Nombres de Littlewood-Richardson : Modèles combinatoires, calcul et complexité

Christophe Tollu

LIPN, Université de Paris 13

30 mars 2012

Séminaire Philippe Flajolet

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Nombres et règle de Littlewood-Richardson

Modèles de ruches de Knutson-Tao

Problème de Horn et puzzles

Factorisation

Complexité

Conclusion

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

 Les cœfficients de Littlewood-Richardson c^ν_{λ,μ} sont des entiers ≥ 0 paramétrés par 3 partitions d'entiers, *i.e.* 3 suites finies et décroissantes d'entiers naturels λ₁ ≥ λ₂ ≥ ··· , μ₁ ≥ μ₂ ≥ ··· , ν₁ ≥ ν₂ ≥ ··· ,

うして ふゆう ふほう ふほう うらつ

 Les cœfficients de Littlewood-Richardson c^ν_{λ,μ} sont des entiers ≥ 0 paramétrés par 3 partitions d'entiers, *i.e.* 3 suites finies et décroissantes d'entiers naturels λ₁ ≥ λ₂ ≥ ··· , μ₁ ≥ μ₂ ≥ ··· , ν₁ ≥ ν₂ ≥ ···

うして ふゆう ふほう ふほう うらつ

Ils apparaissent dans de nombreux contextes

- Les cœfficients de Littlewood-Richardson c^ν_{λ,μ} sont des entiers ≥ 0 paramétrés par 3 partitions d'entiers, *i.e.* 3 suites finies et décroissantes d'entiers naturels λ₁ ≥ λ₂ ≥ ··· , μ₁ ≥ μ₂ ≥ ··· , ν₁ ≥ ν₂ ≥ ···
- Ils apparaissent dans de nombreux contextes
 - Théorie des représentations (groupes symétriques, groupes classiques)

うして ふゆう ふほう ふほう うらつ

- Les cœfficients de Littlewood-Richardson c^ν_{λ,μ} sont des entiers ≥ 0 paramétrés par 3 partitions d'entiers, *i.e.* 3 suites finies et décroissantes d'entiers naturels λ₁ ≥ λ₂ ≥ ··· , μ₁ ≥ μ₂ ≥ ··· , ν₁ ≥ ν₂ ≥ ··· ,
- Ils apparaissent dans de nombreux contextes
 - Théorie des représentations (groupes symétriques, groupes classiques)

うして ふゆう ふほう ふほう うらつ

Géométrie (calcul de Schubert sur les grassmanniennes)

- Les cœfficients de Littlewood-Richardson c^ν_{λ,μ} sont des entiers ≥ 0 paramétrés par 3 partitions d'entiers, *i.e.* 3 suites finies et décroissantes d'entiers naturels λ₁ ≥ λ₂ ≥ ··· , μ₁ ≥ μ₂ ≥ ··· , ν₁ ≥ ν₂ ≥ ··· ,
- Ils apparaissent dans de nombreux contextes
 - Théorie des représentations (groupes symétriques, groupes classiques)
 - Géométrie (calcul de Schubert sur les grassmanniennes)
 - Algèbre linéaire (spectres de sommes de matrices hermitiennes)

- Les cœfficients de Littlewood-Richardson c^ν_{λ,μ} sont des entiers ≥ 0 paramétrés par 3 partitions d'entiers, *i.e.* 3 suites finies et décroissantes d'entiers naturels λ₁ ≥ λ₂ ≥ ··· , μ₁ ≥ μ₂ ≥ ··· , ν₁ ≥ ν₂ ≥ ···
- Ils apparaissent dans de nombreux contextes
 - Théorie des représentations (groupes symétriques, groupes classiques)
 - Géométrie (calcul de Schubert sur les grassmanniennes)
 - Algèbre linéaire (spectres de sommes de matrices hermitiennes)

Physique (structure fine des spectres atomiques)

Représentations polynomiales de $GL_m(\mathbb{C})$

 Les représentations polynomiales complexes irréductibles V^λ de GL_m(ℂ) sont indexées aux partitions λ qui ont au plus m parts non nulles (ℓ(λ) ≤ m)

Représentations polynomiales de $GL_m(\mathbb{C})$

- Les représentations polynomiales complexes irréductibles V^λ de GL_m(ℂ) sont indexées aux partitions λ qui ont au plus m parts non nulles (ℓ(λ) ≤ m)
- ► Le produit tensoriel $V^{\lambda} \otimes V^{\mu}$ de deux représentations polynomiales irréductibles se décompose

$$V^\lambda\otimes V^\mu=igoplus_
u c^
u_{\lambda,\mu}V^
u$$

Représentations polynomiales de $GL_m(\mathbb{C})$

- Les représentations polynomiales complexes irréductibles V^λ de GL_m(ℂ) sont indexées aux partitions λ qui ont au plus m parts non nulles (ℓ(λ) ≤ m)
- ► Le produit tensoriel $V^{\lambda} \otimes V^{\mu}$ de deux représentations polynomiales irréductibles se décompose

$$V^\lambda\otimes V^\mu=igoplus_
u c^
u_{\lambda,\mu}V^
u$$

► Les constantes de structure de Z[x₁,..., x_m]^{G_n} relativement à la base des polynômes de Schur sont données par

$$s_\lambda s_\mu = \sum_{\ell(
u) \leq m} c_{\lambda,\mu}^
u s_
u$$

Theorem

 $c_{\lambda,\mu}^{\nu} = \#$ de tableaux gauches semi-standard T de forme ν/λ et de contenu μ tels que w(T) soit un mot de Yamanouchi

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem

 $c_{\lambda,\mu}^{\nu} = \#$ de tableaux gauches semi-standard T de forme ν/λ et de contenu μ tels que w(T) soit un mot de Yamanouchi

Exemple $\lambda = (4,3,1,1), \ \mu = (3,2,2), \
u = (6,4,3,3)$

Theorem

 $c_{\lambda,\mu}^{\nu} = \#$ de tableaux gauches semi-standard T de forme ν/λ et de contenu μ tels que w(T) soit un mot de Yamanouchi

Exemple $\lambda = (4,3,1,1), \ \mu = (3,2,2), \
u = (6,4,3,3)$

Theorem

 $c_{\lambda,\mu}^{\nu} = \#$ de tableaux gauches semi-standard T de forme ν/λ et de contenu μ tels que w(T) soit un mot de Yamanouchi

Exemple $\lambda = (4,3,1,1), \ \mu = (3,2,2), \
u = (6,4,3,3)$

Theorem

 $c_{\lambda,\mu}^{\nu} = \#$ de tableaux gauches semi-standard T de forme ν/λ et de contenu μ tels que w(T) soit un mot de Yamanouchi

Exemple $\lambda = (4,3,1,1), \ \mu = (3,2,2), \
u = (6,4,3,3)$

Theorem

 $c_{\lambda,\mu}^{\nu} = \#$ de tableaux gauches semi-standard T de forme ν/λ et de contenu μ tels que w(T) soit un mot de Yamanouchi

Exemple $\lambda = (4,3,1,1), \ \mu = (3,2,2), \
u = (6,4,3,3)$

Theorem

 $c_{\lambda,\mu}^{\nu} = \#$ de tableaux gauches semi-standard T de forme ν/λ et de contenu μ tels que w(T) soit un mot de Yamanouchi

Exemple $\lambda = (4,3,1,1), \ \mu = (3,2,2), \ \nu = (6,4,3,3)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

► Grille triangulaire dont chaque côté est de longueur *m*

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

• Exemple m = 4

- ► Grille triangulaire dont chaque côté est de longueur *m*
- ► Sommets étiquetés dans ℝ
- Exemple m = 4

- ► Grille triangulaire dont chaque côté est de longueur *m*
- Etiquetage des sommets dans $\mathbb R$
- Conditions locales : $x + y \ge z + t$
- Exemple m = 4

- ► Grille triangulaire dont chaque côté est de longueur *m*
- Étiquetage de a_{00} et des arêtes par $a_{i,j+1} a_{ij}$, $a_{i+1,j} a_{ij}$, $a_{i+1,j} a_{ij}$, $a_{i+1,j} a_{i,j+1}$
- Conditions locales : $\alpha \ge \gamma$ et $\beta \ge \delta$
- Exemple m = 4

▶ Soit λ, μ, ν trois partitions telles que $\ell(\lambda), \ell(\mu), \ell(\mu) \leq m$

- ▶ Soit λ, μ, ν trois partitions telles que $\ell(\lambda), \ell(\mu), \ell(\mu) \leq m$
- \blacktriangleright On étiquette les arêtes du bord d'une $m\text{-}\mathsf{grille}$ par les parts de λ, μ, ν

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Exemple $\lambda =$ (4, 3, 1, 1), $\mu =$ (3, 2, 2), $\nu =$ (6, 4, 3, 3)

- ▶ Soit λ, μ, ν trois partitions telles que $\ell(\lambda), \ell(\mu), \ell(\mu) \leq m$
- \blacktriangleright On étiquette les arêtes du bord d'une $m\text{-}\mathsf{grille}$ par les parts de λ, μ, ν

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Exemple $\lambda = (4, 3, 1, 1)$, $\mu = (3, 2, 2)$, $\nu = (6, 4, 3, 3)$

- ▶ Soit λ, μ, ν trois partitions telles que $\ell(\lambda), \ell(\mu), \ell(\mu) \leq m$
- On étiquette les sommets du bord de la *m*-grille en posant $a_{00} = 0$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Exemple $\lambda =$ (4, 3, 1, 1), $\mu =$ (3, 2, 2), $\nu =$ (6, 4, 3, 3)

- ▶ Soit λ, μ, ν trois partitions telles que $\ell(\lambda), \ell(\mu), \ell(\mu) \leq m$
- ▶ On étiquette les sommets du bord de la *m*-grille en posant $a_{00} = 0$

Exemple $\lambda =$ (4, 3, 1, 1), $\mu =$ (3, 2, 2), $\nu =$ (6, 4, 3, 3)

• L'ensemble des *m*-ruches de bord λ, μ, ν est un polytope $\mathcal{P}(\lambda, \mu, \nu) \subset \mathbb{R}^{(m-1)(m-2)/2}$

うして ふゆう ふほう ふほう うらつ

Theorem

Soit λ, μ, ν trois partitions telles que $\ell(\lambda), \ell(\mu), \ell(\mu) \leq m$. $c_{\lambda,\mu}^{\nu} = \#$ de ruches à étiquettes dans \mathbb{N} et de bord λ, μ, ν

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theorem

Soit λ, μ, ν trois partitions telles que $\ell(\lambda), \ell(\mu), \ell(\mu) \leq m$. $c_{\lambda,\mu}^{\nu} = \#$ de ruches à étiquettes dans \mathbb{N} et de bord λ, μ, ν Exemple $\lambda = (4,3,1,1), \mu = (3,2,2), \nu = (6,4,3,3)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Theorem

Soit λ, μ, ν trois partitions telles que $\ell(\lambda), \ell(\mu), \ell(\mu) \leq m$. $c_{\lambda,\mu}^{\nu} = \#$ de ruches à étiquettes dans \mathbb{N} et de bord λ, μ, ν Exemple $\lambda = (4,3,1,1), \mu = (3,2,2), \nu = (6,4,3,3)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Theorem

Soit λ, μ, ν trois partitions telles que $\ell(\lambda), \ell(\mu), \ell(\mu) \leq m$. $c_{\lambda,\mu}^{\nu} = \#$ de ruches à étiquettes dans \mathbb{N} et de bord λ, μ, ν Exemple $\lambda = (4,3,1,1), \mu = (3,2,2), \nu = (6,4,3,3)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Theorem

Soit λ, μ, ν trois partitions telles que $\ell(\lambda), \ell(\mu), \ell(\mu) \leq m$. $c_{\lambda,\mu}^{\nu} = \#$ de ruches à étiquettes dans \mathbb{N} et de bord λ, μ, ν Exemple $\lambda = (4,3,1,1), \mu = (3,2,2), \nu = (6,4,3,3)$

◆□▶ ◆圖▶ ★ 副▶ ★ 副▶ 三国 - のへで

$\mathsf{Bijection}\ \mathsf{LR}\text{-ruches}\leftrightarrow\mathsf{LR}\text{-tableaux}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$\mathsf{Bijection}\ \mathsf{LR}\text{-ruches}\leftrightarrow\mathsf{LR}\text{-tableaux}$

0	3	3				
0	1	2				
0	0	0	2			
0	0	0	0	1	1	

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三回 ● ○○○

$\mathsf{Bijection} \ \mathsf{LR}\text{-ruches} \leftrightarrow \mathsf{LR}\text{-tableaux}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$\mathsf{Bijection} \ \mathsf{LR}\text{-ruches} \leftrightarrow \mathsf{LR}\text{-tableaux}$

$\mathsf{Bijection} \ \mathsf{LR}\text{-ruches} \leftrightarrow \mathsf{LR}\text{-tableaux}$

◆ロト ◆聞ト ◆注ト ◆注ト 注目 の々で

13 16 8 9

▲□▶ ▲□▶ ▲注▶ ▲注▶ ▲□ ● ● ●

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□▶

Deux remarques

LR_m = {(λ, μ, ν) ∈ (Part_m)³ | c^ν_{λ,μ} > 0} est un sous-semi-groupe additif finiment engendré de (Z^m)³

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Deux remarques

- LR_m = {(λ, μ, ν) ∈ (Part_m)³ | c^ν_{λ,μ} > 0} est un sous-semi-groupe additif finiment engendré de (Z^m)³
- ► Dès que m > 4, le polytope P^ν_{λ,μ} n'est pas, en général, à sommets entiers
 - ► (DeLoera-McAllister 2008) Contre-exemples pour chaque m ≥ 5 et majorant des dénominateurs pour m fixé

ション ふゆ く 山 マ チャット しょうくしゃ

•
$$\alpha = \alpha_1 \ge \cdots \alpha_m$$
, $\beta = \beta_1 \ge \cdots \beta_m$, $\gamma = \gamma_1 \ge \cdots \gamma_m$ trois *m*-uplets de réels

- ► $\alpha = \alpha_1 \ge \cdots \alpha_m$, $\beta = \beta_1 \ge \cdots \beta_m$, $\gamma = \gamma_1 \ge \cdots \gamma_m$ trois *m*-uplets de réels
- A quelles conditions existe-t-il trois matrices hermitiennes m × m A,B, C telles que λ(A) = α, λ(B) = β, λ(C) = γ, et A + B = C?

ション ふゆ く 山 マ チャット しょうくしゃ

- ► $\alpha = \alpha_1 \ge \cdots \alpha_m$, $\beta = \beta_1 \ge \cdots \beta_m$, $\gamma = \gamma_1 \ge \cdots \gamma_m$ trois *m*-uplets de réels
- A quelles conditions existe-t-il trois matrices hermitiennes m × m A,B, C telles que λ(A) = α, λ(B) = β, λ(C) = γ, et A + B = C?

ション ふゆ く 山 マ チャット しょうくしゃ

• Trace : $\sum_{i=1}^{m} \gamma_i = \sum_{i=1}^{m} \alpha_i + \sum_{i=1}^{m} \beta_i$ (*)

- ► $\alpha = \alpha_1 \ge \cdots \alpha_m$, $\beta = \beta_1 \ge \cdots \beta_m$, $\gamma = \gamma_1 \ge \cdots \gamma_m$ trois *m*-uplets de réels
- A quelles conditions existe-t-il trois matrices hermitiennes m × m A,B, C telles que λ(A) = α, λ(B) = β, λ(C) = γ, et A + B = C?
- Trace : $\sum_{i=1}^{m} \gamma_i = \sum_{i=1}^{m} \alpha_i + \sum_{i=1}^{m} \beta_i$ (*)
- (Horn 1962) Conjecture : l'égalité (*) et les inégalités de la forme

$$\sum_{k \in K} \gamma_k \le \sum_{i \in I} \alpha_i + \sum_{j \in J} \beta_j$$

pour tous les triplets $I,J,K \subset \{1,\ldots,m\}$, |I| = |J| = |K|,

$$(I, J, K) \in \bigcup_{r=1}^{m-1} T_r^n$$

- ► $\alpha = \alpha_1 \ge \cdots \alpha_m$, $\beta = \beta_1 \ge \cdots \beta_m$, $\gamma = \gamma_1 \ge \cdots \gamma_m$ trois *m*-uplets de réels
- A quelles conditions existe-t-il trois matrices hermitiennes m × m A,B, C telles que λ(A) = α, λ(B) = β, λ(C) = γ, et A + B = C?
- Trace : $\sum_{i=1}^{m} \gamma_i = \sum_{i=1}^{m} \alpha_i + \sum_{i=1}^{m} \beta_i$ (*)
- (Horn 1962) Conjecture : l'égalité (*) et les inégalités de la forme

$$\sum_{k \in K} \gamma_k \le \sum_{i \in I} \alpha_i + \sum_{j \in J} \beta_j$$

pour tous les triplets $I,J,K \subset \{1,\ldots,m\}$, |I| = |J| = |K|,

$$(I, J, K) \in \bigcup_{r=1}^{m-1} T_r^n$$

T^m_r défini récursivement

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

►
$$HE_m = \{(\alpha, \beta, \gamma) \in (\mathbb{R}^m_{\geq})^3 \mid \exists A, B, C \in \mathcal{H}_m, \lambda(A) = \alpha, \lambda(B) = \beta, \lambda(A + B) = \gamma\}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

$$\begin{array}{lll} \rho(I) &=& (i_r - r, \dots, i_1 - 1) \\ \rho(J) &=& (j_r - r, \dots, j_1 - 1) \\ \rho(K) &=& (k_r - r, \dots, k_1 - 1) \end{array}$$

(ロ)、(型)、(E)、(E)、 E のQで

► Conjecture de Horn (1962) :

$$T_r^m = \{(I, J, K) \mid (\rho(I), \rho(J), \rho(K)) \in HE_r\}$$

- ► Conjecture de Horn (1962) : $T_r^m = \{(I, J, K) \mid (\rho(I), \rho(J), \rho(K)) \in HE_r\}$
- ► Klyachko (1996) : la conjecture est vraie pour $T_r^m = \{(I, J, K) \mid (\rho(I), \rho(J), \rho(K)) \in LR_r\}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

• Conjecture de Horn (1962) :

$$T_r^m = \{(I, J, K) \mid (\rho(I), \rho(J), \rho(K)) \in HE_r\}$$

► Klyachko (1996) : la conjecture est vraie pour $T_r^m = \{(I, J, K) \mid (\rho(I), \rho(J), \rho(K)) \in LR_r\}$

• Klyachko (1996) :
$$HE_m \cap (\mathbb{Q}^3_+)^m = \bigcup_{N>0} \frac{1}{N} LR_m$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• Conjecture de Horn (1962) :

$$T_r^m = \{(I, J, K) \mid (\rho(I), \rho(J), \rho(K)) \in HE_r\}$$

► Klyachko (1996) : la conjecture est vraie pour $T_r^m = \{(I, J, K) \mid (\rho(I), \rho(J), \rho(K)) \in LR_r\}$

• Klyachko (1996) :
$$HE_m \cap (\mathbb{Q}^3_+)^m = \bigcup_{N>0} \frac{1}{N} LR_m$$

Theorem

(Knutson-Tao 1999) $c_{N\lambda,N\mu}^{N
u}>0$ pour un $N\geq1\Rightarrow c_{\lambda,\mu}^{
u}>0$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• Conjecture de Horn (1962) :

$$T_r^m = \{(I, J, K) \mid (\rho(I), \rho(J), \rho(K)) \in HE_r\}$$

► Klyachko (1996) : la conjecture est vraie pour $T_r^m = \{(I, J, K) \mid (\rho(I), \rho(J), \rho(K)) \in LR_r\}$

• Klyachko (1996) :
$$HE_m \cap (\mathbb{Q}^3_+)^m = \bigcup_{N>0} \frac{1}{N} LR_m$$

Theorem

(Knutson-Tao 1999) $c_{N\lambda,N\mu}^{N\nu} > 0$ pour un $N \ge 1 \Rightarrow c_{\lambda,\mu}^{\nu} > 0$

• $T_r^m = \{(I, J, K) \mid c_{\rho(I), \rho(J)}^{\rho(K)} > 0\}$ (triplets et inégalités de Horn)

ション ふゆ く 山 マ チャット しょうくしゃ

• Conjecture de Horn (1962) :

$$T_r^m = \{(I, J, K) \mid (\rho(I), \rho(J), \rho(K)) \in HE_r\}$$

► Klyachko (1996) : la conjecture est vraie pour $T_r^m = \{(I, J, K) \mid (\rho(I), \rho(J), \rho(K)) \in LR_r\}$

• Klyachko (1996) :
$$HE_m \cap (\mathbb{Q}^3_+)^m = \bigcup_{N>0} \frac{1}{N} LR_m$$

Theorem

(Knutson-Tao 1999) $c_{N\lambda,N\mu}^{N
u}>0$ pour un $N\geq1\Rightarrow c_{\lambda,\mu}^{
u}>0$

•
$$T_r^m = \{(I, J, K) \mid c_{\rho(I), \rho(J)}^{\rho(K)} > 0\}$$
 (triplets et inégalités de Horn)

►
$$R_r^m = \{(I, J, K) \mid c_{\rho(I), \rho(J)}^{\rho(K)} = 1\}$$
 (triplets et inégalités essentiels) (Belkale 1999)

Puzzles de Knutson-Tao-Woodward

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへぐ

Puzzles de Knutson-Tao-Woodward

 Un *m*-puzzle est un pavage de la *m*-grille par les trois morceaux suivants, de façon que les arêtes partagées soient de même type

Labyrinthes de Danilov-Koshevoy

 Un labyrinthe (plan) est obtenu à partir d'un puzzle en ôtant les arêtes « internes » des blocs de même type : couloirs, chambres de type 1 (contour gras), chambres de type 0 (contour fin)

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Labyrinthes de Danilov-Koshevoy

Un labyrinthe (plan) est obtenu à partir d'un puzzle en ôtant les arêtes « internes » des blocs de même type : couloirs, chambres de type 1 (contour gras), chambres de type 0 (contour fin)

Puzzles et triplets admissibles

 (I, J, K)), I, J, K ⊂ {1,...,m}, |I| = |J| = |K| est un triplet admissible s'il correspond aux positions des arêtes grasses sur le bord d'un puzzle

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Puzzles et triplets admissibles

- (I, J, K)), I, J, K ⊂ {1,...,m}, |I| = |J| = |K| est un triplet admissible s'il correspond aux positions des arêtes grasses sur le bord d'un puzzle
- Exemple : $I = \{1, 2, 4\}$, $J = \{2, 3, 4\}$, $K = \{2, 3, 5\}$

Puzzles et inégalités

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ 国 - のQ@

Puzzles et inégalités

• On superpose un plan à une *LR*-ruche

< □ > < 同 > < 回 > .

э

Puzzles et inégalités

• On superpose un plan à une *LR*-ruche

On obtient une inégalité :

$$\begin{split} \nu_2 + \nu_3 + \nu_5 &\leq \alpha_1 + \alpha_2 + \beta_1 + \beta_2 + \gamma_4 \\ &\leq \lambda_1 + \lambda_2 + \beta_3 + \beta_4 + \gamma_4 \\ &= \lambda_1 + \lambda_2 + \alpha_4 + \mu_2 + \mu_3 + \mu_4 \\ &\leq \lambda_1 + \lambda_2 + \lambda_4 + \mu_2 + \mu_3 + \mu_4 \end{split}$$

э
Inégalités induites par un puzzle

► Si $c_{\lambda,\mu}^{\nu} > 0$, alors chaque inégalité $|\nu|_{K} \le |\lambda_{I}| + |\mu|_{J}$ induite par un puzzle est satisfaite

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Inégalités induites par un puzzle

- ► Si $c_{\lambda,\mu}^{\nu} > 0$, alors chaque inégalité $|\nu|_{K} \le |\lambda_{I}| + |\mu|_{J}$ induite par un puzzle est satisfaite
- Si une inégalité |*ν*|_K ≤ |λ_I| + |*μ*|_J induite par un puzzle est saturée (i.e. devient une égalité), alors les couloirs deviennent redondants : les arêtes opposées de tout losange élémentaire contenu dans un couloir ont la même étiquette

Inégalités induites par un puzzle

- Si c^ν_{λ,μ} > 0, alors chaque inégalité |ν|_K ≤ |λ_I| + |μ|_J induite par un puzzle est satisfaite
- Si une inégalité |*ν*|_K ≤ |λ_I| + |*μ*|_J induite par un puzzle est saturée (i.e. devient une égalité), alors les couloirs deviennent redondants : les arêtes opposées de tout losange élémentaire contenu dans un couloir ont la même étiquette
- Pour montrer qu'un triplet admissible (1, J, K) est un triplet de Horn (et l'inégalité induite une inégalité de Horn), on établit un lien entre les puzzles associés à (1, J, K) et c^{ρ(K)}_{ρ(1),ρ(J)}

うしつ 山 (山) (山) (山) (山) (山) (山) (山)

► Theorem

(Knutson-Tao-Woodward 2004) Le nombre de puzzles associés à un triplet (I, J, K) est égal à $c_{\rho(I), \rho(J)}^{\rho(K)}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

► Theorem

(Knutson-Tao-Woodward 2004) Le nombre de puzzles associés à un triplet (I, J, K) est égal à $c_{\rho(I), \rho(J)}^{\rho(K)}$.

• Exemple : m = 5, $I = \{1, 2, 4\}$, $J = \{2, 3, 4\}$, $K = \{2, 3, 5\}$

うして ふゆう ふほう ふほう うらつ

► Theorem

(Knutson-Tao-Woodward 2004) Le nombre de puzzles associés à un triplet (I, J, K) est égal à $c_{\rho(I), \rho(J)}^{\rho(K)}$.

► Exemple : m = 5, $I = \{1, 2, 4\}$, $J = \{2, 3, 4\}$, $K = \{2, 3, 5\}$ ► $c_{\rho(I), \rho(J)}^{\rho(K)} = c_{1,111}^{211} = 1$

うして ふゆう ふほう ふほう うらつ

► Theorem

(Knutson-Tao-Woodward 2004) Le nombre de puzzles associés à un triplet (I, J, K) est égal à $c_{\rho(I),\rho(J)}^{\rho(K)}$.

- ► Exemple : m = 5, $I = \{1, 2, 4\}$, $J = \{2, 3, 4\}$, $K = \{2, 3, 5\}$ ► $c_{\rho(I), \rho(J)}^{\rho(K)} = c_{1,111}^{211} = 1$
 - un seul puzzle

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Factorisation des ruches

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のQ@

Factorisation des ruches

- イロト (個) (注) (注) (注) 三 のの()

• (I, J, K) un triplet essentiel

• (I, J, K) un triplet essentiel

Theorem

(King-T-Toumazet 2009) Si $|\lambda|_I + |\mu|_J = |\nu|_K$, alors

$$c_{\lambda,\mu}^{
u} = c_{\lambda_{I},\mu_{J}}^{
u\kappa} \cdot c_{\lambda_{\overline{I}},\mu_{\overline{J}}}^{
u\overline{\kappa}}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• (I, J, K) un triplet essentiel

Theorem

(King-T-Toumazet 2009) Si $|\lambda|_I + |\mu|_J = |\nu|_K$, alors

$$c_{\lambda,\mu}^{\nu} = c_{\lambda_{I},\mu_{J}}^{\nu_{K}} \cdot c_{\lambda_{\overline{I}},\mu_{\overline{J}}}^{\nu_{\overline{K}}}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Deux ingrédients de la preuve :

• (I, J, K) un triplet essentiel

Theorem

(King-T-Toumazet 2009) Si $|\lambda|_I + |\mu|_J = |\nu|_K$, alors

$$c_{\lambda,\mu}^{
u}=c_{\lambda_{I},\mu_{J}}^{
u\kappa}\cdot c_{\lambda_{\overline{I}},\mu_{\overline{J}}}^{
u\overline{\kappa}}$$

- Deux ingrédients de la preuve :
 - Une notion de « bon chemin » dont l'union doit couvrir l'ensemble des arêtes internes des couloirs (redondants) pour permettre la factorisation

 ▶ Rigidité d'un puzzle ⇔ absence de gentle loop (Knutson-Tao-Woodward 2004)

• (I, J, K) un triplet essentiel

Theorem

(King-T-Toumazet 2009) Si $|\lambda|_I + |\mu|_J = |\nu|_K$, alors

$$c_{\lambda,\mu}^{
u}=c_{\lambda_{I},\mu_{J}}^{
u\kappa}\cdot c_{\lambda_{\overline{I}},\mu_{\overline{J}}}^{
u\overline{\kappa}}$$

- Deux ingrédients de la preuve :
 - Une notion de « bon chemin » dont l'union doit couvrir l'ensemble des arêtes internes des couloirs (redondants) pour permettre la factorisation

- ▶ Rigidité d'un puzzle ⇔ absence de gentle loop (Knutson-Tao-Woodward 2004)
- Exemple : $c_{(9,7,6,2,0),(13,5,3,1,0)}^{(14,12,11,5,4)} = c_{(9,7,2),(5,3,1)}^{(12,11,4)} \cdot c_{(6,0),(13,0)}^{(14,5)} = 2 \cdot 1 = 2$

Contre-exemple

•
$$m = 6, r = 3, I = J = \{1, 3, 5\}, K = \{2, 4, 6\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Contre-exemple

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Contre-exemple

$$c^{332211}_{221100,221100} = 3 \neq 2 \cdot 2 = c^{321}_{210,210} \cdot c^{321}_{210,210}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

f: {0,1}* → {0,1}. *f* ∈ *NP* s'il existe une machine de Turing polynomiale *M* et un polynôme *p* tels que :

 $\forall x \in \{0,1\}^n, f(x) = 1 \Leftrightarrow (\exists y \in \{0,1\}^{p(n)})(M \text{ accepte } (x,y))$

ション ふゆ アメリア メリア しょうくの

f: {0,1}* → {0,1}. *f* ∈ *NP* s'il existe une machine de Turing polynomiale *M* et un polynôme *p* tels que :

$$\forall x \in \{0,1\}^n, f(x) = 1 \Leftrightarrow (\exists y \in \{0,1\}^{p(n)}) (M \text{ accepte } (x,y))$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

► satisfaisabilité de 3-clauses, chemin hamiltonien, etc.

f: {0,1}* → {0,1}. *f* ∈ *NP* s'il existe une machine de Turing polynomiale *M* et un polynôme *p* tels que :

 $\forall x \in \{0,1\}^n, f(x) = 1 \Leftrightarrow (\exists y \in \{0,1\}^{p(n)})(M \text{ accepte } (x,y))$

satisfaisabilité de 3-clauses, chemin hamiltonien, etc.

 f: {0,1}* → N. f ∈ #P s'il existe une machine de Turing polynomiale M et un polynôme p tels que :

 $\forall x \in \{0,1\}^n, f(x) = |\{y \in \{0,1\}^{p(n)} \mid M \text{ accepte } (x,y)\}|$

f: {0,1}* → {0,1}. *f* ∈ *NP* s'il existe une machine de Turing polynomiale *M* et un polynôme *p* tels que :

 $\forall x \in \{0,1\}^n, f(x) = 1 \Leftrightarrow (\exists y \in \{0,1\}^{p(n)})(M \text{ accepte } (x,y))$

satisfaisabilité de 3-clauses, chemin hamiltonien, etc.

 f: {0,1}* → N. f ∈ #P s'il existe une machine de Turing polynomiale M et un polynôme p tels que :

 $\forall x \in \{0,1\}^n, f(x) = |\{y \in \{0,1\}^{p(n)} \mid M \text{ accepte } (x,y)\}|$

 permanent, dénombrement des solutions d'un problème NP, etc.

 En général, l'énumération des points entiers dans un polytope est #P-complet

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

- En général, l'énumération des points entiers dans un polytope est #P-complet
- Si la dimension de l'espace ambiant est fixée, il existe un algorithme polynomial qui énumère les points entiers de tout polytope (Barvinok)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- En général, l'énumération des points entiers dans un polytope est #P-complet
- Si la dimension de l'espace ambiant est fixée, il existe un algorithme polynomial qui énumère les points entiers de tout polytope (Barvinok)

うして ふゆう ふほう ふほう うらつ

► Theorem

(Narayanan 2006) Le calcul des $c^{
u}_{\lambda,\mu}$ est #P-complet

- En général, l'énumération des points entiers dans un polytope est #P-complet
- Si la dimension de l'espace ambiant est fixée, il existe un algorithme polynomial qui énumère les points entiers de tout polytope (Barvinok)

Theorem

(Narayanan 2006) Le calcul des $c^{
u}_{\lambda,\mu}$ est #P-complet

► Réduction du calcul du nombre *I*(*a*, *b*) de tables de contingence 2 × *k* de type (*a*, *b*), *a* ∈ N², *a*₁ ≥ *a*₂, *b* ∈ N^k au calcul d'un nombre de Kostka *K*_{λ,μ} (la correspondance R-S-K est une étape décisive)

うして ふゆう ふほう ふほう うらつ

- En général, l'énumération des points entiers dans un polytope est #P-complet
- Si la dimension de l'espace ambiant est fixée, il existe un algorithme polynomial qui énumère les points entiers de tout polytope (Barvinok)

► Theorem

(Narayanan 2006) Le calcul des $c^{
u}_{\lambda,\mu}$ est #P-complet

- ► Réduction du calcul du nombre *I*(*a*, *b*) de tables de contingence 2 × *k* de type (*a*, *b*), *a* ∈ N², *a*₁ ≥ *a*₂, *b* ∈ N^k au calcul d'un nombre de Kostka *K*_{λ,μ} (la correspondance R-S-K est une étape décisive)
- ► Le calcul de *I*(*a*, *b*) est *#P*-complet (Dyer-Kannan-Mount 1997)

Schéma d'approximation polynomiale

Theorem

(Narayanan 2010) Il existe un algorithme randonisé fortement polynomial qui calcule une fraction $1 - O(\gamma)$ de tous les $c_{\lambda,\mu}^{\nu}$ correspondant aux points entiers de

Cone de L-R
$$\cap \{(\lambda, \mu, \nu) \mid |\lambda| + |\mu| + |\nu| \leq \frac{n^5}{\gamma}\}$$

ション ふゆ アメリア メリア しょうくの

Test de non-nullité

► Theorem

(Knutson-Tao, Mulmuley-Sohoni) Il existe un algorithme fortement polynomial qui teste si $c_{\lambda,\mu}^{\nu} > 0$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Test de non-nullité

► Theorem

(Knutson-Tao, Mulmuley-Sohoni) Il existe un algorithme fortement polynomial qui teste si $c_{\lambda,\mu}^{\nu} > 0$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Deux ingrédients dans la preuve

Test de non-nullité

► Theorem

(Knutson-Tao, Mulmuley-Sohoni) Il existe un algorithme fortement polynomial qui teste si $c_{\lambda,\mu}^{\nu}>0$

ション ふゆ アメリア メリア しょうくの

- Deux ingrédients dans la preuve
 - Theorème de saturation de Knutson-Tao
Test de non-nullité

► Theorem

(Knutson-Tao, Mulmuley-Sohoni) Il existe un algorithme fortement polynomial qui teste si $c^{\nu}_{\lambda,\mu} > 0$

- Deux ingrédients dans la preuve
 - Theorème de saturation de Knutson-Tao
 - Existence d'un algorithme fortement polynomial pour la programmation linéaire

ション ふゆ アメリア メリア しょうくの

 Pour toute algèbre de Lie complexe semi-simple de dimension finie,

$$V^\lambda\otimes V^\mu=igoplus_
u C^
u_{\lambda,\mu}V^
u$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 Pour toute algèbre de Lie complexe semi-simple de dimension finie,

$$V^\lambda \otimes V^\mu = igoplus_
u {\cal C}^
u_{\lambda,\mu} V^
u$$

ション ふゆ く 山 マ チャット しょうくしゃ

Pour les types B, C et D, il n'y pas de théorème de saturation (contre-exemples pour les types B et C)

 Pour toute algèbre de Lie complexe semi-simple de dimension finie,

$$V^\lambda \otimes V^\mu = igoplus_
u {\cal C}^
u_{\lambda,\mu} V^
u$$

ション ふゆ く 山 マ チャット しょうくしゃ

- Pour les types B, C et D, il n'y pas de théorème de saturation (contre-exemples pour les types B et C)
- $C^{\nu}_{\lambda,\mu} = \#$ points entiers dans un polytope $\mathcal{P}^{\nu}_{\lambda,\mu}$

 Pour toute algèbre de Lie complexe semi-simple de dimension finie,

$$V^\lambda \otimes V^\mu = igoplus_
u {\cal C}^
u_{\lambda,\mu} V^
u$$

Pour les types B, C et D, il n'y pas de théorème de saturation (contre-exemples pour les types B et C)

- $C^{\nu}_{\lambda,\mu} = \#$ points entiers dans un polytope $\mathcal{P}^{\nu}_{\lambda,\mu}$
- C^{Nν}_{Nλ,Nμ} est un pseudo-polynôme en N qui n'est pas, en général, un polynôme

 Pour toute algèbre de Lie complexe semi-simple de dimension finie,

$$V^\lambda \otimes V^\mu = igoplus_
u C^
u_{\lambda,\mu} V^
u$$

- Pour les types B, C et D, il n'y pas de théorème de saturation (contre-exemples pour les types B et C)
- $C^{\nu}_{\lambda,\mu} = \#$ points entiers dans un polytope $\mathcal{P}^{\nu}_{\lambda,\mu}$
- C^{Nν}_{Nλ,Nμ} est un pseudo-polynôme en N qui n'est pas, en général, un polynôme
- Conjecture (De Loera McAllister 2008) : Pour les types B, C et D, les cœfficients des polynômes f_i dans

$$C_{N\lambda,N\mu}^{N\nu} = \begin{cases} f_1(N) & \text{si} \quad N \equiv 0 \mod 2\\ f_2(N) & \text{si} \quad N \equiv 1 \mod 2 \end{cases}$$

sont positifs

 Pour toute algèbre de Lie complexe semi-simple de dimension finie,

$$V^\lambda \otimes V^\mu = igoplus_
u {\cal C}^
u_{\lambda,\mu} V^
u$$

- Pour les types B, C et D, il n'y pas de théorème de saturation (contre-exemples pour les types B et C)
- $C^{\nu}_{\lambda,\mu} = \#$ points entiers dans un polytope $\mathcal{P}^{\nu}_{\lambda,\mu}$
- C^{Nν}_{Nλ,Nμ} est un pseudo-polynôme en N qui n'est pas, en général, un polynôme
- Conjecture (De Loera McAllister 2008) : Pour les types B, C et D, les cœfficients des polynômes f_i dans

$$C_{N\lambda,N\mu}^{N\nu} = \begin{cases} f_1(N) & \text{si} \quad N \equiv 0 \mod 2\\ f_2(N) & \text{si} \quad N \equiv 1 \mod 2 \end{cases}$$

sont positifs

 Le test C^ν_{λ,μ} > 0 deviendrait polynomial (Mulmuley-Narayanan)