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Overview 
  Large-scale distributed applications 

  Application structure: multi-tier with scalable DB backend 
  Distribution structure: peer-to-peer or cloud-based 

  DHTs and transactions 
  Basics of DHTs 
  Data replication and transactions 
  Scalaris and Beernet 

  Programming model and applications 
  CompOz library and Kompics component model 
  DeTransDraw and Distributed Wikipedia 

  Future work 
  Mobile applications, cloud computing, data-intensive computing 
  Programming abstractions for large-scale distribution  



Application structure 
  What can be a general architecture for large-scale 

distributed applications? 
  Start with a database backend (e.g., IBM’s “multitier”) 

  Make it distributed with distributed transactional interface 
  Keep strong consistency (ACID properties) 
  Allow large numbers of concurrent transactions 

  Horizontal scalability is the key 
  Vertical scalability is a dead end 
  “NoSQL”: Buzzword for horizontally scalable databases that 

typically don’t have a complete SQL interface 
  Key/value store   or column-oriented 

↑ our choice (simplicity) 



The NoSQL Controversy 
  NoSQL is a current trend in non-relational databases 

  May lack table schemas, may lack ACID properties, no join 
operations 

  Main advantages are excellent performance, with good 
horizontal scalability and elasticity (ideal fit to clouds) 
  SQL databases have good vertical scalability but are not 

elastic 

  Often only weak consistency guarantees, such as 
eventual consistency (e.g., Google BigTable) 
  Some exceptions: Cassandra also provides strong 

consistency, Scalaris and Beernet provide a key-value store 
with transactions and strong consistency  



Distribution structure 
  Two main infrastructures for large-scale applications 
  Peer-to-peer:  use of client machines 

  Very popular style, e.g., BitTorrent, Skype, Wuala, etc. 
  Different degrees of organization (unstructured to structured) 
  Supports horizontal scalability 

  Cloud-based: use of datacenters (another good choice) 
  Becoming very popular too, e.g., Amazon EC2, Google AppEngine, 

Windows Azure, etc. 
  Supports horizontal scalability 
  Also supports elasticity 

  Hybrids will appear 
  Combine elasticity & high availability of clouds with 

high aggregate bandwidth & low latency of peer-to-peer 

← our choice (loosely coupled)  



DHT on 
P2P overlay 

Transactions  

Replication 

Key/Value Store 
(simple DBMS) 

 ACID 

Architecture 

  This is the final 
architecture that we have 
built for large-scale 
distributed applications 
  Distributed transactions 
provide consistency and 
fault tolerance 
  The whole is built in 
modular fashion using 
concurrent components 
  Each layer has self-
managing properties 
  We explain how it works 
and give some of the 
applications 



Distributed 
Hash Tables 



DHTs: third generation of P2P 
  Hybrid (client/server) 

  Napster 

  Unstructured overlay 
  Gnutella, Kazaa, 

Morpheus, Freenet, … 
  Uses flooding 

  Structured overlay 
  Exponential network with 

augmented ring structure 
  DHT (Distributed Hash 

Table), e.g., Chord, DKS, 
Scalaris, Beernet 

  Self-organizes upon node 
join/leave/failure 

R = N-1 (hub) 

R = 1 (others) 

H = 1 

R = ? (variable) 

H = 1…7 

(but no guarantee) 

R = log N 

H = log N 

(with guarantee) 



  A dynamic distribution of a hash table onto a set of cooperating 
nodes 

Key Value 

1 Algorithms 

9 Routing 

11 DS 

12 Peer-to-Peer 

21 Networks 

22 Grids 

•  Hash table: get/set/delete operations  
•  Each node has a routing table  

•  Pointers to some other nodes 
•  Typically, a constant or a logarithmic number of pointers 

•  Fault tolerance: reorganizes upon node join/leave/failure 

node A 

node D 

node B 

node C 

→ Node D : get(9) 

DHT functionality 



A DHT Example: Chord 

Nodes 

  Ids of nodes and items are 
arranged in a circular space 

  An item id is assigned to the 
first node id that follows it on 
the circle. 

  The node at or following an id 
on the space (circle) is called 
the successor.  This gives a 
connected ring. 

  Not all possible ids are actually 
used (sparse set of ids, e.g., 
2128)! 

  Extra links, called fingers, are 
added to provide efficient 
routing 
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DHT self-maintenance 
  In all ring-based DHTs inspired by Chord, self-

organization is done at two levels: 
  The ring ensures connectivity: it must always exist despite 

joins, leaves, and failures 
  The fingers provide efficient routing: they may be 

temporarily in an imperfect state, but this affects only the 
efficiency of routing, not the correctness 

  We now explain how routing works 
  We will explain connectivity maintenance later when we 

introduce the relaxed ring 
  The relaxed ring has much simpler connectivity 

maintenance than Chord 



  Routing table size: M, 
where N = 2M 

  Every node n knows 
successor (n + 2 i-1) , 
for i = 1..M 

  Routing entries = log2(N) 
  log2(N) hops from any 

node to any other node  
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  From node 1, it takes 
3 hops to node 0 
where item 15 is 
stored 

  For 16 nodes, the 
maximum is log2(16) 
= 4 hops between any 
two nodes 
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DHT-based 
Application 

Infrastructure 



DHT-based 
application infrastructure 
  We use the DHT as a foundation for building large-scale 

distributed applications 
  Using a concurrent component model with message passing 
  First layer: ring maintenance, efficient routing maintenance 
  Second layer: communication and storage 
  Third layer: replication and transactions 

  A scalable decentralized application can be built on top 
of the transaction layer 

  We built several applications using this architecture 
  Collaborative drawing (DeTransDraw), Distributed Wikipedia 
  As student project in a course: they complain it is too easy! 



Scalaris and Beernet 
  Scalaris and Beernet are key/value 

stores developed in the SELFMAN 
project (www.ist-selfman.org)  

  They provide transactions and strong 
consistency on top of loosely coupled 
peers using the Paxos uniform 
consensus algorithm for atomic 
commit 

  They are scalable to hundreds of 
nodes; with ten nodes they have 
similar performance as MySQL 
servers 

  Scalaris won first prize in the IEEE 
Scalable Computing Challenge 2008 

  We focus on these two systems and 
the applications we have built on them 

DHT on 
P2P Overlay 

Transactions  

Replication 

Key/Value Store 
(simple DBMS) 

ACID 



Detailed architecture 
  Layered architecture 

  Relaxed ring and routing 
  Reliable message sending 
  DHT (basic storage) 
  Replication and transactions 

  The relaxed ring maintains 
connectivity and efficient 
routing despite node failures, 
joins, and leaves 

  The DHT provides basic 
storage without replication 

  This figure shows the Beernet 
architecture; Scalaris is similar 



Simplified ring maintenance 
  We now continue our discussion of how DHTs work 
  Ring maintenance is not a trivial issue 

  Peers can join and leave at any time 
  Peers that crash are like peers that leave without notification 
  Temporarily broken links create false failure suspicions 

  Crucial properties to be guaranteed 
  Lookup consistency 
  Ring connectivity 

  We define a relaxed ring which gives a very simple 
ring maintenance compared to Chord 
  E.g., no periodic stabilization needed like in Chord and many 

related structures 



The relaxed-ring architecture 

  The relaxed ring is the basis 
of the Beernet DHT 

  The ring is based on a 
simple invariant: 
  Every peer is in the same ring 

as its successor 

  Relaxed ring maintenance is 
completely asynchronous 
(no locking) 
  Joining is done in two steps, 

each involving two peers 
(instead of locking algorithm for 
insertion involving three peers 
as in Chord and DKS) 

  After first step, the node is in 

(0) 

(1) 

(2) 



Example of a relaxed ring 
  It looks like a ring with “bushes” 

sticking out 
  The bushes are long only for 

many failure suspicions 
  Average size of branch is less 

than one in typical executions 
  There always exists a core ring 

(in red) as a subset of the 
relaxed ring. No branches 
means core ring = perfect ring. 

  The relaxed ring is always 
converging toward a perfect 
ring 
  The size of bushes existing at 

any time depends on the churn 
(rate of change of the ring, 
failures/joins per time) 



Lookup consistency 
  Definition: Lookup consistency means that at any instant of time there is 

only one responsible node for a particular key k 
  In the case of temporary failures (imperfect failure detection) lookup consistency 

cannot always be guaranteed: we may temporarily have more than one 
responsible node 

  Failure model: nodes may fail permanently and network links may fail temporarily, 
with eventually perfect failure detector (eventually accurate: false suspicion is 
possible, but only temporarily, strongly complete: failed nodes are always 
detected) 

  Theorem: When there are no failures, the relaxed-ring join algorithm 
guarantees lookup consistency at any time for multiple joining peers 
  This is not true for Chord 

  In realistic situations with false failure suspicions, the time interval for 
inconsistency is greatly reduced with respect to Chord 

  Let us now explain the replication scheme, which practically eliminates 
inconsistency for data items  



Symmetric replication 
  Example network with 16 nodes 

and replication factor r = 4 
  Load spread over ring; replica 

nodes can be accessed in 
decentralized fashion 

  A client initiates a transaction by 
asking its nearest node, which 
becomes a transaction manager. 
Other nodes that store data are 
transaction participants. 

  There are r transaction 
managers and r replicas for the 
other items  



Transaction commit protocol 

  Non-blocking commit protocol based on adapted Paxos that uses replicated 
transaction managers and replicated transaction participants 
  Paxos ≈ uniform consensus protocol for asynchronous systems assuming majority correct 

  Assumes a majority of transaction managers {TM,RTMi} and a majority of 
replicas {TPi with r replicas} for each item are correct 



Scalaris performance 

  Number of read-modify-write transactions per second 
  Each server has two dual-core Intel Xeons at 2.66 GHz (4 cores in all) 

and 8 GB of main memory, with Gigabit Ethernet interconnection 
  Total of 16 or 32 Scalaris nodes in the ring with replication factor of 4 



Programming Model 



Programming model 
  One of the goals of SELFMAN was to explore the programming 

support for self-managing applications 
  Both Scalaris and Beernet are implemented using concurrent 

component models with message passing and failure detection 
  Scalaris in Erlang and Beernet in Oz 

  We also explored more sophisticated component models inspired 
by the Fractal framework 
  Components have management interface 
  CompOz library, Kompics component model 

  This work is only the first step toward languages for large-scale 
distributed systems 

28 



CompOz 
  Complete self-configuration library written in Oz 
  Three complementary parts 

  Component construction and deployment (FructOz library) 
  Supports distribution, self configuration, lazy and dynamic 

deployment 
  Lifecycle control including termination and failures 

  Navigation and monitoring of dynamic architectures (LactOz 
library) 
  Distributed event bus, architecture as dynamic graph, filters 

  Distributed workflows (composing tasks) (WorkflOz library) 
  Libraries of workflow patterns as higher-order combinators 
  Can be monitored using LactOz 

29 



Kompics 
  Concurrent event-driven component model implemented 

in Java (open-source software) 
  Supports multi-core execution and comes with full set of utility 

components (publish/subscribe, life-cycle management, failure 
handling) 

  Supports dynamic reconfiguration 
  Protocol composition and hot software update 

  Dual implementation for reproducible simulation / real 
execution of unmodified Kompics programs 
  Java-based DSL for experiment scenarios 
  Complete implementation of Chord P2P and Cyclon membership 

management 

30 



Self-management architecture 
implemented in Kompics 



Explanation of the design 
1.  Encapsulate communication inside 

Network abstraction 
2.  Encapsulate timeout and alarm inside 

Timer abstraction 
3.  Encapsulate failure detection inside a 

Failure Detector 
4.  Decompose SON into Ring, Router, 

and Merger 
5.  Encapsulate all so far into a Virtual 

Peer component 
6.  Allow enclosing Peer Manager to add 

and remove Virtual Peers 
7.  Peer Manager can now be driven by a 

Discrete Event Simulator 
8.  Encapsulate bootstrapping into the 

Bootstrap Client 

9.  Enable Web-based visualization with 
Web Server component 

10.  Collect global state from new Peer 
Monitor component 

11.  Share Network, Timer, and Web 
Server among Virtual Peers 

12.  Inside Virtual Peer, add proxy Peer 
Network and Web Handler 

13.  The three SON components can be 
replaced 

14.  Add protocol components: 
Transactional DHT, Fast Paxos, 
Replication, and Group Multicast 

15.  Add new pillar inside Virtual Peer, to 
provide other useful services: Peer 
Supervisor, Broadcast Trees, etc. 



Applications 



DeTransDraw Application 
  DeTransDraw is a collaborative drawing 

application 
  Each user sees exactly the same drawing space 
  Users update the drawing space using transactions 
  For quick response time, the transaction is initiated 

concurrently with the display update 
  Prototype application implemented on top of 

Beernet 
  Beernet written in Oz using Mozart, ported to gPhone 

with Android operating system (binary compatibility) 



DeTransDraw – Getting Locks 



DeTransDraw – Propagating Update 



 DTD and DTDid architecture 



Distributed Wikipedia 
with Scalaris 



Wikipedia: A top 10 Web site 

50.000 requests/sec 
  95% answered by squid proxies  
   ~18 squid servers   
  2,000 req./sec hit the backend  
   12 MySQL DB, ~158 Apache servers 

 Distributed Wikipedia built by ZIB using Scalaris 
(written in Erlang) 



Wikipedia System Architecture 

 web servers 

search servers 

NFS 

other 

 Not state-of-the-art: 
•  difficult to maintain 
•  does not scale 



Data Model 
Wikipedia 

  SQL DB 

Scalaris 
  Key-Value Store 

Map Relations to Key-Value Pairs 
  (Title, List of Wikitext for all 

Versions) 
  (CategoryName, List of 

Titles) 
  (BackLinkTitle, List of Titles) 

CREATE	  TABLE	  /*$wgDBprefix*/page	  (	  
page_id	  int	  unsigned	  NOT	  	  
	   NULL	  auto_increment,	  	  
page_namespace	  int	  NOT	  NULL,	  
...	  



Data Model  
(Simple Query Layer) 

void	  updatePage(string	  title,	  int	  oldVersion,	  string	  newText)	  
{	  
	   //new	  transaction	  
	   Transaction	  t	  =	  new	  Transaction();	  
	   //read	  old	  version	  
	   Page	  p	  =	  t.read(title);	  
	   //check	  for	  concurrent	  update	  
	   if(p.currentVersion	  !=	  oldVersion)	  
	   	  	  	  	  t.abort();	  
	   else{	  
	   	  	  	  	  //write	  new	  text	  
	   	  	  	  	  t.write(p.add(newText));	  
	   	  	  	  	  //update	  categories	  
	   	  	  	  	  foreach(Category	  c	  in	  p)	  
	   	  	  	  	  	  	  	  	  t.write(t.read(c.name).add(title));	  
	   	  	  	  	  //commit	  
	   	  	  	  	  t.commit();	  
	   }	  
}	  



Self-* Architecture 
Database: 
  Chord# 
  Mapping 

  Wiki -> Key-Value Store 

Renderer: 
  Java 

  Tomcat 
  Plog4u 

  Jinterface 
  Interface to Erlang 



Our Approach: P2P with 
Transaction Layer 
Benefits 
  distributed 
  scalable 

  because of peer 
concept 

  fault tolerance 
  because of replication 

Challenges 
  need synchronization 

  concurrency control 
  need atomicity 

  in face of churn 
  need transactions 

DHT + Transactions = Scalable, Reliable, Efficient Key/Value Store 



System Solutions 

 DHT 

 Wikipedia 

 Transaction  

 Chord#, log (N) routing,  
 no hashing, range queries  

 Symmetric Replication in P2P 
 Replica locations can be calculated locally 

 Replication 

 Key/Value Store 
  (simple DBMS) 
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 Adapted Paxos Algorithm 
 Read  1 access to majority of replicas 
 Write   3 rounds accessing the replicas 

 Map Wiki to key / value,  
 render wiki text to HTML 

 Simple data read/write interface 



Demonstration 
Two independent instances are set up: 

Cluster:  
 640 peers on 20 x 8 cores 

PlanetLab:  
 about 150 peers  
 distributed worldwide 



Boot-Server: P2P management 
interface 
  store keys 

  search keys 

  see the P2P ring 

  statistics 

  debug data 



Wikipedia Frontend 
  Wikipedia on top of  

scalable key/value 
store  

  installed a dump of 
Simple English 

  interface language is 
static (Bavarian) 

  no images  
 URLs not in dump 
  browse links 
  no fulltext search 



Outlook 



Conclusions 
  DHTs are a good foundation for large-scale 

distributed applications 
  Horizontally scalable distributed transaction store 

  Scalaris and Beernet 
  Robust implementations with applications 
  Written in Erlang (Scalaris) and Oz (Beernet) 

  Support for fine-grain concurrency, message passing, and 
transparent distribution 

  Some applications 
  DeTransDraw 
  Distributed Wikipedia 



Some future directions 
  Support mobile applications with large numbers of collaborators 

  Some form of consistency is important 
  Transactional DHT can be a good foundation 

  Combine cloud computing and data-intensive applications 
  Horizontal scalability makes it a perfect fit 
  Elasticity enables new kinds of applications 
  DHTs support elasticity very well 

  New language to simplify programming large-scale applications 
  In course project, students complained Beernet is too easy  
  Program for the whole system, not for single machines 

  Design for global behavior? 
  Partitions, failures, security 
  Design with the CAP theorem, not against the CAP theorem 

WISEMAN proposal (ANR) 



Data-intensive applications 
  Computing science is changing fundamentally 
  It is becoming focused on programming with large data sets 

  Elastic data-intensive algorithms running on clouds are realizing 
one by one the old dreams of artificial intelligence 

  The canonical example is Google Search using PageRank 
  It extracts useful information from the Web link graph 

  Many other applications are now following this path: data mining 
(e.g., recommendation systems), machine learning, statistical 
language translation, image recognition, visualization, complex 
problem solving, etc. 

  This is where most of the innovation will happen in Internet 
applications in the next decade 
  Elastic data-intensive algorithms on clouds and P2P systems 
  Domain knowledge is the key! 

Opinion 


