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m Partially ordered structures

m (complete) partial orders
m (complete) lattices

m Fixpoints

m Abstractions
m Galois connections, upper closure operators
(first-class citizens)
m Concretization-only framework
m Operator abstraction
m Fixpoint abstraction
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Partial orders

Partial orders
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Partial orders
Partial orders

Given a set X, a relation C € X x X is a partial order

if it is:
reflexive: Vx € X, x C x
antisymmetric: Vx,y € X, (x Cy)A(yEx) = x=y
transitive: Vx,y,z€ X, (xCy)A(yCz) = xLCz

(X,C) is a poset (partially ordered set).

If we drop antisymmetry, we have a preorder instead.
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Partial orders
Examples: partial orders

Partial orders:

= (2,5)

(completely ordered)

= (P(X), <)
(not completely ordered: {1} Z {2}, {2} Z {1})

m (5,=) is a poset for any S

(
(Z2,C), where (a,b) C (a',b') < (a>a)A(b< V)

(ordering of interval bounds that implies inclusion)
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Partial orders
Examples: preorders

Preorders:

m (P(X),C), where aC b < |a| < |b]|
(ordered by cardinal)

m (Z2,C), where (a,b) C (&', b') = {x]a<x<b}C{x|ad <x<Pb}
(inclusion of intervals represented by pairs of bounds)

not antisymmetric: [1,0] # [2,0] but [1,0] C [2,0] C [1, 0]

Equivalence: =
X=Y <= (XCY)A(YLCX)
We obtain a partial order by quotienting by =.
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Partial orders

Examples of posets (cont.)

m Given by a Hasse diagram, e.g.:

/g\
e f
/\ gteg
C d fCf,g
eCeg
dCd,f,g
b cCcef,g
b;b,C,d,e,f,g
aga7bﬂc)d7e7f7g
a
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Partial orders

Examples of posets (cont.)

m Infinite Hasse diagram for (N U { oo }, <):

[o0]

3

2
oo C oo

1 ..
1C21,2,...,00
0C0,1,2, , 00

0
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Partial orders

Use of posets (informally)

Posets are a very useful notion to discuss about:
m logic: formulas ordered by implication —>

m program verification: program semantics C specification

(e.g.: behaviors of program C accepted behaviors)
m approximation: C is an information order

(“a C b" means: “a caries more information than b")

m iteration: fixpoint computation
(e.g., a computation is directed, with a limit: X; C X, C -+ - C X))
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Partial orders

(Least) Upper bounds

m cis an upper bound of aand bif: aC cand bC ¢

m cis a least upper bound (lub or join) of a and b if

Course 1

m c is an upper bound of a and b
m for every upper bound d of aand b, cC d

@
|
|

@ | upper bounds of a and b
|
|
|

[

upper bound of b

o

!

[

[
o o
b
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Partial orders

(Least) Upper bounds

If it exists, the lub of a and b is unique, and denoted as allb.
(proof: assume that ¢ and d are both lubs of a and b; by definition of lubs, ¢ C d and d C c; by
antisymmetry of C, ¢ = d)

Generalized to upper bounds of arbitrary (even infinite) sets UY, Y C X

(well-defined, as Ll is commutative and associative).
Similarly, we define greatest lower bounds (glb, meet) amb, MY.

(ambCa)A(anbC b)and Ve, (cCa)A(cCb) = (cC arb)

Note: not all posets have lubs, glbs
(e.g.: all b not defined on ({ a, b}, =))
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Partial orders
Chains

C C X is a chain in (X,C) if it is totally ordered by C:
Vx,y € C, (xEy)V(y Ex).
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Partial orders

Complete partial orders (CPO)

A poset (X,C) is a complete partial order (CPO)
if every chain C (including ) has a least upper bound U C.

A CPO has a least element U}, denoted | .

Examples, Counter-examples:

m (N, <) is not complete, but (NU { 0o }, <) is complete.

(

m ({x€Q|0< x<1},<)is not complete, but
({xeR|0< x <1},<) is complete.
(
(

m (P(Y), <) is complete for any Y.

m (X,C) is complete if X is finite.
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Partial orders
Complete partial order examples

o<}
3 3
2 2
1 1
0 0
(N, <) (NU{oo}, <)
non-complete complete

Antoine Miné
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Lattices

Lattices

A lattice (X, C,LJ,11) is a poset with
a lub aU b for every pair of elements a and b;
a glb am b for every pair of elements a and b.

Examples:
m integers (Z, <, max, min)
B integer intervals (next slide)
m divisibility (in two slides)
If we drop one condition, we have a (join or meet) semilattice.

Reference on lattices: Birkhoff [Birk76].

Course 1 Order Theory Antoine Miné



Example: the interval lattice

T190

A h [11] v [09]

/\ /\

[10] [0,1] ... [1,9]

AVAY \'"

.[-1,-1]1 [0,0] [1,1] ... [9,9] ...

Integer intervals: ({[a,b]|a, b€ Z, a<b}U{0},C,L,N)
where [a, b] LI [a, '] = [min(a,a), max(b, b)].

n
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Example: the divisibility lattice




Lattices

Example: the divisibility lattice (cont.)

Let P = {p1,p2,...} be the (infinite) set of prime numbers.

We have a correspondence ¢ between N* and P — N:
m a = ((x) is the (unique) decomposition of x into prime factors
= ) & [[ep a2 = x

m ¢ is one-to-one on functions P — N with finite support

(ce(a) = 0 except for finitely many factors a)

We have a correspondence between (N*, |, lcm, gcd)
and (N, <, max, min).

Assume that « = ¢(x) and 3 = ¢(y) are the decompositions of x and y, then:

[ HaeP gm((2),8() — Icm(HaeP a®(a), HaeP () = lem(x, y)
= [L,., a7 e@) = gea([],_, a*@. L., @) = ecd(x.y)
= (Vaa(a) <B(a) = ([],., ) ([],., ") <= xly
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Lattices
Complete lattices

A complete lattice (X, C, LI, M, L, T) is a poset with
alub LIS for every set S C X
aglbmMs for every set S C X
a least element L

a greatest element T

Notes:

m1limplies2asnNS=U{y|VxeS, yCx}
(and 2 implies 1 as well),

mland2imply3and4: L=Ul=1X,T=r0=UX,
m a complete lattice is also a CPO.

Course 1

Order Theory
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Lattices
Complete lattice examples

m real segment [0,1]: ({x € R|0 < x <1}, <, max,min,0,1)

m powersets (P(S), C,U,N, 0, S)

(next slide)

m any finite lattice
(LY and MY for finite Y C X are always defined)

m integer intervals with finite and infinite bounds:
({la,b]|lacZU{ -0}, beZU{+00},a<b}U{D},
gv U, M, 07 [—OO,—I—OO])

. def .
with Uiy [a;, b]] = [minjes a;, max;es bil.
(in two slides)
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Example: the powerset complete lattice

D),

C {1,019} .

{;1,0,1} {0,1,.9}

WAWAY:

{-1,03 {0,1} ... {1,9% ...

WAVAYAYS

{-1>» Ao} {1y ... {9

\ Q|) /

Example:  (P(Z),<,U,N,0,2Z)

n
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Lattices

Example: the intervals complete lattice

[-00,+0]

s [-w,1] e [00,9] we [-1,400]  [0,400] -.
191

L[] . [09]

VAN /\

[-1,01  [0,1] ... [1,9]

NVAVAV/ \'"

(11 [0,0] [11] ... [9,9] .

The integer intervals with finite and infinite bounds:
{[abllaeZUu{ -0}, beZU{+0},a<b}u{0},
G, U, N, B, [-oo, +o0])
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Lattices

Derivation

Given a (complete) lattice or partial order (X,C, 1, M, L, T)
we can derive new (complete) lattices or partial orders by:

= duality
(X727|_|7|—|7T7J~)
m C is reversed
m LI and N are switched
m 1 and T are switched

] ||ft|ng (adding a smallest element)

(X U { J-/ }a E/7 I—lla mla J—/’ T)
al’'b << a=1'vaChb
L'Wa=allll'=a andall/ b=aUbifab# 1’
U'ma=ar’1l'=1'andar’ b=anbifa b# 1’
1’ replaces L
T is unchanged
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Lattices

Derivation (cont.)

Given (complete) lattices or partial orders:
(X1, C1,Us, M, L1, T1) and (Xo, Eo, U2, T, Lo, To)

We can combine them by:

m product

(X1 x Xo,E,1,M, L, T) where
(GY)E(XyY) = xCix' Ay Ly
()UK, y) < (xix, yLhy)
oY) NY) S (xMix, y Moy
1= (L, L)

def

T = (T1, T2)

m smashed product (coalescent product, merging L1 and L)
(N {L ) x(Xe\{L))u{L}EunNLT)

(as X1 X Xo, but all elements of the form (L1, y) and (x, L>) are identified to a unique L element)
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Lattices

Derivation (cont.)

Given a (complete) lattice or partial order (X,C, 1,1, L, T)
and a set S:
m point-wise lifting (functions from S to X)
(S — X, Cu, ', L', T') where
BxC'y < Vse S:ix(s) Cy(s)

= Vs e S (xU y)(s) ::i x(s) U y(s)
BVscS (xm'y)(s) = x(s)My(s)
mVseS:1l'(s)=1
mVseS: T (s)=T

m smashed point-wise lifting
(5 = X\ {Lp)u{h e, m, L, T)

as S — X, but identify to L’ any map x where 3s € S: x(s) = L

(e.g. map each program variable in S to an interval in X)
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Lattices

Distributivity

A lattice (X, C, U, M) is distributive if:

mal(bNc)=(alb)M(allc) and
mall(bUc)=(anb)U(aNc)

Examples, Counter-examples:

= (P(X),C,U,N) is distributive

m intervals are not distributive
(10,01 U [2,2)) M1 [1,1] = [0,2] M1 [1, 1] = [1, 1] but
(10,01 [L, 1)U (2,21 [1L,1]) = 0 Lo = 0
common cause of precision loss in static analyses:

merging abstract information early, at control-flow joins
vs. merging executions paths late, at the end of the program
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Lattices

Sublattice

Given a lattice (X,C, U, M) and X' C X
(X’,C,u,M) is a sublattice of X if X’ is closed under LI and 1

Example, Counter-examples:

mif YCX, (P(Y),C,uU,N,0, Y) is a sublattice of (P(X),Z,U,N,, X)

m integer intervals are not a sublattice of (P(Z),C,U,N,0,2Z)
[min(a, a'), max(b, b')] £ [a, b] U [, b

another common cause of precision loss in static analyses:
LI cannot represent the exact union, and loses precision
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Functions and fixpoints

Functions and Fixpoints
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Functions and fixpoints
Functions

A function f : (Xl, Cq, L, J_l) — (X2, Lo, L, LQ) is
m monotonic if
Vx,x', xC1 x' = f(x) 5y F(x)

(aka: increasing, isotone, order-preserving, morphism)
m strict if £(L1) = 1,

m continuous between CPO if
VC chain C Xi, {f(c)|c € C} is a chain in X;
and f(U; C) =1 {f(c)|ceC}

a (complete) LI—morphism between (complete) lattices

n‘VSQXl, f(|_|15):|_|2{f(5)|565}

extensive if X; = X, and Vx, x £ f(x)
reductive if X; = Xy and V¥x, f(x)C; x
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Functions and fixpoints
Fixpoints

Given f: (X,C) — (X,C)

B x is a fixpoint of f if f(x) = x

m x is a pre-fixpoint of f if x T f(x)
m x is a post-fixpoint of f if f(x) C x

We may have several fixpoints (or none)
m fp(f) = {x e X|f(x)=x}
m Ifp, f = minc {y € fp(f)|x C y } if it exists
(least fixpoint greater than x)
wifpf < Ifp, f
(least fixpoint)

m dually: gfp, B maxc {y € fp(f) |y C x }, gfpf Lot gfpr f

(greatest fixpoints)
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Functions and fixpoints

Fixpoints: illustration

>

pre post pre
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Functions and fixpoints

Fixpoints: example

Monotonic function with two distinct fixpoints
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Functions and fixpoints

Fixpoints: example

Monotonic function with a unique fixpoint
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Functions and fixpoints

Fixpoints: example

Non-monotonic function with no fixpoint
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Functions and fixpoints

Uses of fixpoints: examples

m Express solutions of mutually recursive equation systems

Example:

X1 = f(Xl,XQ)

with x1, x2 in lattice X
xo = g(x1, x2) 12

The solutions of {

are exactly the fixpoint of F in lattice X x X, where
E( ) o[ fba,x),
X2 g(x1, x2)

The least solution of the system is Ifp F.
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Functions and fixpoints

Uses of fixpoints: examples

m Close (complete) sets to satisfy a given property

Example:

r C X x X is transitive if:
(a,b) e rn(b,c) er = (a,c) er

The transitive closure of r is the smallest transitive relation containing r.
Let f(s) =rU{(a,c)|(a,b) € sA(b,c) € s}, thenlfpf:
m |fp f contains r

m |fp f is transitive
m Ifp f is minimal

— Ifp f is the transitive closure of r.
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Functions and fixpoints

Tarski's fixpoint theorem

Tarski's theorem

If f:X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proved by Knaster and Tarski [Tars55].
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Functions and fixpoints

Tarski's fixpoint theorem

Tarski's theorem

If f:X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proof:
We prove |fp f=n { X | f(X) C X} (meet of post-fixpoints).

A

\

pre post pre
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Functions and fixpoints

Tarski's fixpoint theorem

Tarski's theorem

If f:X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proof:
We prove |fp f=n { X | f(X) C X} (meet of post-fixpoints). Let

f*={x|f(x)Ex}and a=nf*
Vx € f*, a L x  (by definition of M)
SO f(a) C f(X) (as f is monotonic)
¢] f(a) L X (as x is a post-fixpoint).

We deduce that f(a) CMf*, ie. f(a) C a.

Course 1 Order Theory Antoine Miné



Functions and fixpoints

Tarski's fixpoint theorem

Tarski's theorem

If f:X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proof:
We prove |fp f=n { X | f(X) C X} (meet of post-fixpoints).

f(a)C a

SO f(f(a)) C f(a) (as f is monotonic)

so f(a) € f*  (by definition of £*)

so aC f(a).

We deduce that f(a) = a, so a € fp(f).

Note that y € fp(f) implies y € *.
As a=T1f* aC y, and we deduce a = Ifpf.
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Functions and fixpoints

Tarski's fixpoint theorem

Tarski's theorem

If f:X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proof:
Given S C fp(f), we prove that Ifp 5 f exists.

Consider X' ={xe X| U SCx}.

X' is a complete lattice.

Moreover Vx’ € X', f(x') € X".

f can be restricted to a monotonic function ' on X’.

We apply the preceding result, so that Ifp f’ = Ifp s f exists.

By definition, Ifp, s f € fp(f) and is smaller than any fixpoint larger
than all s € S.
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Functions and fixpoints

Tarski's fixpoint theorem

Tarski's theorem

If f:X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proof:
By duality, we construct gfp f and gfpn s f.

The complete lattice of fixpoints is:
(fp(f), &, AS.Ifp, s f, AS.gfpn s f, Ifpf, gfpf).

Not necessarily a sublattice of (X, C, L, M, L, T)!
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Functions and fixpoints

Tarski's fixpoint theorem: example

Ifp

Lattice: ({ Ifp, fpl,fp2, pre,gfp },U, M, Ifp, gfp)
Fixpoint lattice: ({Ifp, fpl,fp2,gfp }, L, 17, Ifp, gfp)
(not a sublattice as fpl LI/ fp2 = gfp while fpl LI fp2 = pre,

but gfp is the smallest fixpoint greater than pre)
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Functions and fixpoints
“Kleene"” fixpoint theorem

“Kleene” fixpoint theorem

If f: X — Xis continuous in a CPO X and a C f(a)
then Ifp, f exists.

Inspired by Kleene [Klee52].
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Functions and fixpoints
“Kleene"” fixpoint theorem

“Kleene” fixpoint theorem

If f: X — Xis continuous in a CPO X and a C f(a)
then Ifp, f exists.

We prove that { f"(a)|n € N} is a chain and
Ifp, f =u{f"(a)|neN}.

A

=

\
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Functions and fixpoints
“Kleene"” fixpoint theorem

“Kleene” fixpoint theorem

If f: X — Xis continuous in a CPO X and a C f(a)
then Ifp, f exists.

We prove that { f"(a)|n € N} is a chain and
Ifp, f =u{f"(a)|neN}.

a C f(a) by hypothesis.

f(a) C f(f(a)) by monotony of f.

(Note that any continuous function is monotonic.

Indeed, x Cy = xUy=y = f(xUy)=Ff(y);

by continuity f(x) L f(y) = f(x Uy) = f(y), which implies f(x) C f(y).)

By recurrence Vn, f"(a) C f"1(a).
Thus, {f"(a)|n € N} is achain and U{f"(a)|n e N} exists.
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Functions and fixpoints
“Kleene"” fixpoint theorem

“Kleene” fixpoint theorem

If f: X — Xis continuous in a CPO X and a C f(a)
then Ifp, f exists.

f(u{f"(a)|neN})

=1 { f”+1(a) | neN }) (by continuity)

=all (|_| { f"“(a) | neN }) (as all £"*1(a) are greater than a)
=U{f"(a)|neN}.

So, LI{f"(a)|ne N} e fp(f)

Moreover, any fixpoint greater than a must also be greater than all
f"(a), n e N.

So, U{f"(a)|ne N} =Ifp,f.
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Functions and fixpoints

Well-ordered sets

(5,C) is a well-ordered set if:
m [ is a total order on S
m every X C S such that X # () has a least element M X € X

Consequences:

= any element x € S has a successor x+1 = M{y|[xCy}

(except the greatest element, if it exists)

mif Ay, x=y+1, xisalimtand x=U{y|yC x}
(every bounded subset X C ShasalubUUX =T1{y|Vx e X, xC y})

Examples:
m (N, <) and (NU {0}, <) are well-ordered
m (Z,<), (R, <), (RT, <) are not well-ordered

m ordinals 0,1,2,...,w,w+1,... are well-ordered (w is a limit)
well-ordered sets are ordinals up to order-isomorphism

(i.e., bijective functions f such that f and £~ are monotonic)
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Functions and fixpoints

Constructive Tarski theorem by transfinite iterations

Given a function f : X — X and a € X,

the transfinite iterates of f from a are:
def

Xo = a
def . . .
xn = f(Xp_1) if nis a successor ordinal
def . . . . .
xnp = U{xm|m<n} ifnisa limit ordinal

Constructive Tarski theorem

If f: X — X is monotonic in a CPO X and a C f(a), then
Ifp, f = x5 for some ordinal .

Generalisation of “Kleene" fixpoint theorem, from [Cous79].

Course 1

Order Theory
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Functions and fixpoints

f is monotonic in a CPO X,
def

xo = aC f(a)

def . . .
Xn = f(Xa_1) if nis a successor ordinal
def . . . . .
xp = U {xm|m<n} ifnisa limit ordinal
Proof:

We prove that 36, x5 = x541.

We note that m < n = x,, C x,.

Assume by contradiction that Ad, xs = Xs11-

If nis a successor ordinal, then x,_1 C X,.

If nis a limit ordinal, then Vm < n, x,, C x,.
Thus, all the x, are distinct.

By choosing n > |X|, we arrive at a contradiction.
Thus ¢ exists.
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Functions and fixpoints

f is monotonic in a CPO X,
xo = aC f(a)

def . . .
Xn = f(Xa_1) if nis a successor ordinal
def . . . . .
xp = U {xm|m<n} ifnisa limit ordinal
Proof:

Given § such that x541 = x5, we prove that x5 = Ifp, f.

f(xs) = xs11 = x5, s0 xs € fp(f).

Given any y € fp(f), y J a, we prove by transfinite induction that
Vn, x, Cy.

By definition xp = a C y.

If nis a successor ordinal, by monotony,

Xp—1 Ly = f(xn—l) C f(}/)v ie, xp Ey.

If nis a limit ordinal, Vm < n, x,, C y implies
Xp=U{xm|m<n}Cy.

Hence, xs C y and xs = Ifp, f.
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Functions and fixpoints

Ascending chain condition (ACC)

An ascending chain C in (X,C) is a sequence ¢; € X
suchthat i <j = ¢ C ;.

A poset (X, C) satisfies the ascending chain condition (ACC)
iff for every ascending chain C, 3i € N, Vj > i, ¢; = ¢;.

Similarly, we can define the descending chain condition (DCC).

Examples:

m the powerset poset (P(X),C) is ACC when X is finite

m the pointed integer poset (ZU{ L}, C)wherexCy <= x=1Vx=y
is ACC and DCC

m the divisibility poset (N*,|) is DCC but not ACC.
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Functions and fixpoints
Kleene fixpoints in ACC posets

“Kleene" finite fixpoint theorem

If f: X — X is monotonic in an ACC poset X and a C f(a)
then Ifp, f exists.

Proof:

We prove dn € N, Ifp, f = £"(a).

By monotony of f, the sequence x, = f"(a) is an increasing chain.
By definition of ACC, 3n € N, x, = X541 = f(xn).

Thus, x, € fp(f).

Obviously, a = xp C f(x,).

Moreover, if y € fp(f) and y J a, then Vi, y O fi(a) = x;.

Hence, y O x, and x, = Ifp, (f).
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Functions and fixpoints

Comparison of fixpoint theorems

theorem function domain fixpoint method
Tarski monotonic | complete fp(f) meet of
lattice post-fixpoints

Kleene continuous CPO Ifp, () countable
iterations

constructive | monotonic CPO Ifp,(f) transfinite
Tarski iteration

ACC Kleene | monotonic poset Ifp,(f) finite

iteration

Course 1

Order Theory
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Galois connections

Galois connections
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Galois connections

Galois connections

Given two posets (C, <) and (A,C), the pair (a: C > A, v:A— C)isa
Galois connection iff:

VaeA ceC alc)Ca < c<~(a)

which is noted (C, <) % (A D).

C A

m « is the upper adjoint or abstraction; A is the abstract domain.
m ~ is the lower adjoint or concretization; C is the concrete domain.
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Galois connections
Galois connection example

Abstract domain of intervals of integers Z
represented as pairs of bounds (a, b).

We have: (P(Z),C) < (I.C)

def

B/ = (ZU{-00})x (ZU{+0})
m(a,b) C(d,b) < (a=a)A(b< D)
my(a,b) £ {xeZ|la<x<b}

= a(X) = (min X, max X)

proof:

Course 1 Order Theory Antoine Miné



Galois connections
Galois connection example

Abstract domain of intervals of integers Z
represented as pairs of bounds (a, b).

We have: (P(Z),C) < (I.C)

B = (ZU{—00}) x (ZU {+00})
m(a,b) C(d,b) < (a=a)A(b< D)
my(a,b) £ {xeZ|la<x<b}

= a(X) = (min X, max X)

proof:

a(X) C (a, b)
<= minX >aAmaxX<b
<~ V¥xeX:a<x<b

— VxeXxe{yla<y<b}
<= Vx € X:x € vy(a, b)

<= X C(ab)
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Galois connections
Properties of Galois connections

Assuming Va, c, a(c) E a <= ¢ < ~(a), we have:

v o« is extensive: Ve, ¢ < vy(a(c))
proof: a(c) C a(c) = ¢ < y(a(c))

a o+ is reductive: Va, a(y(a)) C a

« is monotonic
proof: ¢ < ¢’ = ¢ < y(a(c’)) = alc) C a(c’)
7 is monotonic
yoaoy=vy
proof: a(v(a)) C a(v(a)) = ¥(a) < v(a(v(a))) and a T a(v(a)) = ~v(a) = v(a(+(a)))
A aoyoa=«
oy is idempotent: coyoaoy=aory
B 7o« is idempotent
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Galois connections

Alternate characterization

If the pair (aw: C — A,y : A — C) satisfies:
7 is monotonic
« is monotonic
Y o « is extensive

« oy is reductive

then («, ) is a Galois connection.

(proof left as exercise)
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Galois connections

Uniqueness of the adjoint

Given (C, <) &= (A, ),
each adjoint can be uniquely defined in term of the other:

a(e) =m{alc<~(a)}
a) =vicla(c)Ea}

Proof: of 1

Va, c < v(a) = afc) C a.

Hence, a(c) is a lower bound of { a|c < v(a) }.

Assume that a’ is another lower bound.

Then, Va, c < v(a) = a’' C a.

By Galois connection, we have then Va, a(c) C a = a' C a.
This implies ' C a(c).

Hence, the greatest lower bound of { a| c < v(a) } exists,

and equals «(c).

The proof of 2 is similar (by duality).
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Galois connections

Properties of Galois connections (cont.)

If (: C—= A~v:A— (), then:
VX C C, if VX exists, then a(V X) =U{a(x)|xe X}

VX CA, if MX exists, then v(MX) = A{v(x)|x e X}

Proof: of 1

By definition of lubs, Vx € X, x < VvV X.

By monotony, Vx € X, a(x) C «a(V X).

Hence, a(V X) is an upper bound of { a(x) | x € X }.
Assume that y is another upper bound of { a(x)|x € X }.
Then, Vx € X, a(x) C y.

By Galois connection Vx € X, x < ~(y).

By definition of lubs, V X < ~(y).

By Galois connection, a(V X) C y.

Hence, { a(x) | x € X } has a lub, which equals a(V X).

The proof of 2 is similar (by duality).
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Galois connections
Deriving Galois connections

Given (C,<) &= (A,LC), we have:
m duality: (A,Q) % (C,>)

(a(c) C a <= c < ~(a)isexactly y(a) > ¢ <= aJd «a(c))

= point-wise lifting by some set S: (S — C,<) == (S — A, ) where

f<f' = Vs, f(s) < f'(s), (3(F))(s) =(f(s)).
FEF <= Vs, f(s) C F(s), (a(f))(s) = a(f(s)).

Given (Xi,C1) —>‘:1 (X2,C2) —>‘72 (X3, C3):

m composition: (X1,Cq) <%——72> (X3, C3)

(a2 0 a1)(c) E3 a <= ai(c) 2 ’yz(a) <= c L1 (71 072)(a)
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Galois connections
Galois embeddings

If (C,<) % (A, C), the following properties are equivalent:

« is surjective (Vae A, 3ce C alc) =a)
v is injective (Va,a’ € A,v(a) =y(a') = a=24a")
B aoy=id (Va € A, id(a) = a)

Such () is called a Galois embedding, which is noted (C, <) <_%» (A, D)

Proof:
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Galois connections
Galois embeddings

If (C,<) % (A, C), the following properties are equivalent:

« is surjective (Vae A, 3ce C alc) =a)
v is injective (Va,a’ € A,v(a) =y(a') = a=24a")
B aoy=id (Va € A, id(a) = a)

Such () is called a Galois embedding, which is noted (C, <) <_%» (A,C)

y =

Proof: 1 =— 2

Assume that v(a) = v(a’).

By surjectivity, take c, ¢’ such that a = a(c), a’ = a(c’).
Then ~(a(c)) = 7(a(c)).

And a(y(a(c))) = a(v(a(c))).

Asaovyoa=a, alc) = a(c).
Hence a = a’.
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Galois connections
Galois embeddings

If (C,<) % (A, C), the following properties are equivalent:

« is surjective (Vae A, 3ce C alc) =a)
v is injective (Va,a’ € A,v(a) =y(a') = a=24a")
B aoy=id (Va € A, id(a) = a)

Such () is called a Galois embedding, which is noted (C, <) <_%» (A, D)
Proof: 2 — 3

Given a € A, we know that v(a(v(a))) = ~(a).
By injectivity of v, a(v(a)) = a.
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Galois connections

Galois embeddings

If (C,<) % (A, C), the following properties are equivalent:

« is surjective (Vae A, 3ce C alc) =a)
v is injective (Va,a’ € A,v(a) =y(a') = a=24a")
B aoy=id (Va € A, id(a) = a)

Such () is called a Galois embedding, which is noted (C, <) <_%» (A, D)
Proof: 3 — 1

Given a € A, we have a(vy(a)) = a.
Hence, 3¢ € C, a(c) = a, using ¢ = y(a).
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Galois connections

Galois embeddings (cont.)

(€,<) == (AL)

y(a(C))

v(a(c) o g > o a(c)
Y >

<"

la] ."

a A

A Galois connection can be made into an embedding by quotienting A by the
equivalence relation a = 3’ <= ~(a) =(2).

Course 1
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Galois connections
Galois embedding example

Abstract domain of intervals of integers Z
represented as pairs of ordered bounds (a, b) or L.
We have: (P(Z),C) < (I.C)
m /= {(ab)|lacZU{-x},beZU{+x},a<b}uU{L}
m(a,b)C(d,b) < (a=d)A(b<P), V¥VxLCx
def

m(ab) = {xeZla<x<b}, A(L)=0
m (X)) = (min X, max X), or Lif X =0

proof:
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Galois connections
Galois embedding example

Abstract domain of intervals of integers Z
represented as pairs of ordered bounds (a, b) or L.
We have: (P(Z),C) < (I.C)
m /= {(ab)|lacZU{-x},beZU{+x},a<b}uU{L}
m(a,b)C(d,b) < (a=d)A(b<P), V¥VxLCx
def

m(ab) = {xeZla<x<b}, A(L)=0
m (X)) = (min X, max X), or Lif X =0

proof:

Quotient of the “pair of bounds” domain (Z U {—o00}) X (Z U {+00}) by the relation
(a,b) = (a',b') < ~(a,b) =~(a’,b")

ie, (a<bAha=a Ab=b)v(a>bnra >V).
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Galois connections
Upper closures

p: X — X is an upper closure in the poset (X, C) if it is:
monotonic: x C x’ = p(x) C p(x’),
extensive: x C p(x), and

idempotent: pop = p.
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Galois connections

Upper closures and Galois connections

Given (C,<) & (A,C),
~ o« is an upper closure on (C, <).
Given an upper closure p on (X, C), we have a Galois embedding:

(X,5) == (p(X).E)

— we can rephrase abstract interpretation using upper closures
instead of Galois connections, but we lose:

m the notion of abstract representation

(a data-structure A representing elements in p(X))

m the ability to have several distinct abstract representations
for a single concrete object

(non-necessarily injective ~y versus id)
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Operator approximations

Course 1 Order Theory Antoine Miné p. 60 / 69



Operator approximations

Abstractions in the concretization framework

Given a concrete (C, <) and an abstract (A, C) poset
and a monotonic concretization v: A — C

(v(a) is the “meaning” of a in C; we use intervals in our examples)

m a € Ais asound abstraction of ¢ € C if ¢ < ~v(a).

(e.g.: [0,10] is a sound abstraction of {0, 1,2,5} in the integer interval domain)

m g:A— Ais asound abstraction of f: C — C
if Vae A:(foy)(a) < (vog)(a).

(e.g.: A([a, b].[—o0, +0o0] is a sound abstraction of AX.{x + 1|x € X } in the interval domain)

m g:A— Aisan exact abstractionof f : C - Cif foy=~vo0g.

(e.g.: A([a, b].[a+ 1, b+ 1] is an exact abstraction of AX.{x 4+ 1|x € X } in the interval domain)
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Operator approximations

Abstractions in the Galois connection framework

Assume now that (C, <) &= (A,C).

m sound abstractions
m ¢ < v(a) is equivalent to a(c) C a.
m (fov)(a) < (yog)(a) is equivalent to (a0 f oy)(a) C g(a).

m Given ¢ € C, its best abstraction is a(c).

(proof: recall that ae(c) = M{a|c < v(a) }, so, a(c) is the smallest sound abstraction of c)

(e.g.: «({0,1,2,5}) = [0, 5] in the interval domain)

m Given f : C — C, its best abstraction is ao f o~y
(proof: g sound <= Va, (avofo~)(a) C g(a), so aof o~ is the smallest sound abstraction of f)

(e.g.: g([a, b]) = [2a, 2b] is the best abstraction in the interval domain of f(X) = {2x|x € X }; it
is not an exact abstraction as v(g([0, 1])) = {0, 1,2} D {0,2} = f(~([0, 1]))

Course 1 Order Theory Antoine Miné



Operator approximations

Composition of sound, best, and exact abstractions

If g and g’ soundly abstract respectively f and f’ then:
m if f is monotonic,
then g o g’ is a sound abstraction of f o f/,
(proof: Va, (f o f o v)(a) < (fovyog')(a) < (vogog)(a)
m if g, g’ are exact abstractions of f and f/,
then g o g’ is an exact abstraction,
(proof: fof'oy=foyog =~vogog’)
m if g and g’ are the best abstractions of f and f’,
then g o g’ is not always the best abstraction!

(e.g.: g([a, b]) = [a, min(b, 1)] and g’([a, b]) = [2a, 2b] are the best abstractions of
f(X)={xeX|x<1}and f(X) ={2x|x € X} in the interval domain, but g o g’ is not the
best abstraction of f o f' as (g o g’)([0, 1]) = [0, 1] while (a0 f o " 0 4)([0, 1]) = [0, 0])
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Fixpoint approximations

Fixpoint approximations

Course 1 Order Theory Antoine Miné p. 64 /69



Fixpoint approximations

Fixpoint transfer

If we have:
m a Galois connection (C, <) % (A,E) between CPOs

m monotonic concrete and abstract functions
F:C—>C, fl:AA

m a commutation condition ao f = flo

m an element a and its abstraction af = a(a)

then a(lfp, f) = Ifp,: f*.

(proof on next slide)
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Fixpoint approximations

Fixpoint transfer (proof)

Proof:

L . def def
By the constructive Tarski theorem, Ifp, f is the limit of transfinite iterations: ap = a, ant1 = f(an),

def
and a, = \/ {am| m < n} for limit ordinals n.
#

Likewise, Ifp_¢ f* is the limit of a transfinite iteration af.
We prove by transfinite induction that a® = a(a,) for all ordinals n:

. ag = «a(ap), by definition;

] agﬂ = f¥(af) = f*(a(an)) = a(f(an)) = a(an:1) for successor ordinals, by commutation;

maf = I_l{afn\m <n} :l_l{a(am)\m <n} :a(\/{am\m < n}) = a(ap) for limit ordinals,
because « is always continuous in Galois connections.

Hence, Ifp 4 f* = a(Ifp, f).
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Fixpoint approximations

Fixpoint approximation

If we have:
m a complete lattice (C,<,V,A, L, T)
m a monotonic concrete function f
m a sound abstraction ff: A — A of f
(Vx*: (Foy)(x*) < (v o Fh)(xF))
m a post-fixpoint af of 1 (fi(ah) C 2%)
then a* is a sound abstraction of Ifp f: Ifp f < y(a%).

Proof:

By definition, f¥(a%) C a.

By monotony, v(f#(a)) < ~(a%).

By soundness, f(y(a*)) < ~v(a%).

By Tarski's theorem Ifp f = A { x| f(x) < x }.

Hence, Ifp f < ~y(a%).

Other fixpoint transfer / approximation theorems can be constructed. . .
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