
Building large-scale
distributed applications on

top of self-managing
transactional stores

June 3, 2010

Peter Van Roy
 with help from SELFMAN partners

Overview
  Large-scale distributed applications

  Application structure: multi-tier with scalable DB backend
  Distribution structure: peer-to-peer or cloud-based

  DHTs and transactions
  Basics of DHTs
  Data replication and transactions
  Scalaris and Beernet

  Programming model and applications
  CompOz library and Kompics component model
  DeTransDraw and Distributed Wikipedia

  Future work
  Mobile applications, cloud computing, data-intensive computing
  Programming abstractions for large-scale distribution

Application structure
  What can be a general architecture for large-scale

distributed applications?
  Start with a database backend (e.g., IBM’s “multitier”)

  Make it distributed with distributed transactional interface
  Keep strong consistency (ACID properties)
  Allow large numbers of concurrent transactions

  Horizontal scalability is the key
  Vertical scalability is a dead end
  “NoSQL”: Buzzword for horizontally scalable databases that

typically don’t have a complete SQL interface
  Key/value store or column-oriented

↑ our choice (simplicity)

The NoSQL Controversy
  NoSQL is a current trend in non-relational databases

  May lack table schemas, may lack ACID properties, no join
operations

  Main advantages are excellent performance, with good
horizontal scalability and elasticity (ideal fit to clouds)
  SQL databases have good vertical scalability but are not

elastic

  Often only weak consistency guarantees, such as
eventual consistency (e.g., Google BigTable)
  Some exceptions: Cassandra also provides strong

consistency, Scalaris and Beernet provide a key-value store
with transactions and strong consistency

Distribution structure
  Two main infrastructures for large-scale applications
  Peer-to-peer: use of client machines

  Very popular style, e.g., BitTorrent, Skype, Wuala, etc.
  Different degrees of organization (unstructured to structured)
  Supports horizontal scalability

  Cloud-based: use of datacenters (another good choice)
  Becoming very popular too, e.g., Amazon EC2, Google AppEngine,

Windows Azure, etc.
  Supports horizontal scalability
  Also supports elasticity

  Hybrids will appear
  Combine elasticity & high availability of clouds with

high aggregate bandwidth & low latency of peer-to-peer

← our choice (loosely coupled)

DHT on
P2P overlay

Transactions

Replication

Key/Value Store
(simple DBMS)

 ACID

Architecture

  This is the final
architecture that we have
built for large-scale
distributed applications
  Distributed transactions
provide consistency and
fault tolerance
  The whole is built in
modular fashion using
concurrent components
  Each layer has self-
managing properties
  We explain how it works
and give some of the
applications

Distributed
Hash Tables

DHTs: third generation of P2P
  Hybrid (client/server)

  Napster

  Unstructured overlay
  Gnutella, Kazaa,

Morpheus, Freenet, …
  Uses flooding

  Structured overlay
  Exponential network with

augmented ring structure
  DHT (Distributed Hash

Table), e.g., Chord, DKS,
Scalaris, Beernet

  Self-organizes upon node
join/leave/failure

R = N-1 (hub)

R = 1 (others)

H = 1

R = ? (variable)

H = 1…7

(but no guarantee)

R = log N

H = log N

(with guarantee)

  A dynamic distribution of a hash table onto a set of cooperating
nodes

Key Value

1 Algorithms

9 Routing

11 DS

12 Peer-to-Peer

21 Networks

22 Grids

•  Hash table: get/set/delete operations
•  Each node has a routing table

•  Pointers to some other nodes
•  Typically, a constant or a logarithmic number of pointers

•  Fault tolerance: reorganizes upon node join/leave/failure

node A

node D

node B

node C

→ Node D : get(9)

DHT functionality

A DHT Example: Chord

Nodes

  Ids of nodes and items are
arranged in a circular space

  An item id is assigned to the
first node id that follows it on
the circle.

  The node at or following an id
on the space (circle) is called
the successor. This gives a
connected ring.

  Not all possible ids are actually
used (sparse set of ids, e.g.,
2128)!

  Extra links, called fingers, are
added to provide efficient
routing

8

2

6

7

4

3

5

10
9

11

14

13

15

Items

0 1

12

DHT self-maintenance
  In all ring-based DHTs inspired by Chord, self-

organization is done at two levels:
  The ring ensures connectivity: it must always exist despite

joins, leaves, and failures
  The fingers provide efficient routing: they may be

temporarily in an imperfect state, but this affects only the
efficiency of routing, not the correctness

  We now explain how routing works
  We will explain connectivity maintenance later when we

introduce the relaxed ring
  The relaxed ring has much simpler connectivity

maintenance than Chord

  Routing table size: M,
where N = 2M

  Every node n knows
successor (n + 2 i-1) ,
for i = 1..M

  Routing entries = log2(N)
  log2(N) hops from any

node to any other node

8

2

6

7

4

3

5

10
9

14

15 0 1

11

13

12

Get(15) Chord routing (1/4)

  Routing table size: M,
where N = 2M

  Every node n knows
successor (n + 2 i-1) ,
for i = 1..M

  Routing entries = log2(N)
  log2(N) hops from any

node to any other node

8

2

6

7

4

3

5

10
9

14

15 0 1

11

13

12

Get(15) Chord routing (2/4)

  Routing table size: M,
where N = 2M

  Every node n knows
successor(n + 2 i-1) ,
for i = 1..M

  Routing entries = log2(N)
  log2(N) hops from any

node to any other node

8

2

6

7

4

3

5

10
9

14

15 0 1

11

13

12

Get(15) Chord routing (3/4)

  From node 1, it takes
3 hops to node 0
where item 15 is
stored

  For 16 nodes, the
maximum is log2(16)
= 4 hops between any
two nodes

8

2

6

7

4

3

5

10
9

14

15 0 1

11

13

12

Get(15) Chord routing (4/4)

DHT-based
Application

Infrastructure

DHT-based
application infrastructure
  We use the DHT as a foundation for building large-scale

distributed applications
  Using a concurrent component model with message passing
  First layer: ring maintenance, efficient routing maintenance
  Second layer: communication and storage
  Third layer: replication and transactions

  A scalable decentralized application can be built on top
of the transaction layer

  We built several applications using this architecture
  Collaborative drawing (DeTransDraw), Distributed Wikipedia
  As student project in a course: they complain it is too easy!

Scalaris and Beernet
  Scalaris and Beernet are key/value

stores developed in the SELFMAN
project (www.ist-selfman.org)

  They provide transactions and strong
consistency on top of loosely coupled
peers using the Paxos uniform
consensus algorithm for atomic
commit

  They are scalable to hundreds of
nodes; with ten nodes they have
similar performance as MySQL
servers

  Scalaris won first prize in the IEEE
Scalable Computing Challenge 2008

  We focus on these two systems and
the applications we have built on them

DHT on
P2P Overlay

Transactions

Replication

Key/Value Store
(simple DBMS)

ACID

Detailed architecture
  Layered architecture

  Relaxed ring and routing
  Reliable message sending
  DHT (basic storage)
  Replication and transactions

  The relaxed ring maintains
connectivity and efficient
routing despite node failures,
joins, and leaves

  The DHT provides basic
storage without replication

  This figure shows the Beernet
architecture; Scalaris is similar

Simplified ring maintenance
  We now continue our discussion of how DHTs work
  Ring maintenance is not a trivial issue

  Peers can join and leave at any time
  Peers that crash are like peers that leave without notification
  Temporarily broken links create false failure suspicions

  Crucial properties to be guaranteed
  Lookup consistency
  Ring connectivity

  We define a relaxed ring which gives a very simple
ring maintenance compared to Chord
  E.g., no periodic stabilization needed like in Chord and many

related structures

The relaxed-ring architecture

  The relaxed ring is the basis
of the Beernet DHT

  The ring is based on a
simple invariant:
  Every peer is in the same ring

as its successor

  Relaxed ring maintenance is
completely asynchronous
(no locking)
  Joining is done in two steps,

each involving two peers
(instead of locking algorithm for
insertion involving three peers
as in Chord and DKS)

  After first step, the node is in

(0)

(1)

(2)

Example of a relaxed ring
  It looks like a ring with “bushes”

sticking out
  The bushes are long only for

many failure suspicions
  Average size of branch is less

than one in typical executions
  There always exists a core ring

(in red) as a subset of the
relaxed ring. No branches
means core ring = perfect ring.

  The relaxed ring is always
converging toward a perfect
ring
  The size of bushes existing at

any time depends on the churn
(rate of change of the ring,
failures/joins per time)

Lookup consistency
  Definition: Lookup consistency means that at any instant of time there is

only one responsible node for a particular key k
  In the case of temporary failures (imperfect failure detection) lookup consistency

cannot always be guaranteed: we may temporarily have more than one
responsible node

  Failure model: nodes may fail permanently and network links may fail temporarily,
with eventually perfect failure detector (eventually accurate: false suspicion is
possible, but only temporarily, strongly complete: failed nodes are always
detected)

  Theorem: When there are no failures, the relaxed-ring join algorithm
guarantees lookup consistency at any time for multiple joining peers
  This is not true for Chord

  In realistic situations with false failure suspicions, the time interval for
inconsistency is greatly reduced with respect to Chord

  Let us now explain the replication scheme, which practically eliminates
inconsistency for data items

Symmetric replication
  Example network with 16 nodes

and replication factor r = 4
  Load spread over ring; replica

nodes can be accessed in
decentralized fashion

  A client initiates a transaction by
asking its nearest node, which
becomes a transaction manager.
Other nodes that store data are
transaction participants.

  There are r transaction
managers and r replicas for the
other items

Transaction commit protocol

  Non-blocking commit protocol based on adapted Paxos that uses replicated
transaction managers and replicated transaction participants
  Paxos ≈ uniform consensus protocol for asynchronous systems assuming majority correct

  Assumes a majority of transaction managers {TM,RTMi} and a majority of
replicas {TPi with r replicas} for each item are correct

Scalaris performance

  Number of read-modify-write transactions per second
  Each server has two dual-core Intel Xeons at 2.66 GHz (4 cores in all)

and 8 GB of main memory, with Gigabit Ethernet interconnection
  Total of 16 or 32 Scalaris nodes in the ring with replication factor of 4

Programming Model

Programming model
  One of the goals of SELFMAN was to explore the programming

support for self-managing applications
  Both Scalaris and Beernet are implemented using concurrent

component models with message passing and failure detection
  Scalaris in Erlang and Beernet in Oz

  We also explored more sophisticated component models inspired
by the Fractal framework
  Components have management interface
  CompOz library, Kompics component model

  This work is only the first step toward languages for large-scale
distributed systems

28

CompOz
  Complete self-configuration library written in Oz
  Three complementary parts

  Component construction and deployment (FructOz library)
  Supports distribution, self configuration, lazy and dynamic

deployment
  Lifecycle control including termination and failures

  Navigation and monitoring of dynamic architectures (LactOz
library)
  Distributed event bus, architecture as dynamic graph, filters

  Distributed workflows (composing tasks) (WorkflOz library)
  Libraries of workflow patterns as higher-order combinators
  Can be monitored using LactOz

29

Kompics
  Concurrent event-driven component model implemented

in Java (open-source software)
  Supports multi-core execution and comes with full set of utility

components (publish/subscribe, life-cycle management, failure
handling)

  Supports dynamic reconfiguration
  Protocol composition and hot software update

  Dual implementation for reproducible simulation / real
execution of unmodified Kompics programs
  Java-based DSL for experiment scenarios
  Complete implementation of Chord P2P and Cyclon membership

management

30

Self-management architecture
implemented in Kompics

Explanation of the design
1.  Encapsulate communication inside

Network abstraction
2.  Encapsulate timeout and alarm inside

Timer abstraction
3.  Encapsulate failure detection inside a

Failure Detector
4.  Decompose SON into Ring, Router,

and Merger
5.  Encapsulate all so far into a Virtual

Peer component
6.  Allow enclosing Peer Manager to add

and remove Virtual Peers
7.  Peer Manager can now be driven by a

Discrete Event Simulator
8.  Encapsulate bootstrapping into the

Bootstrap Client

9.  Enable Web-based visualization with
Web Server component

10.  Collect global state from new Peer
Monitor component

11.  Share Network, Timer, and Web
Server among Virtual Peers

12.  Inside Virtual Peer, add proxy Peer
Network and Web Handler

13.  The three SON components can be
replaced

14.  Add protocol components:
Transactional DHT, Fast Paxos,
Replication, and Group Multicast

15.  Add new pillar inside Virtual Peer, to
provide other useful services: Peer
Supervisor, Broadcast Trees, etc.

Applications

DeTransDraw Application
  DeTransDraw is a collaborative drawing

application
  Each user sees exactly the same drawing space
  Users update the drawing space using transactions
  For quick response time, the transaction is initiated

concurrently with the display update
  Prototype application implemented on top of

Beernet
  Beernet written in Oz using Mozart, ported to gPhone

with Android operating system (binary compatibility)

DeTransDraw – Getting Locks

DeTransDraw – Propagating Update

 DTD and DTDid architecture

Distributed Wikipedia
with Scalaris

Wikipedia: A top 10 Web site

50.000 requests/sec
  95% answered by squid proxies
 ~18 squid servers
  2,000 req./sec hit the backend
 12 MySQL DB, ~158 Apache servers

 Distributed Wikipedia built by ZIB using Scalaris
(written in Erlang)

Wikipedia System Architecture

 web servers

search servers

NFS

other

 Not state-of-the-art:
•  difficult to maintain
•  does not scale

Data Model
Wikipedia

  SQL DB

Scalaris
  Key-Value Store

Map Relations to Key-Value Pairs
  (Title, List of Wikitext for all

Versions)
  (CategoryName, List of

Titles)
  (BackLinkTitle, List of Titles)

CREATE	 TABLE	 /*$wgDBprefix*/page	 (
page_id	 int	 unsigned	 NOT	 	
	 NULL	 auto_increment,	 	
page_namespace	 int	 NOT	 NULL,	
...	

Data Model
(Simple Query Layer)

void	 updatePage(string	 title,	 int	 oldVersion,	 string	 newText)	
{	
	 //new	 transaction	
	 Transaction	 t	 =	 new	 Transaction();	
	 //read	 old	 version	
	 Page	 p	 =	 t.read(title);	
	 //check	 for	 concurrent	 update	
	 if(p.currentVersion	 !=	 oldVersion)	
	 	 	 	 	 t.abort();	
	 else{	
	 	 	 	 	 //write	 new	 text	
	 	 	 	 	 t.write(p.add(newText));	
	 	 	 	 	 //update	 categories	
	 	 	 	 	 foreach(Category	 c	 in	 p)	
	 	 	 	 	 	 	 	 	 t.write(t.read(c.name).add(title));	
	 	 	 	 	 //commit	
	 	 	 	 	 t.commit();	
	 }	
}	

Self-* Architecture
Database:
  Chord#
  Mapping

  Wiki -> Key-Value Store

Renderer:
  Java

  Tomcat
  Plog4u

  Jinterface
  Interface to Erlang

Our Approach: P2P with
Transaction Layer
Benefits
  distributed
  scalable

  because of peer
concept

  fault tolerance
  because of replication

Challenges
  need synchronization

  concurrency control
  need atomicity

  in face of churn
  need transactions

DHT + Transactions = Scalable, Reliable, Efficient Key/Value Store

System Solutions

 DHT

 Wikipedia

 Transaction

 Chord#, log (N) routing,
 no hashing, range queries

 Symmetric Replication in P2P
 Replica locations can be calculated locally

 Replication

 Key/Value Store
  (simple DBMS)

 W

rit
te

n
 in

 E
rla

ng

 Adapted Paxos Algorithm
 Read 1 access to majority of replicas
 Write 3 rounds accessing the replicas

 Map Wiki to key / value,
 render wiki text to HTML

 Simple data read/write interface

Demonstration
Two independent instances are set up:

Cluster:
 640 peers on 20 x 8 cores

PlanetLab:
 about 150 peers
 distributed worldwide

Boot-Server: P2P management
interface
  store keys

  search keys

  see the P2P ring

  statistics

  debug data

Wikipedia Frontend
  Wikipedia on top of

scalable key/value
store

  installed a dump of
Simple English

  interface language is
static (Bavarian)

  no images
 URLs not in dump
  browse links
  no fulltext search

Outlook

Conclusions
  DHTs are a good foundation for large-scale

distributed applications
  Horizontally scalable distributed transaction store

  Scalaris and Beernet
  Robust implementations with applications
  Written in Erlang (Scalaris) and Oz (Beernet)

  Support for fine-grain concurrency, message passing, and
transparent distribution

  Some applications
  DeTransDraw
  Distributed Wikipedia

Some future directions
  Support mobile applications with large numbers of collaborators

  Some form of consistency is important
  Transactional DHT can be a good foundation

  Combine cloud computing and data-intensive applications
  Horizontal scalability makes it a perfect fit
  Elasticity enables new kinds of applications
  DHTs support elasticity very well

  New language to simplify programming large-scale applications
  In course project, students complained Beernet is too easy
  Program for the whole system, not for single machines

  Design for global behavior?
  Partitions, failures, security
  Design with the CAP theorem, not against the CAP theorem

WISEMAN proposal (ANR)

Data-intensive applications
  Computing science is changing fundamentally
  It is becoming focused on programming with large data sets

  Elastic data-intensive algorithms running on clouds are realizing
one by one the old dreams of artificial intelligence

  The canonical example is Google Search using PageRank
  It extracts useful information from the Web link graph

  Many other applications are now following this path: data mining
(e.g., recommendation systems), machine learning, statistical
language translation, image recognition, visualization, complex
problem solving, etc.

  This is where most of the innovation will happen in Internet
applications in the next decade
  Elastic data-intensive algorithms on clouds and P2P systems
  Domain knowledge is the key!

Opinion

