2+\cdots+m-1}{n}\right) \\
& \approx \exp \left(-\frac{m^{2}}{2 n}\right)
\end{aligned}
$$

To avoid collision we must have

$$
p(n, m) \approx 1 \quad \Leftrightarrow \quad m \ll \sqrt{n}
$$

Load factor $\rho=\frac{m}{n} \rightarrow 0$ as $n \rightarrow \infty$.

CUCKOO HASHING

Introduced by Pagh \& Rodler, ESA'01:

- two bins are assigned at random to each ball
- each ball is placed in one of these two bins
- bins have capacity one, i.e. no collision allowed

Q: How many balls m can you put into n bins with these constraints?

RANDOM GRAPH ORIENTATION

Random graph $G(n, m)$.

RANDOM GRAPH ORIENTATION

Q: How large can m be so that $G(n, m)$ is still orientable?

POSITIVE LOAD FACTOR

Recall that the degree is a $\operatorname{Bin}\left(m, \frac{n-1}{\binom{n}{2}}\right)$ random variable with mean $\frac{2 m}{n}$ so that if $2 m>n$, there is a giant component:

POSITIVE LOAD FACTOR

Recall that the degree is a $\operatorname{Bin}\left(m, \frac{n-1}{\binom{n}{2}}\right)$ random variable with mean $\frac{2 m}{n}$ so that if $2 m>n$, there is a giant component:

For cuckoo hashing with two choices, the critical load factor is $\rho=\frac{1}{2}$.

GENERALIZATIONS

Adding capacities to the bins $k \geq 1$:

Q: k-orientation of the random graph $G(n, m)$?
Cain, Sanders, Wormald, Fernholz, Ramachandran SODA'07

GENERALIZATIONS

Adding choices for each ball $h \geq 1$:

Q: 1-orientation of the random hypergraph $H(n, m, h)$?
Dietzfelbinger, Goerdt, Mitzenmacher, Montanari, Fountoulakis, Panagiotou ICALP'10
Frieze, Melsted, Bordenave, Lelarge, Salez

GENERALIZATIONS

Adding balls $h>\ell \geq 1$ proposed by Gao, Wormald STOC'10:

Case $\ell=1$ solved by Fountoulakis, Kosha, Panagiotou SODA'11
For large k, Gao, Wormald STOC'10: "The full definition of [the critical load factor] is rather complicated, involving the solution of a differential equation system given in (3.4-3.14)."

$$
\begin{align*}
z_{L, h-j}^{\prime}(x)= & \frac{z_{L, h-j}}{z_{L}}\left(-1-\frac{(h-j-1) z_{L, h-j}}{z_{B, h-j}}\right) \\
& +\frac{z_{L, h-w+1}}{z_{L}}\left(\frac{(h-w) z_{H, h-w+1}}{z_{B, h-w+1}} \cdot \frac{(k+1) z_{A}}{z_{B}-z_{L}} \cdot k \cdot \frac{z_{H, h-j}}{z_{B}-z_{L}}\right) \\
& +\frac{z_{L, h-j+1}}{z_{L}} \frac{(h-j) z_{L, h-j+1}}{z_{B, h-j+1}}, j=1, \ldots, w-1, \tag{3.4}\\
z_{H, h-j}^{\prime}(x)= & \frac{z_{L, h-j}}{z_{L}}\left(-\frac{(h-j-1) z_{H, h-j}}{z_{B, h-j}}\right) \\
& -\frac{z_{L, h-w+1}}{z_{L}}\left(\frac{(h-w) z_{H, h-w+1}}{z_{B, h-w+1}} \cdot \frac{(k+1) z_{A}}{z_{B}-z_{L}} \cdot k \cdot \frac{z_{H, h-j}}{z_{B}-z_{L}}\right) \\
& +\frac{z_{L, h-j+1}}{z_{L}} \frac{(h-j) z_{H, h-j+1}}{z_{B, h-j+1}}, j=1, \ldots, w-1, \tag{3.5}\\
z_{L}^{\prime}(x)= & -1+\frac{z_{L, h-w+1}}{z_{L}}\left(-\frac{(h-w) z_{L, h-w+1}}{z_{B, h-w+1}}+(h-w) k \cdot \frac{z_{H, h-w+1}}{z_{B, h-w+1}} \cdot \frac{(k+1) z_{A}}{z_{B}-z_{L}}\right) \\
z_{B}^{\prime}(x)= & -1-\frac{(h-w) z_{L, h-w+1}}{z_{L}} \tag{3.7}\\
z_{H V}^{\prime}(x)= & -\frac{z_{L, h-w+1}}{z_{L}} \frac{(h-w) z_{H, h-w+1}}{z_{B, h-w+1}} \cdot \frac{(k+1) z_{A}}{z_{B}-z_{L}} \tag{3.8}\\
\lambda^{\prime}(x)= & \frac{\left(\left(z_{B}^{\prime}-z_{L}^{\prime}\right) z_{H V}-\left(z_{B}-z_{L}\right) z_{H V}^{\prime}\right) f_{k+1}(\lambda)}{z_{H V}^{2}\left(f_{k}(\lambda)+\lambda e^{-\lambda} \cdot \frac{\lambda k-1}{(k-1)!}-\frac{z_{B}-z_{L}}{z_{H V}} \cdot e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}\right)} \tag{3.9}\\
z_{L, h}(x)= & z_{L}(x)-\sum_{i=1}^{w-1} z_{L, h-j}(x), \quad z_{H, h}(x)=z_{B}(x)-z_{L}(x)-\sum_{i=1}^{w-1} z_{H, h-j}(x), \tag{3.10}\\
z_{B, h-j}(x)= & z_{L, h-j}(x)+z_{H, h-j}(x), \text { for every } 0 \leq j \leq w-1, \tag{3.11}\\
z_{A}(x)= & \frac{\lambda .10)}{e^{\lambda(x)}(k+1)!f_{k+1}(\lambda(x))} z_{H V}(x), \tag{3.12}
\end{align*}
$$

where $f_{k}(\lambda)$ was defined in (3.1). The initial conditions are

$$
\begin{align*}
& z_{B}(0)=\bar{\mu}, z_{L, h-j}(0)=0, z_{H, h-j}(0)=0, \text { for all } 1 \leq j \leq w-1, \tag{3.13}\\
& z_{L}(0)=\bar{\mu}\left(1-f_{k}(\bar{\mu})\right), z_{H V}(0)=1-\exp (-\bar{\mu}) \sum_{i=0}^{k} \bar{\mu}^{i} / i!, \lambda(0)=\bar{\mu} . \tag{3.14}
\end{align*}
$$

A SIMPLE RESULT

Allocation is possible (in the large n limit w.h.p.) only if $m=c n$ with $c<c_{h, \ell, k}$ and

$$
c_{h, \ell, k}=\frac{\xi^{*}}{h \mathbb{P}\left(\operatorname{Bin}\left(h-1,1-Q\left(\xi^{*}, k\right)<\ell\right)\right)},
$$

where $Q(x, y)=e^{-x} \sum_{j \geq y} \frac{x^{j}}{j!}$ and ξ^{*} is the unique solution to:

$$
h k=\xi^{*} \frac{\mathbb{E}\left[\left(\ell-\operatorname{Bin}\left(h, 1-Q\left(\xi^{*}, k\right)\right)\right)^{+}\right]}{Q\left(\xi^{*}, k+1\right) \mathbb{P}\left(\operatorname{Bin}\left(h-1,1-Q\left(\xi^{*}, k\right)\right)<\ell\right)} .
$$

Lelarge SODA'12

SOME RESULTS

Critical load $\frac{\ell c_{h, \ell, k}}{k}$ as a function of $k=1 \ldots 10$ capacity of each bin with:

- $h=4$ choices per batch
- $\ell=1,2,3$ balls per batch

SOME RESULTS

Critical load $\frac{\ell c_{h, \ell, k}}{k}$ as a function of $k=1 \ldots 10$ capacity of each bin with:

- $h=4,5,6$ choices per batch
- $\ell=2$ balls per batch

HASHING

CONTENT PLACEMENT

BIPARTITE GRAPH REPRESENTATION

- n contents
- m servers, each storing d contents sampled independently (but not uniformly).
- the degree of a content is the number of replicas for this content in the system.

OPTIMAL ALLOCATION

SPANNING SUBGRAPHS OF BIPARTITE RANDOM GRAPHS

- Black nodes $=n$ bins
- Blue nodes $=m$ batches of ℓ balls
- Edge $=$ possible choice for the balls of the batch. Each blue node has degree $h>\ell$.

SPANNING SUBGRAPHS OF BIPARTITE RANDOM GRAPHS

- n black nodes
- m blue nodes of degree h
- Allocation $=$ for each blue node, select ℓ edges such that in the spanning subgraph, all black nodes have degree less than k.

Example with $k=\ell=2$.

A COMBINATORIAL DETOUR

A simple identity:

$$
\Omega(G, \boldsymbol{\lambda}, \mathbf{x})=\prod_{v e w \in E}\left(1+\lambda_{e} x_{v} x_{w}\right)=\sum_{H \subseteq E} \boldsymbol{\lambda}^{H} \mathbf{x}^{\operatorname{deg}(H)}
$$

with $\boldsymbol{\lambda}^{H}=\prod_{e \in H} \lambda_{e}$ and $\mathbf{x}^{\operatorname{deg}(H)}=\prod_{v \in V} x_{v}^{\operatorname{deg}(v, H)}$.

A COMBINATORIAL DETOUR

A simple identity:

$$
\Omega(G, \boldsymbol{\lambda}, \mathbf{x})=\prod_{v e w \in E}\left(1+\lambda_{e} x_{v} x_{w}\right)=\sum_{H \subseteq E} \boldsymbol{\lambda}^{H} \mathbf{x}^{\operatorname{deg}(H)}
$$

with $\boldsymbol{\lambda}^{H}=\prod_{e \in H} \lambda_{e}$ and $\mathbf{x}^{\operatorname{deg}(H)}=\prod_{v \in V} x_{v}^{\operatorname{deg}(v, H)}$.
We are interested in:

$$
Z(G, \boldsymbol{\lambda}, \mathbf{x})=\sum_{H \subseteq E} \boldsymbol{\lambda}^{H} \mathbf{x}^{\operatorname{deg}(H)} \mathbb{I}(H \text { is a matching })
$$

SCHUR-SZEGÖ COMPOSITION

If $P(z)=\sum_{j=0}^{d} c_{j} z^{j}$ is nonvanishing in the open right half-plane and $K(z)=\sum_{j=0}^{d}\binom{d}{j} u_{j} z^{j}$ has only real nonpositive zeros, then $Q(z)=\sum_{j=0}^{d} u_{j} c_{j} z^{j}$ is nonvanishing in the open right half-plane.

APPLYING SCHUR-SZEGÖ COMPOSITION

Consider the case $u_{0}=u_{1}=1$ and $u_{k}=0$ for $k \geq 2$ and define $K_{v}(z)=1+\operatorname{deg}(v) z$.

Let $F_{0}(\mathbf{x})=\Omega(G, \boldsymbol{\lambda}, \mathbf{x})$ and define $F_{v}(\mathbf{x})$ as the Schur-Szegö composition of $F_{v-1}\left(x_{v}\right)$ and $K_{v}\left(x_{v}\right)$. (Wagner 2009)

$$
\begin{aligned}
F_{0}(\mathbf{x}) & =\sum_{H \subseteq E} \boldsymbol{\lambda}^{H} \mathbf{x}^{\operatorname{deg}(H)} \\
F_{1}(\mathbf{x}) & =\sum_{H \subseteq E} \boldsymbol{\lambda}^{H} \mathbb{I}(\operatorname{deg}(v, H) \leq 1) \mathbf{x}^{\operatorname{deg}(H)} \\
& \vdots \\
F_{n}(\mathbf{x}) & =\sum_{H \subseteq E} \boldsymbol{\lambda}^{H} \prod_{v=1}^{n} \mathbb{I}(\operatorname{deg}(v, H) \leq 1) \mathbf{x}^{\operatorname{deg}(H)} \\
& =\sum_{H \subseteq E} \boldsymbol{\lambda}^{H} \mathbf{x}^{\operatorname{deg}(H)} \mathbb{I}(H \text { is a matching })=Z(G, \boldsymbol{\lambda}, \mathbf{x})
\end{aligned}
$$

ANALOGY WITH STATISTICAL PHYSICS

$Z\left(G, \mathbf{1}, z^{1 / 2} \mathbf{1}\right)=\sum_{M} z^{|M|}=\sum_{k} m_{k}(G) z^{k}=P_{G}(z)$, where $m_{k}(G)$ is the number of k-edge matchings of G.

The fact that $P_{G}(z)$ has its zeros on the negative real axis allows to define the Gibbs measure

$$
\mu_{G}^{z}(M)=\frac{z^{|M|}}{P_{G}(z)}
$$

on infinite graphs (as an 'analytic' limit) = absence of phase transitions.
(Heilmann Lieb 1972)

ANALOGY WITH STATISTICAL PHYSICS

$Z\left(G, \mathbf{1}, z^{1 / 2} \mathbf{1}\right)=\sum_{M} z^{|M|}=\sum_{k} m_{k}(G) z^{k}=P_{G}(z)$, where $m_{k}(G)$ is the number of k-edge matchings of G.

The fact that $P_{G}(z)$ has its zeros on the negative real axis allows to define the Gibbs measure

$$
\mu_{G}^{z}(M)=\frac{z^{|M|}}{P_{G}(z)}
$$

on infinite graphs (as an 'analytic' limit) = absence of phase transitions.
(Heilmann Lieb 1972)
This technique can be used as a step towards computations BUT it fails for more general spanning subgraphs, i.e. for degree constraints larger than 3.

A SIMPLE GREEDY ALGORITHM ON TREES

For simplicity, spanning subgraph H with $\operatorname{deg}(v, H) \leq 2=w$.

A SIMPLE GREEDY ALGORITHM ON TREES

For simplicity, spanning subgraph H with $\operatorname{deg}(v, H) \leq 2=w$.

A SIMPLE GREEDY ALGORITHM ON TREES

For simplicity, spanning subgraph H with $\operatorname{deg}(v, H) \leq 2=w$.

A SIMPLE GREEDY ALGORITHM ON TREES

For simplicity, spanning subgraph H with $\operatorname{deg}(v, H) \leq 2=w$.

A SIMPLE GREEDY ALGORITHM ON TREES

For simplicity, spanning subgraph H with $\operatorname{deg}(v, H) \leq 2=w$.

Black arrow: 'I want to match you'

Black arrow: 'I want to match you'
Red arrow: 'Sorry, I am saturated'

Black arrow: 'I want to match you'
Red arrow: 'Sorry, I am saturated'

A MESSAGE PASSING VERSION OF THE GREEDY ALGORITHM

Replace black arrows by 1 messages and red arrows by 0 messages and run simultaneously.

For any directed edge, sum the incoming messages from the other edges. If this sum is larger than $w=2$ then \mathcal{P}_{G} returns 0 , otherwise returns 1 on this directed edge.

Iterate...

A MESSAGE PASSING VERSION OF THE GREEDY ALGORITHM

... until you get a fixed point \mathbf{I}^{*}.

A MESSAGE PASSING VERSION OF THE GREEDY ALGORITHM

On finite trees, the algorithm converges and \mathbf{I}^{*} allows to get the size of a maximum spanning subgraph.

$$
\sum_{v \in V}\left(w \mathbb{I}\left(\sum_{\vec{e} \in \partial v} I_{\vec{e}}^{*} \geq w+1\right)+\frac{1}{2} \mathbb{I}\left(\sum_{\vec{e} \in \partial v} I_{\vec{e}}^{*} \leq w\right) \sum_{\vec{e} \in \partial v} I_{\vec{e}}^{*}\right)
$$

RUNNING THE ALGORITHM ON AN INFINITE TREE

Let simplify further $\ell=k=1$ and Poisson Galton-Watson tree with mean offspring λ.

- Let p be the probability of sending a 1 message

$$
p=\mathbb{P}\left(I_{\vec{e}}^{*}=1\right)
$$

- Thanks to the branching property:

$$
p=\mathbb{P}(\text { no children send a } 1 \text { message })=e^{-\lambda p}
$$

and so $p=\frac{W(\lambda)}{\lambda}$.

A NAIVE GUESS

The function $\frac{W(\lambda)}{\lambda}$ as a function of λ.

TRUTH

The true value of p as a function of λ.

WHAT HAPPENED?

Let p_{k} be the probability of the root sending message 1 for the tree truncated at depth k.

- $p_{0}=1$
- $p_{1}=e^{-\lambda}$
- then for $k \geq 0$

$$
p_{k+1}=e^{-\lambda p_{k}}
$$

We computed the fixed point of the map $p \mapsto e^{-\lambda p}$ but the truth is given by iterating it...

ITERATING

ITERATING

ITERATING

ITERATING

ABSENCE OF CORRELATION DECAY

Influence of the boundary conditions remains positive.

BYPASSING CORRELATION DECAY

- Introduce the Gibbs measure on allocations:

$$
\mu_{G}^{z}(\mathbf{B})=\frac{z^{\sum_{e} B_{e}}}{P_{G}(z)}
$$

so that the size of a maximum allocation of the graph $G=(V, E)$ is given by

$$
\frac{1}{2} \lim _{z \rightarrow \infty} \sum_{v \in V} \sum_{e \in \partial v} \mu_{G}^{z}\left(B_{e}=1\right)
$$

BYPASSING CORRELATION DECAY

- Introduce the Gibbs measure on allocations:

$$
\mu_{G}^{z}(\mathbf{B})=\frac{z^{\sum_{e} B_{e}}}{P_{G}(z)}
$$

so that the size of a maximum allocation of the graph $G=(V, E)$ is given by

$$
\frac{1}{2} \lim _{z \rightarrow \infty} \sum_{v \in V} \sum_{e \in \partial v} \mu_{G}^{z}\left(B_{e}=1\right)
$$

- Show that on trees, the marginal $\mu_{G}^{z}\left(B_{e}=1\right)$ can be computed by a message passing algorithm with a unique fixed point.

MESSAGE PASSING ALGORITHM

Define $Y_{e}(z) \in \mathbb{R}$ by $\mu_{G, e}^{z}\left(B_{e}=1\right)=\frac{Y_{e}(z)}{1+Y_{e}(z)}$. Then the recursion is

$$
\mathbf{Y}^{t+1}(z)=z \mathcal{R}_{G}\left(\mathbf{Y}^{t}(z)\right)
$$

with

$$
\mathcal{R}_{e}(\mathbf{Y})=\frac{\sum_{S<e,|S| \leq w-1} \Pi_{f \in S} Y_{f}}{\sum_{S<e,|S| \leq w} \Pi_{f \in S} Y_{f}} .
$$

MESSAGE PASSING ALGORITHM

Define $Y_{e}(z) \in \mathbb{R}$ by $\mu_{G, e}^{z}\left(B_{e}=1\right)=\frac{Y_{e}(z)}{1+Y_{e}(z)}$. Then the recursion is

$$
\mathbf{Y}^{t+1}(z)=z \mathcal{R}_{G}\left(\mathbf{Y}^{t}(z)\right)
$$

with

$$
\mathcal{R}_{e}(\mathbf{Y})=\frac{\sum_{S \prec e,|S| \leq w-1} \prod_{f \in S} Y_{f}}{\sum_{S \prec e,|S| \leq w} \prod_{f \in S} Y_{f}}
$$

In the case of matchings, $w=1$ so that

$$
\mathcal{R}_{e}(\mathbf{Y})=\frac{1}{1+\sum_{f \prec e} Y_{f}}
$$

BYPASSING CORRELATION DECAY

- Introduce the Gibbs measure on allocations:

$$
\mu_{G}^{z}(\mathbf{B})=\frac{z^{\sum_{e} B_{e}}}{P_{G}(z)}
$$

so that the size of a maximum allocation of the graph $G=(V, E)$ is given by

$$
\frac{1}{2} \lim _{z \rightarrow \infty} \sum_{v \in V} \sum_{e \in \partial v} \mu_{G}^{z}\left(B_{e}=1\right)
$$

- Show that on trees, the marginal $\mu_{G}^{z}\left(B_{e}=1\right)$ can be computed by a message passing algorithm with a unique fixed point.
- Show that on trees, when $z \rightarrow \infty$, this message passing algorithm reduces to the previously described $0-1$ valued message passing algorithm and that the limit of $\mu_{G}^{z}\left(B_{e}=1\right)$ can be computed from the minimal fixed point solution.

BYPASSING CORRELATION DECAY

- Introduce the Gibbs measure on allocations:

$$
\mu_{G}^{z}(\mathbf{B})=\frac{z^{\sum_{e} B_{e}}}{P_{G}(z)}
$$

so that the size of a maximum allocation of the graph $G=(V, E)$ is given by

$$
\frac{1}{2} \lim _{z \rightarrow \infty} \sum_{v \in V} \sum_{e \in \partial v} \mu_{G}^{z}\left(B_{e}=1\right)
$$

- Show that on trees, the marginal $\mu_{G}^{z}\left(B_{e}=1\right)$ can be computed by a message passing algorithm with a unique fixed point.
- Show that on trees, when $z \rightarrow \infty$, this message passing algorithm reduces to the previously described $0-1$ valued message passing algorithm and that the limit of $\mu_{G}^{z}\left(B_{e}=1\right)$ can be computed from the minimal fixed point solution.
- Using a convexity argument, invert the limits in n and z.

RESULT ON INFINITE UNIMODULAR TREES

Assumption: G_{n} has random weak limit $\rho([G, \circ])$, a unimodular probability measure concentrated on trees.
For any $\mathbf{I} \in\{0,1\}{ }^{\vec{E}}$,

$$
F_{\circ}(\mathbf{I})=w_{\circ} \mathbb{I}\left(\sum_{x \in \partial \circ} \mathcal{P}_{x \rightarrow \circ}(\mathbf{I}) \geq w_{\circ}+1\right)+w_{\circ} \wedge \sum_{x \in \partial \circ} I_{x \rightarrow \circ}
$$

Then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} M\left(G_{n}\right)=\frac{1}{2} \inf \left\{\int F_{\circ}(\mathbf{I}) d \rho([G, \circ])\right\}
$$

where the infimum is over all spatially invariant solutions of $\mathbf{I}=\mathcal{P}_{G} \circ \mathcal{P}_{G}(\mathbf{I})$.

ON GALTON-WATSON TREES

For matchings, the Recursive Distributional Equation (RDE) becomes:

$$
Y(z) \stackrel{d}{=} \frac{z}{1+\sum_{i=1}^{N} Y_{i}(z)}
$$

where $N \sim$ the standard size biased degree distribution of the random graph.
By iterating once

$$
\frac{Y(z)}{z} \stackrel{d}{=} \frac{1}{1+\sum_{i=1}^{N} \frac{1}{\frac{1}{z}+\sum_{j=1}^{N_{i j}} \frac{Y_{i j}(z)}{z}}}
$$

so that we obtain for $X=\lim _{z \rightarrow \infty} \frac{Y(z)}{z} \in[0,1]$ the simple RDE:

$$
X \stackrel{d}{=} \frac{1}{1+\sum_{i=1}^{N} \frac{1}{\sum_{j=1}^{N_{i j}} X_{i j}}}
$$

SOLVING THE RDE AT $z=\infty$

If φ is the generating function of the asymptotic degree distribution, let

$$
G(x)=\varphi^{\prime}(1) x \bar{x}+\varphi(1-x)+\varphi(1-\bar{x})-1
$$

where $\bar{x}=\varphi^{\prime}(1-x) / \varphi^{\prime}(1)$.
G admits an historical record at x if $x=\overline{\bar{x}}$ and $G(x)>G(y)$ for any $0 \leq y<x$.
Theorem 1. If $p_{1}<\ldots<p_{r}$ are the locations of the historical records of G, then the RDE admits exactly r solutions, say $0 \leq X_{1}<{ }_{s t} \ldots<_{s t} X_{r} \leq 1$, and for any $i \in\{1, \ldots, r\}, \mathbb{E}\left[X_{i}\right]=G\left(p_{i}\right)$ and $\mathbb{P}\left(X_{i}>0\right)=p_{i}$.

From the values $p_{1}<\ldots<p_{r}$, we can compute the limit of the matching number (rescaled by n) when $n \rightarrow \infty$.

CONCLUSION

- General method to compute law of large numbers for combinatorial structures on sparse (random) graphs.
(a) to bypass the correlation decay, add a (small) noise parameter.
(b) crucially use monotonicity of the recursions
- Our method works for matchings, spanning subgraphs with degree constraints and b-matchings.
- The absence of phase transition has also algorithmic implications: sublinear algorithms to approximate the number of matchings.
- Open problem: Counting of other large subgraphs: long cycles (Marinari \& Semerjian 2006).

