Law of large numbers for matchings, extensions and applications

Marc Lelarge

INRIA & ENS

Joint works with Charles Bordenave (CNRS & Uni. Toulouse), Justin Salez (Paris 7), Mathieu Leconte (Technicolor-INRIA), Laurent Massoulié (MSR-INRIA) and Hang Zhou (ENS).

CONTENT PLACEMENT

HASH TABLE

- m balls and n bins
- each ball chooses a bin uniformly at random
- Goal: avoid collisions.

This is known as the Birthday problem. The probability of no collision is given by

$$p(n,m) = \left(\frac{n-1}{n}\right) \left(\frac{n-2}{n}\right) \dots \left(\frac{n-m+1}{n}\right)$$
$$\approx \exp\left(-\frac{1+2+\dots+m-1}{n}\right)$$
$$\approx \exp\left(-\frac{m^2}{2n}\right)$$

To avoid collision we must have

$$p(n,m) \approx 1 \quad \Leftrightarrow \quad m \ll \sqrt{n}.$$

Load factor $\rho = \frac{m}{n} \to 0$ as $n \to \infty$.

CUCKOO HASHING

Introduced by Pagh & Rodler, ESA'01:

- two bins are assigned at random to each ball
- each ball is placed in one of these two bins
- bins have capacity one, i.e. no collision allowed

Q: How many balls m can you put into n bins with these constraints?

RANDOM GRAPH ORIENTATION

Random graph G(n, m).

RANDOM GRAPH ORIENTATION

Q: How large can m be so that G(n, m) is still orientable?

POSITIVE LOAD FACTOR

Recall that the degree is a Bin $\left(m, \frac{n-1}{\binom{n}{2}}\right)$ random variable with mean $\frac{2m}{n}$ so that if

2m > n, there is a giant component:

POSITIVE LOAD FACTOR

Recall that the degree is a Bin $\left(m, \frac{n-1}{\binom{n}{2}}\right)$ random variable with mean $\frac{2m}{n}$ so that if

2m > n, there is a giant component:

For cuckoo hashing with two choices, the critical load factor is $\rho = \frac{1}{2}$.

GENERALIZATIONS

Adding capacities to the bins $k \geq 1$:

Q: k-orientation of the random graph G(n, m)?

Cain, Sanders, Wormald, Fernholz, Ramachandran SODA'07

GENERALIZATIONS

Adding choices for each ball $h \ge 1$:

Q: 1-orientation of the random hypergraph H(n, m, h)?

Dietzfelbinger, Goerdt, Mitzenmacher, Montanari, Fountoulakis, Panagiotou ICALP'10 Frieze, Melsted, Bordenave, Lelarge, Salez

GENERALIZATIONS

Adding balls $h > \ell \ge 1$ proposed by Gao, Wormald STOC'10:

Case $\ell = 1$ solved by Fountoulakis, Kosha, Panagiotou SODA'11

For large k, Gao, Wormald STOC'10: "The full definition of [the critical load factor] is rather complicated, involving the solution of a differential equation system given in (3.4-3.14)."

$$z'_{L,h-j}(x) = \frac{z_{L,h-j}}{z_L} \left(-1 - \frac{(h-j-1)z_{L,h-j}}{z_{B,h-j}} \right) + \frac{z_{L,h-w+1}}{z_L} \left(\frac{(h-w)z_{H,h-w+1}}{z_{B,h-w+1}} \cdot \frac{(k+1)z_A}{z_B - z_L} \cdot k \cdot \frac{z_{H,h-j}}{z_B - z_L} \right) + \frac{z_{L,h-j+1}}{z_L} \frac{(h-j)z_{L,h-j+1}}{z_{B,h-j+1}}, \quad j = 1, \dots, w-1,$$

$$z'_{H,h-j}(x) = \frac{z_{L,h-j}}{z_L} \left(-\frac{(h-j-1)z_{H,h-j}}{z_{B,h-j}} \right)$$

$$(3.4)$$

$$-\frac{z_{L,h-w+1}}{z_L} \left(\frac{(h-w)z_{H,h-w+1}}{z_{B,h-w+1}} \cdot \frac{(k+1)z_A}{z_B - z_L} \cdot k \cdot \frac{z_{H,h-j}}{z_B - z_L} \right) +\frac{z_{L,h-j+1}}{z_L} \frac{(h-j)z_{H,h-j+1}}{z_{B,h-j+1}}, \quad j = 1, \dots, w-1,$$
(3.5)

$$z'_{L}(x) = -1 + \frac{z_{L,h-w+1}}{z_{L}} \left(-\frac{(h-w)z_{L,h-w+1}}{z_{B,h-w+1}} + (h-w)k \cdot \frac{z_{H,h-w+1}}{z_{B,h-w+1}} \cdot \frac{(k+1)z_{A}}{z_{B}-z_{L}} \right) 3.6$$

$$z'_B(x) = -1 - \frac{(n-w)z_{L,h-w+1}}{z_L}$$
(3.7)

$$z'_{HV}(x) = -\frac{z_{L,h-w+1}}{z_L} \frac{(h-w)z_{H,h-w+1}}{z_{B,h-w+1}} \cdot \frac{(k+1)z_A}{z_B - z_L}$$
(3.8)

$$\lambda'(x) = \frac{((z'_B - z'_L)z_{HV} - (z_B - z_L)z'_{HV})f_{k+1}(\lambda)}{z^2_{HV}(f_k(\lambda) + \lambda e^{-\lambda} \cdot \frac{\lambda^{k-1}}{(k-1)!} - \frac{z_B - z_L}{z_{HV}} \cdot e^{-\lambda} \cdot \frac{\lambda^k}{k!})}$$
(3.9)

$$z_{L,h}(x) = z_L(x) - \sum_{i=1}^{w-1} z_{L,h-j}(x), \quad z_{H,h}(x) = z_B(x) - z_L(x) - \sum_{i=1}^{w-1} z_{H,h-j}(x), \quad (3.10)$$

$$z_{B,h-j}(x) = z_{L,h-j}(x) + z_{H,h-j}(x), \text{ for every } 0 \le j \le w - 1,$$
(3.11)

$$z_A(x) = \frac{\lambda(x)^{n+1}}{e^{\lambda(x)}(k+1)! f_{k+1}(\lambda(x))} z_{HV}(x), \qquad (3.12)$$

where $f_k(\lambda)$ was defined in (3.1). The initial conditions are

v

$$z_B(0) = \bar{\mu}, \ z_{L,h-j}(0) = 0, \ z_{H,h-j}(0) = 0, \ \text{for all } 1 \le j \le w - 1,$$
 (3.13)

$$z_L(0) = \bar{\mu}(1 - f_k(\bar{\mu})), \ z_{HV}(0) = 1 - \exp(-\bar{\mu}) \sum_{i=0} \bar{\mu}^i / i!, \ \lambda(0) = \bar{\mu}.$$
 (3.14)

Allocation is possible (in the large n limit w.h.p.) only if m = cn with $c < c_{h,\ell,k}$ and

$$c_{h,\ell,k} = \frac{\xi^*}{h\mathbb{P}\left(\text{Bin}(h-1, 1-Q(\xi^*, k) < \ell)\right)},$$

where $Q(x,y) = e^{-x} \sum_{j \ge y} \frac{x^j}{j!}$ and ξ^* is the unique solution to:

$$hk = \xi^* \frac{\mathbb{E}\left[(\ell - \operatorname{Bin}(h, 1 - Q(\xi^*, k)))^+ \right]}{Q(\xi^*, k + 1) \mathbb{P}\left(\operatorname{Bin}(h - 1, 1 - Q(\xi^*, k)) < \ell \right)}.$$

Lelarge SODA'12

SOME RESULTS

Critical load $\frac{\ell c_{h,\ell,k}}{k}$ as a function of $k = 1 \dots 10$ capacity of each bin with:

- h = 4 choices per batch
- $\ell = 1, 2, 3$ balls per batch

SOME RESULTS

Critical load $\frac{\ell c_{h,\ell,k}}{k}$ as a function of $k = 1 \dots 10$ capacity of each bin with:

- h = 4, 5, 6 choices per batch
- $\ell = 2$ balls per batch

CONTENT PLACEMENT

BIPARTITE GRAPH REPRESENTATION

- *n* contents
- m servers, each storing d contents sampled independently (but not uniformly).
- the degree of a content is the number of replicas for this content in the system.

OPTIMAL ALLOCATION

SPANNING SUBGRAPHS OF BIPARTITE RANDOM GRAPHS

- Black nodes = n bins
- Blue nodes = m batches of ℓ balls
- Edge = possible choice for the balls of the batch. Each blue node has degree $h > \ell$.

SPANNING SUBGRAPHS OF BIPARTITE RANDOM GRAPHS

- *n* black nodes
- m blue nodes of degree h
- Allocation = for each blue node, select ℓ edges such that in the spanning subgraph, all black nodes have degree less than k.

Example with $k = \ell = 2$.

A COMBINATORIAL DETOUR

A simple identity:

$$\begin{split} \Omega(G,\boldsymbol{\lambda},\mathbf{x}) &= \prod_{v \in w \in E} (1 + \lambda_e x_v x_w) = \sum_{H \subseteq E} \boldsymbol{\lambda}^H \mathbf{x}^{\deg(H)}, \end{split}$$
 with $\boldsymbol{\lambda}^H = \prod_{e \in H} \lambda_e$ and $\mathbf{x}^{\deg(H)} = \prod_{v \in V} x_v^{\deg(v,H)}.$

A COMBINATORIAL DETOUR

A simple identity:

$$\Omega(G, \boldsymbol{\lambda}, \mathbf{x}) = \prod_{v \in w \in E} (1 + \lambda_e x_v x_w) = \sum_{H \subseteq E} \boldsymbol{\lambda}^H \mathbf{x}^{\deg(H)},$$

with $\boldsymbol{\lambda}^H = \prod_{e \in H} \lambda_e$ and $\mathbf{x}^{\deg(H)} = \prod_{v \in V} x_v^{\deg(v, H)}.$

We are interested in:

$$Z(G, \boldsymbol{\lambda}, \mathbf{x}) = \sum_{H \subseteq E} \boldsymbol{\lambda}^H \mathbf{x}^{\deg(H)} \mathbb{1}(H \text{ is a matching})$$

SCHUR-SZEGÖ COMPOSITION

If $P(z) = \sum_{j=0}^{d} c_j z^j$ is nonvanishing in the open right half-plane and $K(z) = \sum_{j=0}^{d} {d \choose j} u_j z^j$ has only real nonpositive zeros, then $Q(z) = \sum_{j=0}^{d} u_j c_j z^j$ is nonvanishing in the open right half-plane.

APPLYING SCHUR-SZEGÖ COMPOSITION

Consider the case $u_0 = u_1 = 1$ and $u_k = 0$ for $k \ge 2$ and define $K_v(z) = 1 + \deg(v)z$.

Let $F_0(\mathbf{x}) = \Omega(G, \boldsymbol{\lambda}, \mathbf{x})$ and define $F_v(\mathbf{x})$ as the Schur-Szegö composition of $F_{v-1}(x_v)$ and $K_v(x_v)$. (Wagner 2009)

$$F_{0}(\mathbf{x}) = \sum_{H \subseteq E} \boldsymbol{\lambda}^{H} \mathbf{x}^{\deg(H)}$$

$$F_{1}(\mathbf{x}) = \sum_{H \subseteq E} \boldsymbol{\lambda}^{H} \mathbb{I}(\deg(v, H) \leq 1) \mathbf{x}^{\deg(H)}$$

.

$$\begin{split} F_n(\mathbf{x}) &= \sum_{H \subseteq E} \boldsymbol{\lambda}^H \prod_{v=1}^n \mathbb{1}(\deg(v, H) \leq 1) \mathbf{x}^{\deg(H)} \\ &= \sum_{H \subseteq E} \boldsymbol{\lambda}^H \mathbf{x}^{\deg(H)} \mathbb{1}(H \text{ is a matching}) = Z(G, \boldsymbol{\lambda}, \mathbf{x}). \end{split}$$

ANALOGY WITH STATISTICAL PHYSICS

 $Z(G, \mathbf{1}, z^{1/2}\mathbf{1}) = \sum_M z^{|M|} = \sum_k m_k(G) z^k = P_G(z), \text{ where } m_k(G) \text{ is the number of } k \text{-edge matchings of } G.$

The fact that $P_G(z)$ has its zeros on the negative real axis allows to define the Gibbs measure

$$\iota_G^z(M) = \frac{z^{|M|}}{P_G(z)}$$

on infinite graphs (as an 'analytic' limit) = absence of phase transitions.

(Heilmann Lieb 1972)

ANALOGY WITH STATISTICAL PHYSICS

 $Z(G, \mathbf{1}, z^{1/2}\mathbf{1}) = \sum_M z^{|M|} = \sum_k m_k(G) z^k = P_G(z), \text{ where } m_k(G) \text{ is the number of } k \text{-edge matchings of } G.$

The fact that $P_G(z)$ has its zeros on the negative real axis allows to define the Gibbs measure

$$\iota_G^z(M) = \frac{z^{|M|}}{P_G(z)}$$

on infinite graphs (as an 'analytic' limit) = absence of phase transitions.

(Heilmann Lieb 1972)

This technique can be used as a step towards computations BUT it fails for more general spanning subgraphs, i.e. for degree constraints larger than 3.

Black arrow: 'I want to match you'

Black arrow: 'I want to match you'

Red arrow: 'Sorry, I am saturated'

Black arrow: 'I want to match you'

Red arrow: 'Sorry, I am saturated'

Replace black arrows by 1 messages and red arrows by 0 messages and run simultaneously.

For any directed edge, sum the incoming messages from the other edges. If this sum is larger than w = 2 then \mathcal{P}_G returns 0, otherwise returns 1 on this directed edge.

Iterate...

A MESSAGE PASSING VERSION OF THE GREEDY ALGORITHM

... until you get a fixed point I^* .

On finite trees, the algorithm converges and I^* allows to get the size of a maximum spanning subgraph.

$$\sum_{v \in V} \left(w \mathbb{I}\left(\sum_{\overrightarrow{e} \in \partial v} I_{\overrightarrow{e}}^* \ge w + 1 \right) + \frac{1}{2} \mathbb{I}\left(\sum_{\overrightarrow{e} \in \partial v} I_{\overrightarrow{e}}^* \le w \right) \sum_{\overrightarrow{e} \in \partial v} I_{\overrightarrow{e}}^* \right)$$

RUNNING THE ALGORITHM ON AN INFINITE TREE

Let simplify further $\ell = k = 1$ and Poisson Galton-Watson tree with mean offspring λ .

- Let p be the probability of sending a 1 message

$$p = \mathbb{P}\left(I_{\overrightarrow{e}}^* = 1\right)$$

- Thanks to the branching property:

$$p = \mathbb{P}\left(\text{no children send a } 1 \text{ message}\right) = e^{-\lambda p}$$

and so
$$p = \frac{W(\lambda)}{\lambda}$$
.

A NAIVE GUESS

The function $\frac{W(\lambda)}{\lambda}$ as a function of λ .

The true value of p as a function of λ .

WHAT HAPPENED?

Let p_k be the probability of the root sending message 1 for the tree truncated at depth k.

- $p_0 = 1$
- $p_1 = e^{-\lambda}$
- then for $k\geq 0$

$$p_{k+1} = e^{-\lambda p_k}$$

We computed the fixed point of the map $p \mapsto e^{-\lambda p}$ but the truth is given by iterating it...

 $\lambda = 2.5$

 $\lambda = 2.5$

 $\lambda = 2.9$

 $\lambda = 2.9$

ABSENCE OF CORRELATION DECAY

Influence of the boundary conditions remains positive.

BYPASSING CORRELATION DECAY

- Introduce the Gibbs measure on allocations:

$$\mu_G^z(\mathbf{B}) = \frac{z^{\sum_e B_e}}{P_G(z)}$$

so that the size of a maximum allocation of the graph G = (V, E) is given by

$$\frac{1}{2}\lim_{z\to\infty}\sum_{v\in V}\sum_{e\in\partial v}\mu_G^z(B_e=1).$$

BYPASSING CORRELATION DECAY

- Introduce the Gibbs measure on allocations:

$$\mu_G^z(\mathbf{B}) = \frac{z^{\sum_e B_e}}{P_G(z)}$$

so that the size of a maximum allocation of the graph G = (V, E) is given by

$$\frac{1}{2}\lim_{z\to\infty}\sum_{v\in V}\sum_{e\in\partial v}\mu_G^z(B_e=1).$$

- Show that on trees, the marginal $\mu_G^z(B_e = 1)$ can be computed by a message passing algorithm with a unique fixed point.

MESSAGE PASSING ALGORITHM

Define $Y_e(z) \in \mathbb{R}$ by $\mu_{G,e}^z(B_e = 1) = \frac{Y_e(z)}{1+Y_e(z)}$. Then the recursion is $\mathbf{Y}^{t+1}(z) = z\mathcal{R}_G(\mathbf{Y}^t(z))$

with

$$\mathcal{R}_e(\mathbf{Y}) = \frac{\sum_{S \prec e, |S| \le w-1} \prod_{f \in S} Y_f}{\sum_{S \prec e, |S| \le w} \prod_{f \in S} Y_f}.$$

MESSAGE PASSING ALGORITHM

Define
$$Y_e(z) \in \mathbb{R}$$
 by $\mu_{G,e}^z(B_e = 1) = \frac{Y_e(z)}{1+Y_e(z)}$. Then the recursion is $\mathbf{Y}^{t+1}(z) = z\mathcal{R}_G(\mathbf{Y}^t(z))$

with

$$\mathcal{R}_e(\mathbf{Y}) = \frac{\sum_{S \prec e, |S| \le w-1} \prod_{f \in S} Y_f}{\sum_{S \prec e, |S| \le w} \prod_{f \in S} Y_f}.$$

In the case of matchings, w = 1 so that

$$\mathcal{R}_e(\mathbf{Y}) = \frac{1}{1 + \sum_{f \prec e} Y_f}.$$

BYPASSING CORRELATION DECAY

- Introduce the Gibbs measure on allocations:

$$\mu_G^z(\mathbf{B}) = \frac{z^{\sum_e B_e}}{P_G(z)}$$

so that the size of a maximum allocation of the graph G = (V, E) is given by

$$\frac{1}{2}\lim_{z\to\infty}\sum_{v\in V}\sum_{e\in\partial v}\mu_G^z(B_e=1).$$

- Show that on trees, the marginal $\mu_G^z(B_e = 1)$ can be computed by a message passing algorithm with a unique fixed point.
- Show that on trees, when $z \to \infty$, this message passing algorithm reduces to the previously described 0-1 valued message passing algorithm and that the limit of $\mu_G^z(B_e=1)$ can be computed from the minimal fixed point solution.

BYPASSING CORRELATION DECAY

- Introduce the Gibbs measure on allocations:

$$\mu_G^z(\mathbf{B}) = \frac{z^{\sum_e B_e}}{P_G(z)}$$

so that the size of a maximum allocation of the graph G = (V, E) is given by

$$\frac{1}{2}\lim_{z\to\infty}\sum_{v\in V}\sum_{e\in\partial v}\mu_G^z(B_e=1).$$

- Show that on trees, the marginal $\mu_G^z(B_e = 1)$ can be computed by a message passing algorithm with a unique fixed point.
- Show that on trees, when $z \to \infty$, this message passing algorithm reduces to the previously described 0-1 valued message passing algorithm and that the limit of $\mu_G^z(B_e=1)$ can be computed from the minimal fixed point solution.
- Using a convexity argument, invert the limits in n and z.

RESULT ON INFINITE UNIMODULAR TREES

Assumption: G_n has random weak limit $\rho([G, \circ])$, a unimodular probability measure concentrated on trees.

For any
$$\mathbf{I} \in \{0, 1\}^{\overrightarrow{E}}$$
,
 $F_{\circ}(\mathbf{I}) = w_{\circ} \mathbb{I}(\sum_{x \in \partial \circ} \mathcal{P}_{x \to \circ}(\mathbf{I}) \ge w_{\circ} + 1) + w_{\circ} \wedge \sum_{x \in \partial \circ} I_{x \to \circ}.$

Then

$$\lim_{n \to \infty} \frac{1}{n} M(G_n) = \frac{1}{2} \inf \left\{ \int F_{\circ}(\mathbf{I}) d\rho([G, \circ]) \right\},\$$

where the infimum is over all spatially invariant solutions of $\mathbf{I} = \mathcal{P}_G \circ \mathcal{P}_G(\mathbf{I})$.

ON GALTON-WATSON TREES

For matchings, the Recursive Distributional Equation (RDE) becomes:

$$Y(z) \stackrel{d}{=} \frac{z}{1 + \sum_{i=1}^{N} Y_i(z)}$$

where $N \sim$ the standard size biased degree distribution of the random graph. By iterating once

$$\frac{Y(z)}{z} \stackrel{d}{=} \frac{1}{1 + \sum_{i=1}^{N} \frac{1}{\frac{1}{z} + \sum_{j=1}^{N_{ij}} \frac{Y_{ij}(z)}{z}}}$$

so that we obtain for $X = \lim_{z \to \infty} \frac{Y(z)}{z} \in [0, 1]$ the simple RDE:

$$X \stackrel{d}{=} \frac{1}{1 + \sum_{i=1}^{N} \frac{1}{\sum_{j=1}^{N_{ij}} X_{ij}}}$$

SOLVING THE RDE AT $z = \infty$

If φ is the generating function of the asymptotic degree distribution, let

$$G(x) = \varphi'(1)x\overline{x} + \varphi(1-x) + \varphi(1-\overline{x}) - 1,$$

where $\overline{x} = \varphi'(1-x)/\varphi'(1)$.

G admits an historical record at x if $x = \overline{x}$ and G(x) > G(y) for any $0 \le y < x$. **Theorem 1.** If $p_1 < \ldots < p_r$ are the locations of the historical records of *G*, then the

RDE admits exactly r solutions, say $0 \le X_1 <_{st} \ldots <_{st} X_r \le 1$, and for any $i \in \{1, \ldots, r\}, \mathbb{E}[X_i] = G(p_i)$ and $\mathbb{P}(X_i > 0) = p_i$.

From the values $p_1 < \ldots < p_r$, we can compute the limit of the matching number (rescaled by *n*) when $n \to \infty$.

CONCLUSION

- General method to compute law of large numbers for combinatorial structures on sparse (random) graphs.
 - (a) to bypass the correlation decay, add a (small) noise parameter.
 - (b) crucially use monotonicity of the recursions
- Our method works for matchings, spanning subgraphs with degree constraints and *b*-matchings.
- The absence of phase transition has also algorithmic implications: sublinear algorithms to approximate the number of matchings.
- Open problem: Counting of other large subgraphs: long cycles (Marinari & Semerjian 2006).

THANK YOU!