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HASHING

CONTENT PLACEMENT



HASH TABLE

- m balls and n bins

- each ball chooses a bin uniformly at random

- Goal: avoid collisions.

This is known as the Birthday problem. The probability of no collision is given by

p(n,m) =

(

n− 1

n

)(

n− 2

n

)

. . .

(

n−m+ 1

n

)

≈ exp

(

−1 + 2 + · · ·+m− 1

n

)

≈ exp

(

−m2

2n

)

To avoid collision we must have

p(n,m) ≈ 1 ⇔ m <<
√
n.

Load factor ρ = m
n → 0 as n → ∞.



CUCKOO HASHING

Introduced by Pagh & Rodler, ESA’01:

- two bins are assigned at random to each ball

- each ball is placed in one of these two bins

- bins have capacity one, i.e. no collision allowed

Q: How many balls m can you put into n bins with these constraints?



RANDOM GRAPH ORIENTATION

Random graph G(n,m).



RANDOM GRAPH ORIENTATION

Q: How large can m be so that G(n,m) is still orientable?



POSITIVE LOAD FACTOR

Recall that the degree is a Bin

(

m, n−1

(n2)

)

random variable with mean 2m
n so that if

2m > n, there is a giant component:

For cuckoo hashing with two choices, the critical load factor is ρ = 1
2 .
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GENERALIZATIONS

Adding capacities to the bins k ≥ 1:

Q: k-orientation of the random graph G(n,m)?

Cain, Sanders, Wormald, Fernholz, Ramachandran SODA’07



GENERALIZATIONS

Adding choices for each ball h ≥ 1:

Q: 1-orientation of the random hypergraph H(n,m, h)?

Dietzfelbinger, Goerdt, Mitzenmacher, Montanari, Fountoulakis, Panagiotou ICALP’10

Frieze, Melsted, Bordenave, Lelarge, Salez



GENERALIZATIONS

Adding balls h > ℓ ≥ 1 proposed by Gao, Wormald STOC’10:

ℓ

k

h

n

Case ℓ = 1 solved by Fountoulakis, Kosha, Panagiotou SODA’11

For large k, Gao, Wormald STOC’10: “The full definition of [the critical load factor] is rather

complicated, involving the solution of a differential equation system given in (3.4-3.14).”



system is as follows.

z′L,h−j(x) =
zL,h−j
zL

(
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, j = 1, . . . , w − 1, (3.4)
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z′L(x) = −1 +
zL,h−w+1

zL

(

−
(h− w)zL,h−w+1

zB,h−w+1

+ (h− w)k ·
zH,h−w+1

zB,h−w+1

·
(k + 1)zA
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(3.6)

z′B(x) = −1−
(h− w)zL,h−w+1

zL
(3.7)

z′HV (x) = −
zL,h−w+1

zL

(h− w)zH,h−w+1

zB,h−w+1

·
(k + 1)zA
zB − zL

(3.8)

λ′(x) =
((z′B − z′L)zHV − (zB − zL)z

′

HV )fk+1(λ)

z2HV (fk(λ) + λe−λ · λk−1

(k−1)!
−

zB−zL
zHV

· e−λ · λ
k

k!
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(3.9)

zL,h(x) = zL(x)−
w−1
∑

i=1

zL,h−j(x), zH,h(x) = zB(x)− zL(x)−
w−1
∑

i=1

zH,h−j(x), (3.10)

zB,h−j(x) = zL,h−j(x) + zH,h−j(x), for every 0 ≤ j ≤ w − 1, (3.11)

zA(x) =
λ(x)k+1

eλ(x)(k + 1)!fk+1(λ(x))
zHV (x), (3.12)

where fk(λ) was defined in (3.1). The initial conditions are

zB(0) = µ̄, zL,h−j(0) = 0, zH,h−j(0) = 0, for all 1 ≤ j ≤ w − 1, (3.13)

zL(0) = µ̄(1− fk(µ̄)), zHV (0) = 1− exp(−µ̄)
k

∑

i=0

µ̄i/i!, λ(0) = µ̄. (3.14)



A SIMPLE RESULT

ℓ

k

h

n

Allocation is possible (in the large n limit w.h.p.) only if m = cn with c < ch,ℓ,k and

ch,ℓ,k =
ξ∗

hP (Bin(h− 1, 1−Q(ξ∗, k) < ℓ))
,

where Q(x, y) = e−x
∑

j≥y
xj

j! and ξ∗ is the unique solution to:

hk = ξ∗
E
[

(ℓ− Bin(h, 1−Q(ξ∗, k)))+
]

Q(ξ∗, k + 1)P (Bin(h− 1, 1−Q(ξ∗, k)) < ℓ)
.

Lelarge SODA’12



SOME RESULTS

Critical load
ℓch,ℓ,k

k as a function of k = 1 . . . 10 capacity of each bin with:

- h = 4 choices per batch

- ℓ = 1, 2, 3 balls per batch



SOME RESULTS

Critical load
ℓch,ℓ,k

k as a function of k = 1 . . . 10 capacity of each bin with:

- h = 4, 5, 6 choices per batch

- ℓ = 2 balls per batch



HASHING

CONTENT PLACEMENT



BIPARTITE GRAPH REPRESENTATION
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- n contents

- m servers, each storing d contents sampled independently (but not uniformly).

- the degree of a content is the number of replicas for this content in the system.



OPTIMAL ALLOCATION
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SPANNING SUBGRAPHS OF BIPARTITE RANDOM GRAPHS

- Black nodes = n bins

- Blue nodes = m batches of ℓ balls

- Edge = possible choice for the balls of the batch. Each blue node has degree h > ℓ.



SPANNING SUBGRAPHS OF BIPARTITE RANDOM GRAPHS

- n black nodes

- m blue nodes of degree h

- Allocation = for each blue node, select ℓ edges such that in the spanning subgraph, all

black nodes have degree less than k.

Example with k = ℓ = 2.



A COMBINATORIAL DETOUR

A simple identity:

Ω(G,λ,x) =
∏

vew∈E

(1 + λexvxw) =
∑

H⊆E

λ
H
x
deg(H),

with λ
H =

∏

e∈H λe and x
deg(H) =

∏

v∈V x
deg(v,H)
v .

We are interested in:

Z(G,λ,x) =
∑

H⊆E

λ
H
x
deg(H)1I(H is a matching)
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SCHUR-SZEGÖ COMPOSITION

If P (z) =
∑d

j=0 cjz
j is nonvanishing in the open right half-plane and

K(z) =
∑d

j=0

(

d
j

)

ujz
j has only real nonpositive zeros, then Q(z) =

∑d
j=0 ujcjz

j is

nonvanishing in the open right half-plane.



APPLYING SCHUR-SZEGÖ COMPOSITION

Consider the case u0 = u1 = 1 and uk = 0 for k ≥ 2 and define

Kv(z) = 1 + deg(v)z.

Let F0(x) = Ω(G,λ,x) and define Fv(x) as the Schur-Szegö composition of

Fv−1(xv) and Kv(xv). (Wagner 2009)

F0(x) =
∑

H⊆E

λ
H
x
deg(H)

F1(x) =
∑

H⊆E

λ
H1I(deg(v,H) ≤ 1)xdeg(H)

...

Fn(x) =
∑

H⊆E

λ
H

n
∏

v=1

1I(deg(v,H) ≤ 1)xdeg(H)

=
∑

H⊆E

λ
H
x
deg(H)1I(H is a matching) = Z(G,λ,x).



ANALOGY WITH STATISTICAL PHYSICS

Z(G,1, z1/21) =
∑

M z|M | =
∑

k mk(G)zk = PG(z), where mk(G) is the

number of k-edge matchings of G.

The fact that PG(z) has its zeros on the negative real axis allows to define the Gibbs

measure

µz
G(M) =

z|M |

PG(z)

on infinite graphs (as an ’analytic’ limit) = absence of phase transitions.

(Heilmann Lieb 1972)

This technique can be used as a step towards computations BUT it fails for more general

spanning subgraphs, i.e. for degree constraints larger than 3.
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A SIMPLE GREEDY ALGORITHM ON TREES

For simplicity, spanning subgraph H with deg(v,H) ≤ 2 = w.
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A MESSAGE PASSING VERSION OF THE GREEDY ALGORITHM

Black arrow: ’I want to match you’

Red arrow: ’Sorry, I am saturated’
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A MESSAGE PASSING VERSION OF THE GREEDY ALGORITHM

0

1

1

0

0 0
0

0

0

0

0

1

1

1

I1 = PG(1)

Replace black arrows by 1 messages and red arrows by 0 messages and run

simultaneously.

For any directed edge, sum the incoming messages from the other edges. If this sum is

larger than w = 2 then PG returns 0, otherwise returns 1 on this directed edge.



A MESSAGE PASSING VERSION OF THE GREEDY ALGORITHM
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1

I2 = PG(I1)

Iterate...



A MESSAGE PASSING VERSION OF THE GREEDY ALGORITHM
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I3 = PG ◦ PG(I1)

... until you get a fixed point I∗.



A MESSAGE PASSING VERSION OF THE GREEDY ALGORITHM

0

1

1

0

1 0
0

1

0

0

1

1

1

1

I
∗ = PG(I

∗)

On finite trees, the algorithm converges and I∗ allows to get the size of a maximum

spanning subgraph.

∑

v∈V



w1I





∑

−→e ∈∂v

I∗−→e ≥ w + 1



+
1

2
1I





∑

−→e ∈∂v

I∗−→e ≤ w





∑

−→e ∈∂v

I∗−→e







RUNNING THE ALGORITHM ON AN INFINITE TREE

Let simplify further ℓ = k = 1 and Poisson Galton-Watson tree with mean offspring λ.

- Let p be the probability of sending a 1 message

p = P
(

I∗−→e = 1
)

- Thanks to the branching property:

p = P (no children send a 1 message) = e−λp

and so p = W (λ)
λ .



A NAIVE GUESS

The function
W (λ)
λ as a function of λ.



TRUTH

The true value of p as a function of λ.



WHAT HAPPENED?

Let pk be the probability of the root sending message 1 for the tree truncated at depth k.

- p0 = 1

- p1 = e−λ

- then for k ≥ 0

pk+1 = e−λpk

We computed the fixed point of the map p 7→ e−λp but the truth is given by iterating it...



ITERATING

λ = 2.5



ITERATING

λ = 2.5



ITERATING

λ = 2.9



ITERATING

λ = 2.9



ABSENCE OF CORRELATION DECAY

Influence of the boundary conditions remains positive.



BYPASSING CORRELATION DECAY

- Introduce the Gibbs measure on allocations:

µz
G(B) =

z
∑

e Be

PG(z)

so that the size of a maximum allocation of the graph G = (V,E) is given by

1

2
lim
z→∞

∑

v∈V

∑

e∈∂v

µz
G(Be = 1).

- Show that on trees, the marginal µz
G(Be = 1) can be computed by a message

passing algorithm with a unique fixed point.

- Show that on trees, when z → ∞, this message passing algorithm reduces to the

previously described 0− 1 valued message passing algorithm and that the limit of

µz
G(Be = 1) can be computed from the minimal fixed point solution.

- Using a convexity argument, invert the limits in n and z.
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MESSAGE PASSING ALGORITHM

Define Ye(z) ∈ R by µz
G,e(Be = 1) = Ye(z)

1+Ye(z)
. Then the recursion is

Y
t+1(z) = zRG(Y

t(z))

with

Re(Y) =

∑

S≺e,|S|≤w−1

∏

f∈S Yf
∑

S≺e,|S|≤w

∏

f∈S Yf
.

In the case of matchings, w = 1 so that

Re(Y) =
1

1 +
∑

f≺e Yf
.
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RESULT ON INFINITE UNIMODULAR TREES

Assumption: Gn has random weak limit ρ ([G, ◦]), a unimodular probability measure

concentrated on trees.

For any I ∈ {0, 1}
−→
E ,

F◦(I) = w◦1I(
∑

x∈∂◦

Px→◦(I) ≥ w◦ + 1) + w◦ ∧
∑

x∈∂◦

Ix→◦.

Then

lim
n→∞

1

n
M(Gn) =

1

2
inf

{∫

F◦(I)dρ([G, ◦])
}

,

where the infimum is over all spatially invariant solutions of I = PG ◦ PG(I).



ON GALTON-WATSON TREES

For matchings, the Recursive Distributional Equation (RDE) becomes:

Y (z)
d
=

z

1 +
∑N

i=1 Yi(z)

where N ∼ the standard size biased degree distribution of the random graph.

By iterating once

Y (z)

z

d
=

1

1 +
∑N

i=1
1

1
z
+
∑Nij

j=1

Yij (z)

z

so that we obtain for X = limz→∞
Y (z)
z ∈ [0, 1] the simple RDE:

X
d
=

1

1 +
∑N

i=1
1

∑Nij
j=1 Xij



SOLVING THE RDE AT z = ∞

If ϕ is the generating function of the asymptotic degree distribution, let

G(x) = ϕ′(1)xx+ ϕ(1− x) + ϕ(1− x)− 1,

where x = ϕ′(1− x)/ϕ′(1).

G admits an historical record at x if x = x and G(x) > G(y) for any 0 ≤ y < x.

Theorem 1. If p1 < . . . < pr are the locations of the historical records of G, then the

RDE admits exactly r solutions, say 0 ≤ X1<st . . . <stXr ≤ 1, and for any

i ∈ {1, . . . , r}, E[Xi] = G(pi) and P(Xi > 0) = pi.

From the values p1 < . . . < pr , we can compute the limit of the matching number

(rescaled by n) when n → ∞.



CONCLUSION

- General method to compute law of large numbers for combinatorial structures on

sparse (random) graphs.

(a) to bypass the correlation decay, add a (small) noise parameter.

(b) crucially use monotonicity of the recursions

- Our method works for matchings, spanning subgraphs with degree constraints and

b-matchings.

- The absence of phase transition has also algorithmic implications: sublinear

algorithms to approximate the number of matchings.

- Open problem: Counting of other large subgraphs: long cycles (Marinari & Semerjian

2006).
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