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Abstract. CTL is a temporal logic commonly used to express program
properties. Most of the existing approaches for proving CTL properties
only support certain classes of programs, limit their scope to a subset of
CTL, or do not directly support certain existential CTL formulas. This
paper presents an abstract interpretation framework for proving CTL
properties that does not suffer from these limitations. Our approach au-
tomatically infers sufficient preconditions, and thus provides useful infor-
mation even when a program satisfies a property only for some inputs.
We systematically derive a program semantics that precisely captures
CTL properties by abstraction of the operational trace semantics of a
program. We then leverage existing abstract domains based on piecewise-
defined functions to derive decidable abstractions that are suitable for
static program analysis. To handle existential CTL properties, we aug-
ment these abstract domains with under-approximating operators.
We implemented our approach in a prototype static analyzer. Our exper-
imental evaluation demonstrates that the analysis is effective, even for
CTL formulas with non-trivial nesting of universal and existential path
quantifiers, and performs well on a wide variety of benchmarks.

1 Introduction

Computation tree logic (CTL) [6] is a temporal logic introduced by Clarke and
Emerson to overcome certain limitations of linear temporal logic (LTL) [33]
for program specification purposes. Most of the existing approaches for proving
program properties expressed in CTL have limitations that restrict their ap-
plicability: they are limited to finite-state programs [7] or to certain classes of
infinite-state programs (e.g., pushdown systems [36]), they limit their scope to a
subset of CTL (e.g., the universal fragment of CTL [11]), or support existential
path quantifiers only indirectly by considering their universal dual [8].

In this paper, we propose a new static analysis method for proving CTL
properties that does not suffer from any of these limitations. We set our work
in the framework of abstract interpretation [16], a general theory of semantic
approximation that provides a basis for various successful industrial-scale tools
(e.g., Astrée [3]). We generalize an existing abstract interpretation framework
for proving termination [18] and other liveness properties [41].

Following the theory of abstract interpretation [14], we abstract away from
irrelevant details about the execution of a program and systematically derive
a program semantics that is sound and complete for proving a CTL property.
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while 1( rand() ) {
2x := 1
3n := rand()
while 4( n > 0 ) { 5n := n − 1 }
6x := 0
}
while 7( true ) {}8

Fig. 1: Standard lock acquire/release-style program [12], where rand() is a ran-
dom number generation function. Assignments x := 1 and x := 0 are act-
ing as acquire and release, respectively. We want to prove the CTL property
AG(x = 1 ⇒ A(true U x = 0)) expressing that whenever a lock is acquired
(x = 1) it is eventually released (x = 0). We assume that initially x = 0.

The semantics is a function defined over the programs states that satisfy the
CTL formula. The value of the semantics for a CTL formula that expresses a
liveness property (e.g., A(true U φ)) gives an upper bound on the number of
program execution steps needed to reach a desirable state (i.e., a state satisfying
φ for A(true U φ)). The semantics for any other CTL formula is the constant
function equal to zero over its domain. We define the semantics inductively on
the structure of a CTL formula, and we express it in a constructive fixpoint form
starting from the functions defined for its sub-formulas.

Further sound abstractions suitable for static program analysis are derived
by fixpoint approximation [14]. We leverage existing numerical abstract do-
mains based on piecewise-defined functions [39], which we augment with novel
under-approximating operators to directly handle existential CTL formulas. The
piecewise-defined function for a CTL formula is automatically inferred through
backward analysis by building upon the piecewise-defined functions for its sub-
formulas. It over-approximates the value of the corresponding concrete semantics
and, by under-approximating its domain of definition, yields a sufficient precon-
dition for the CTL property. We prove the soundness of the analysis, meaning
that all program executions respecting the inferred precondition indeed satisfy
the CTL property. A program execution that does not respect the precondition
might or might not satisfy the property.

To briefly illustrate our approach, let us consider the acquire/release-style
program shown in Figure 1, and the CTL formula AG(x = 1⇒ A(true U x = 0)).
The analysis begins from the atomic propositions x = 1 and x = 0 and, for
each program control point, it infers a piecewise-defined function that is only
defined when x is one or zero, respectively. It then continues to the sub-formula
A(true U x = 0) for which, building upon the function obtained for x = 0, it
infers the following interesting function at program point 4:

λx.λn.


0 x = 0

2 x 6= 0 ∧ n ≤ 0

2n + 2 otherwise

(1.1)
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The function indicates that the sub-formula x = 0 is either satisfied trivially
(when x is already zero), or in at most 2 program execution steps when n ≤ 0
(and thus the loop at program point 4 is not entered) and 2n + 2 steps when
n > 0 (and thus the loop is entered). The analysis then proceeds to x = 1 ⇒
A(true U x = 0), i.e., x 6= 1 ∨ A(true U x = 0). The inferred function for the
sub-formula x 6= 1 is only defined over the complement of the domain of the
one obtained for x = 1. The disjunction combines this function with the one
obtained for A(true U x = 0) by taking the union over the function domains
and the maximum over the function values. The result at program point 4 is the
same function obtained for A(true U x = 0). Finally, the analysis can proceed
to the initial formula AG(x = 1 ⇒ A(true U x = 0)). The function at program
point 4 remains the same but its value now indicates the maximum number of
steps needed until the next state that satisfies x = 0. The function inferred at
the beginning of the program proves that the program satisfies the CTL formula
AG(x = 1 ⇒ A(true U x = 0)) unless x has initial value one. Indeed, in such a
case, the program does not satisfy the formula since the loop at program point 1
might never execute. Thus, the inferred precondition is the weakest precondition
for the CTL property AG(x = 1⇒ A(true U x = 0)).

We implemented our approach in the prototype static analyzer FuncTion
[13]. Our experimental evaluation demonstrates that the analysis is effective,
even for CTL formulas with non-trivial nesting of universal and existential path
quantifiers, and performs well on a wide variety of benchmarks.

2 Trace Semantics

We model the operational semantics of a program as a transition system 〈Σ, τ〉
where Σ is a (potentially infinite) set of program states, and the transition
relation τ ⊆ Σ ×Σ describes the possible transitions between states. The set of

final states of the program is Ω
def
= {s ∈ Σ | ∀s′ ∈ Σ : 〈s, s′〉 6∈ τ}.

Given a transition system 〈Σ, τ〉, the function pre : P (Σ) → P (Σ) maps a

given set of states X to the set of their predecessors with respect to τ : pre(X)
def
=

{s ∈ Σ | ∃s′ ∈ X : 〈s, s′〉 ∈ τ}, and the function p̃re : P (Σ) → P (Σ) maps a
given set of states X to the set of states whose successors with respect to τ are

all in X: p̃re(X)
def
= {s ∈ Σ | ∀s′ ∈ Σ : 〈s, s′〉 ∈ τ ⇒ s′ ∈ X}.

In the following, given a set S, let Sn
def
= {s0 · · · sn−1 | ∀i < n : si ∈ S} be the

set of all sequences of exactly n elements from S. We write ε to denote the empty

sequence, i.e., S0 def
= {ε}. Let S∗

def
=
⋃
n∈N S

n be the set of all finite sequences,

S+ def
= S∗ \ S0 be the set of all non-empty finite sequences, Sω be the set of all

infinite sequences, S+∞ def
= S+ ∪ Sω be the set of all non-empty finite or infinite

sequences and S∗∞
def
= S∗ ∪ Sω be the set of all finite or infinite sequences of

elements from S. We write σσ′ for the concatenation of two sequences σ, σ′ ∈
S∗∞ (with σε = εσ = σ, and σσ′ = σ if σ ∈ Sω), T+ def

= T ∩ S+ for the selection

of the non-empty finite sequences of T ⊆ S∗∞, Tω
def
= T ∩ Sω for the selection of

the infinite sequences of T ⊆ S∗∞, and T ; T ′
def
= {σsσ′ | s ∈ S, σs ∈ T, sσ′ ∈ T ′}
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for the merging of sets of sequences T ⊆ S+ and T ′ ⊆ S+∞, when a finite
sequence in T terminates with the initial state of a sequence in T ′.

Given a transition system 〈Σ, τ〉, a trace is a non-empty sequence of program
states described by the transition relation τ , that is, 〈s, s′〉 ∈ τ for each pair
of consecutive states s, s′ ∈ Σ in the sequence. The set of final states Ω and
the transition relation τ can be understood as sets of traces of length one and
two, respectively. The maximal trace semantics Λ ∈ P (Σ+∞) generated by a
transition system is the union of all non-empty finite traces that are terminating
with a final state in Ω, and all infinite traces. It can be expressed as a least
fixpoint in the complete lattice 〈P (Σ+∞) ,v,t,u, Σω, Σ+〉 [14]:

Λ = lfpv λT.Ω ∪ (τ ; T ) (2.1)

where the computational order is T1 v T2
def
= T+

1 ⊆ T
+
2 ∧ Tω1 ⊇ Tω2 .

The maximal trace semantics carries all information about a program and
fully describes its behavior. However, reasoning about a particular property of
a program is facilitated by the design of a semantics that abstracts away from
irrelevant details about program executions. In the paper, we use abstract in-
terpretation [16] to systematically derive, by abstraction of the maximal trace
semantics, a sound and complete semantics that precisely captures exactly and
only the needed information to reason about CTL properties.

3 Computation Tree Logic

CTL is also known as branching temporal logic; its semantics is based on a
branching notion of time: at each moment there may be several possible succes-
sor program states and thus each moment of time might have several different
possible futures. Accordingly, the interpretation of CTL formulas is defined in
terms of program states, as opposed to the interpretation of LTL formulas in
terms of traces. This section gives a brief introduction into the syntax and se-
mantics of CTL. We refer to [1] for further details.

We assume a set of atomic propositions describing properties of program
states. Formulas in CTL are formed according to the following grammar:

φ ::= a | ¬φ | φ ∧ φ | φ ∨ φ | AXφ | AGφ | A(φ U φ) | EXφ | EGφ | E(φ U φ)

where a is an atomic proposition. The universal quantifier (denoted A) and
the existential quantifier (denoted E) allow expressing properties of all or some
traces that start in a state. In the following, we often use Q to mean either
A or E. The next temporal operator (denoted X) allows expressing properties
about the next program state in a trace. The globally operator (denoted G)
allow expressing properties that should hold always (i.e., for all states) on a
trace. The until temporal operator (denoted U) allows expressing properties
that should hold eventually on a trace, and always until then. We omit the
finally temporal operator (denoted F) since a formula of the form QFφ can be
equivalently expressed as Q(true U φ).
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The semantics of formulas in CTL is formally given by a satisfaction relation
|= between program states and CTL formulas. In the following, we write s |= φ if
and only if the formula φ holds in the program state s ∈ Σ. We assume that the
satisfaction relation for atomic propositions is given. The satisfaction relation
for other CTL formulas is formally defined as follows:

s |= ¬φ ⇔ ¬(s |= φ)
s |= φ1 ∧ φ2 ⇔ s |= φ1 ∧ s |= φ2
s |= φ1 ∨ φ2 ⇔ s |= φ1 ∨ s |= φ2
s |= Aϕ ⇔ ∀σ ∈ T (s) : σ |= ϕ
s |= Eϕ ⇔ ∃σ ∈ T (s) : σ |= ϕ

(3.1)

where T (s) ∈ P (Σ+∞) denotes the set of all program traces starting in the state
s ∈ Σ. The semantics of trace formulas ϕ is defined below:

σ |= Xφ ⇔ σ[1] |= φ
σ |= Gφ ⇔ ∀0 ≤ i : σ[i] |= φ
σ |= φ1 U φ2 ⇔ ∃0 ≤ i : σ[i] |= φ2 ∧ ∀0 ≤ j < i : σ[j] |= φ1

(3.2)

where σ[i] denotes the program state at position i on the trace σ ∈ Σ+∞. We
refer to [1] for further details.

4 Program Semantics for CTL Properties

In the following, we derive a program semantics that is sound and complete for
proving a CTL property. We define the semantics inductively on the structure
of a CTL formula. More specifically, for each formula φ, we define the CTL
abstraction αφ : P (Σ+∞)→ (Σ ⇀ O) which extracts a partial function f : Σ ⇀
O from program states to ordinals from a given set of sequences T ∈ P (Σ+∞)
by building upon the CTL abstractions of the sub-formulas of φ. The domain
of f coincides with the set of program states that satisfy φ. Ordinal values are
needed to support programs with possibly unbounded non-determinism [18]. The
definition of αφ for each CTL formula is summarized in Figure 2 and explained in
more detail below. We use the CTL abstraction to define the program semantics
Λφ : Σ ⇀ O for a formula φ by abstraction of the maximal trace semantics Λ.

Definition 1. Given a CTL formula φ and the corresponding CTL abstraction
αφ : P (Σ+∞) → (Σ ⇀ O), the program semantics Λφ : Σ ⇀ O for φ is defined

as Λφ
def
= αφ(Λ), where Λ is the maximal trace semantics (cf. Equation 2.1).

Remarks. It may seem unintuitive to define Λφ starting from program traces
rather than program states (as in Section 3). The reason behind this deliber-
ate choice is that it allows placing Λφ in the hierarchy of semantics defined by
Cousot [14], which is a uniform framework that makes program semantics easily
comparable and facilitates explaining the similarities and correspondences be-
tween semantic models. Specifically, this enables the comparison with existing
semantics for termination [18] and other liveness properties [41] (cf. Section 7).
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φ αφ : P
(
Σ+∞)→ (Σ ⇀ O)

a αa(T )
def
= λs ∈ st(T ).

{
0 s |= a

undefined otherwise

QXφ αQXφ(T )
def
= λs ∈ st(T ).

{
0 s ∈ transQ(dom(αφ(T )))

undefined otherwise

Q(φ1 U φ2) αQ(φ1Uφ2)(T )
def
= αrk

Q (αsq
Q(φ1Uφ2)

(T ))

QGφ
αQGφ(T )

def
= gfpv

αφ(T ) ΘQGφ

ΘQGφ(f)
def
= λs.

{
f(s) s ∈ dom(f) ∩ transQ(dom(f))

undefined otherwise

¬φ α¬φ(T )
def
= λs ∈ st(T ).

{
0 s 6∈ dom(αφ(T ))

undefined otherwise

φ1 ∧ φ2 αφ1∧φ2(T )
def
= λs ∈ st(T ).

{
sup {f1(s), f2(s)} s ∈ dom(f1) ∩ dom(f2)

undefined otherwise

φ1 ∨ φ2 αφ1∨φ2(T )
def
= λs ∈ st(T ).


sup {f1(s), f2(s)} s ∈ dom(f1) ∩ dom(f2)

f1(s) s ∈ dom(f1) \ dom(f2)

f2(s) s ∈ dom(f2) \ dom(f1)

undefined otherwise

Fig. 2: CTL abstraction αφ : P (Σ+∞)→ (Σ ⇀ O) for each CTL formula φ. The
function transQ stands for pre, if Q is E, or p̃re, if Q is A (cf. Section 2). The
state function st : P (Σ+∞)→ P (Σ) collects all states of a given set of sequences

T : st(T )
def
= {s ∈ Σ | ∃σ′ ∈ Σ∗, σ′′ ∈ Σ∗∞ : σ′sσ′′ ∈ T}. The ranking abstraction

αrk
Q : P (Σ+) → (Σ ⇀ O) is defined in Equation 4.1, while the subsequence

abstraction αsq
QFφ : P (Σ+∞) → P (Σ+) is defined in Equations 4.2 and 4.3. In

the last two rows, f1
def
= αφ1

(T ) and f2
def
= αφ2

(T ).

It may also seem unnecessary to define Λφ to be a function. However, this
choice yields a uniform treatment of CTL formulas independently of whether
they express safety or liveness properties (or a combination of these). Addi-
tionally, it allows leveraging existing abstract domains [38,39] (cf. Section 5) to
obtain a sound static analysis for CTL properties. In particular, the proof of
the soundness of the static analysis (cf. Theorem 2 and [38] for more details)
requires reasoning both about the domain of Λφ as well as its value.

Atomic Propositions. For an atomic proposition a, the CTL abstraction
αa : P (Σ+∞) → (Σ ⇀ O) simply extracts from a given set T of sequences
a partial function that maps the states of the sequences in T (i.e., s ∈ st(T ))
that satisfy a (i.e., s |= a) to the constant value zero, meaning that no program
execution steps are needed until a is satisfied for all executions starting in those
states. Thus, the domain of the corresponding program semantics Λa : Σ ⇀ O
is (cf. Definition 1) is the set of program states that satisfy a (since st(Λ) = Σ).
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Next-Formulas. Next-formulas QXφ express that the next state of all traces
(if Q is A) or at least one trace (if Q is E) satisfies φ.

The CTL abstraction αQXφ : P (Σ+∞) → (Σ ⇀ O) for a next-formula QXφ
(cf. Figure 2) maps a set T of sequences to a partial function defined over the
states of the sequences in T (i.e., s ∈ st(T )) that are the predecessors of the
states that satisfy φ, that is, the predecessors of the states in the domain of the
CTL abstraction for φ (i.e., s ∈ transQ(dom(αφ(T )))). The function has constant
value zero over its domain, again meaning that no program execution steps are
needed until QXφ is satisfied for all executions starting in those states.

Thus, the domain of the program semantics ΛQXφ : Σ ⇀ O is the set of states
inevitably (for ΛAXφ) or possibly (for ΛEXφ) leading to a state in the domain
dom(Λφ) of the program semantics of the sub-formula φ (cf. Definition 1).

Until-Formulas. Until-formulas Q(φ1 U φ2) express that some desired state
(i.e., a state satisfying the sub-formula φ2) is eventually reached during program
execution, either in all traces (if Q is A) or in at least one trace (if Q is E), and the
sub-formula φ1 is satisfied in all program states encountered until then. Thus, we
can observe that an until-formula is satisfied by finite subsequences of possibly
infinite program traces. To reason about subsequences, we define the subsequence
function sq : P (Σ+∞) → P (Σ+) which extracts all finite subsequences of a

given set of sequences T : sq(T )
def
= {σ ∈ Σ+ | ∃σ′ ∈ Σ∗, σ′′ ∈ Σ∗∞ : σ′σσ′′ ∈ T}.

In the following, given a formula Q(φ1 U φ2), we define the corresponding sub-
sequence abstraction αsq

Q(φ1Uφ2)
: P (Σ+∞) → P (Σ+) which extracts the finite

subsequences that satisfy Q(φ1 U φ2) from of a set of sequences T . We can then
use αsq

Q(φ1Uφ2)
to define the CTL abstraction αQ(φ1Uφ2) : P (Σ+∞) → (Σ ⇀ O)

as shown in Figure 2. The ranking abstraction αrk
Q : P (Σ+)→ (Σ ⇀ O) is:

αrk
Q (T )

def
= αv

Q(
→
α (T )) (4.1)

where
→
α : P (Σ+) → P (Σ) × P (Σ ×Σ) extracts from a given set of non-

empty finite sequences T the smallest transition system 〈S, r〉 that generates

T :
→
α (T )

def
= 〈st(T ), {〈s, s′〉 ∈ Σ ×Σ | ∃σ ∈ Σ∗, σ′ ∈ Σ∗∞ : σss′σ′ ∈ T}〉 and the

function αv
Q : P (Σ)×P (Σ ×Σ)→ (Σ ⇀ O) provides the rank of the elements

in the domain of the transition relation of the transition system:

αv
Q〈S, r〉s

def
=


0 ∀s′ ∈ S : 〈s, s′〉 6∈ r

bndQ

{
αv
Q〈S, r〉s′ + 1

∣∣∣∣∣ s 6= s′, 〈s, s′〉 ∈ r,
s′ ∈ dom(αv

Q〈S, r〉)

}
otherwise

where bndQ stands for sup, if Q is A, or inf, if Q is E. The CTL abstraction
αA(φ1Uφ2) (resp. αE(φ1Uφ2)) maps the states st(T ) of a given set of sequences T
that satisfy Q(φ1 U φ2) to an upper bound (resp. lower bound) on the number
of program execution steps until the sub-formula φ2 is satisfied, for all (resp. at
least one of the) executions starting in those states.
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Existential Until-Formulas. The subsequence abstraction αsq
E(φ1Uφ2)

for a formula

E(φ1 U φ2) extracts from a given a set of sequences T the finite subsequence of
states that terminate in a state satisfying φ2 and all predecessor states satisfy
φ1 (and not φ2). It is defined as follows:

αsq
E(φ1Uφ2)

(T )
def
= αE(φ1Uφ2)[dom(αφ1(T ))][dom(αφ2(T ))]T

αE(φ1Uφ2)[S1][S2]T
def
= {σs ∈ sq(T ) | σ ∈ (S1 \ S2)∗, s ∈ S2}

(4.2)

where S1 is the set of states that satisfy the sub-formula φ1 (i.e., dom(αφ1(T ))),
and S2 is the set of desired states (i.e, dom(αφ2(T ))).

Universal Until-Formulas. A finite subsequence of states satisfies a universal
until-formula A(φ1 U φ2) if and only if it terminates in a state satisfying φ2, all
predecessor states satisfy φ1, and all other sequences with a common prefix also
terminate in a state satisfying φ2 (and all its predecessors satisfy φ1), i.e., the
program reaches a desired state (via states that satisfy φ1) independently of the
non-deterministic choices made during execution. We define the neighborhood of
a sequence of states σ in a given set T as the set of sequences σ′ ∈ T with a

common prefix with σ: nbhd(σ, T )
def
= {σ′ ∈ T | pf(σ) ∩ pf(σ′) 6= ∅}, where the

prefixes function pf : Σ+∞ → P (Σ+∞) yields the set of non-empty prefixes of a

sequence σ ∈ Σ+∞: pf(σ)
def
= {σ′ ∈ Σ+∞ | ∃σ′′ ∈ Σ∗∞ : σ = σ′σ′′}.

We can now defined the subsequence abstraction αsq
A(φ1Uφ2)

:

αsq
A(φ1Uφ2)

(T )
def
= αA(φ1Uφ2)[dom(αφ1

(T ))][dom(αφ2
(T ))]T

αA(φ1Uφ2)[S1][S2]T
def
=

σs ∈ sq(T )

∣∣∣∣∣∣
σ ∈ (S1 \ S2)∗, s ∈ S2,

nbhd(σ, sf(T ) ∩ S2
+∞

) = ∅,
nbhd(σ, sf(T ) ∩ Z) = ∅

 (4.3)

where the suffixes function sf : P (Σ+∞)→ P (Σ+∞) yields the set of non-empty

suffixes of a set of sequences T : sf(T )
def
=
⋃
{σ ∈ Σ+∞ | ∃σ′ ∈ Σ∗ : σ′σ ∈ T}, and

Z
def
=
{
σsσ′ ∈ Σ+∞ | σ ∈ Σ∗ ∧ s ∈ S1 ∪ S2 ∧ σ′ ∈ Σ+∞} is the set of sequences

of states in which at least one state satisfies neither φ1 nor φ2. The last two
conjuncts in the definition of the helper function αA(φ1Uφ2)[S1][S2] ensure that
a finite subsequence satisfies A(φ1 U φ2) only if it does not have a common
prefix with any subsequence of T that never reaches a desired state in S2 (i.e.,

nbhd(σ, sf(T )∩S2
+∞

) = ∅) and with any subsequence that contains a state that
does not belong to S1 and S2 (i.e, nbhd(σ, sf(T ) ∩ Z) = ∅).

Example 1. Let us consider again the acquire/release program of Figure 1 and
let T be the set of its traces. The suffixes starting at program point 2 of the
traces in T can be visualized as follows:
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x = 1

. . . n = −1 n = 0
n = 1 n = 2

. . .

x = 0

Observe that these sequences form a neighborhood in the set sf(T ) of suffixes of
T (i.e., the set of all these sequences is the neighborhood nbhd(σ, sf(T )) of any
sequence σ in the set). In the following, we write xi and ni for the states denoted
above by x = i and n = i, respectively.

Let us consider the universal until-formula A(x = 1 U x = 0). The set of
desired states is S2 = {x0} and S1 = {x1} ∪ {ni | i ∈ Z} is the set of states that
satisfy x = 1. All sequences in the neighborhood have prefixes of the form σs
where σ = x1 · · · ∈ (S1 ∩ S2)∗ and s = x0 ∈ S2. Thus, the neighborhood of any

subsequence σs does not contain sequences in S2
+∞

that never reach the desired

state x0 (i.e., nbhd(σs, sf(T ) ∩ S2
+∞

) = ∅). Furthermore, the neighborhood
does not contain sequences in Z in which at least one state neither satisfies
x = 1 nor x = 0 (i.e., nbhd(σ, sf(T ) ∩ Z) = ∅). Therefore, the until-formula
A(x = 1 U x = 0) is satisfied at program point 2.

Let us consider now the formula A(x = 1 ∧ 0 ≤ n U x = 0). Again, all
sequences in the neighborhood eventually reach the desired state x0. However,
in this case, the set S1 is limited to states with non-negative values for n, i.e.,
S1 = {x1}∪{ni | 0 ≤ i}. Thus, the neighborhood also contains sequences in which
at least one state satisfies neither x = 1 ∧ 0 ≤ n nor x = 0 (e.g., the sequence
x1n−1 . . . ). Hence A(x = 1 ∧ 0 ≤ n U x = 0) is not satisfied at program point 2
since nbhd(σ, sf(T )∩Z) 6= ∅. Instead, the existential until-formula E(x = 1∧0 ≤
n U x = 0) is satisfied since, for instance, the subsequence σs where σ = x1n1

and s = x0 satisfies (x = 1 ∧ 0 ≤ n U x = 0). �

Until Program Semantics. We now have all the ingredients that define the pro-
gram semantics ΛQ(φ1Uφ2) : Σ ⇀ O for an until-formula Q(φ1 U φ2) (cf. Defini-
tion 1). Let 〈Σ ⇀ O,v〉 be the partially ordered set for the computational order
f1 v f2 ⇔ dom(f1) ⊆ dom(f2) ∧ ∀x ∈ dom(f1) : f1(x) ≤ f2(x). The program
semantics ΛQ(φ1Uφ2) can be expressed as a least fixpoint in 〈Σ ⇀ O,v〉 as:

ΛQ(φ1Uφ2) = lfpv
∅̇
ΘQ(φ1Uφ2)[dom(Λφ1

)][dom(Λφ2
)]

ΘQ(φ1Uφ2)[S1][S2]f
def
= λs.


0 s ∈ S2

bndQ {f(s′) + 1 | 〈s, s′〉 ∈ τ} s ∈ S1 ∧ s 6∈ S2 ∧
s ∈ transQ(dom(f))

undefined otherwise

(4.4)

where ∅̇ is the totally undefined function. The program semantics ΛA(φ1Uφ2) (resp.
ΛE(φ1Uφ2)) is a well-founded function mapping each program state in dom(Λφ1

)
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inevitably (resp. possibly) leading to a desirable state in dom(Λφ2
) to an ordinal,

which represents an upper bound (resp. lower bound) on the number of program
execution steps needed until a desirable state is reached.

Globally-Formulas. Globally-formulas QGφ express that φ holds indefinitely
in all traces (if Q is A) or at least one trace (if Q is E) starting in a state.

The definition of the CTL abstraction αQGφ : P (Σ+∞) → (Σ ⇀ O) for
QGφ given in Figure 2 retains the value of the CTL abstraction corresponding
to the sub-formula φ. Intuitively, each iteration discards the states that satisfy
φ (i.e., the states in dom(αφ(T ))) but branch to (sub)sequences of T that do
not satisfy QGφ. Preserving the value of αφ provides more information than just
mapping each state to the constant value zero. For instance, the CTL abstraction
αAGAFφ for a globally-formula AGAFφ provides an upper bound on the number
of program execution steps needed until the next occurrence of φ is satisfied, for
all executions starting in the corresponding state.

The corresponding program semantics ΛQGφ : Σ ⇀ O (cf. Definition 1) pre-
serves the value of Λφ for each state satisfying the sub-formula φ and inevitably
(if Q is A) or possibly (if Q is E) leading only to other states that also satisfy φ.

Other Formulas. We are left with describing the CTL abstraction of ¬φ,
φ ∧ φ, and φ ∨ φ defined in Figure 2. For a negation ¬φ, the CTL abstraction
α¬φ maps each program state that does not satisfy φ to the value zero. The CTL
abstraction for a binary formula φ1 ∧ φ2 or φ1 ∨ φ2 retains the largest value of
the functions Λφ1

and Λφ2
for each program state satisfying both φ1 and φ2; for

a disjunction φ1 ∨ φ2, it also retains the value of the function for each program
state satisfying either sub-formula.

Theorem 1. A program satisfies a CTL formula φ for all traces starting from
a given set of states I if and only if I ⊆ dom(Λφ).

Proof. The proof proceeds by induction over the structure of the CTL formula
φ. The base case are atomic propositions a for which the proof is immediate.

For a next-formulas QXφ, by induction hypothesis, dom(Λφ) coincides with
the set of states that satisfy φ. By Definition 1 and the definition of αQXφ in
Figure 2, the domain of ΛQXφ coincides with transQ(dom(αφ(T ))). Thus, by
definition of transQ, we have that dom(ΛQXφ) coincides with the set of states
that satisfy QXφ (cf. Equations 3.1 and 3.2).

For an until-formula Q(φ1 U φ2), by induction hypothesis, dom(Λφ1
) and

dom(Λφ2
) coincide with the set of states that satisfy φ1 and φ2, respectively.

We have ΛQ(φ1 U φ2) = ΘQ(φ1Uφ2)[dom(Λφ1)][dom(Λφ2)](ΛQ(φ1 U φ2)) from
Equation 4.4. Therefore, by definition of ΘQ(φ1Uφ2), dom(ΛQ(φ1 U φ2)) coincides
with the states that satisfy φ2 and all states that satisfy φ1 and inevitably (if Q
is A) or possibly (if Q is E) lead to states that satisfy φ2. So dom(ΛQ(φ1 U φ2))
coincides with the states that satisfy Q(φ1 U φ2) (cf. Equations 3.1 and 3.2).

For a globally-formula QGφ, by induction hypothesis, dom(Λφ) coincides with
the set of states that satisfy φ. By Definition 1 and the definition of αQGφ in
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x = 0

n ≤ 0

2 2n + 2

0

Fig. 3: Simplified decision tree representation of the piecewise-defined function
inferred at program point 4 of the program of Figure 1 (cf. Equation 1.1). Each
constraint is satisfied by the left subtree of the decision node, while the right sub-
tree satisfies its negation. The leaves represent partial functions whose domain
is determined by the constraints satisfied along the path to the leaf.

Figure 2, we have that ΛQGφ = ΘQGφ(ΛQGφ). Therefore, by definition of ΘQGφ,
we have that dom(ΛQGφ) coincides with the states that satisfy φ inevitably (if
Q is A) or possibly (if Q is E) lead to other states that satisfy φ. So dom(ΛQGφ)
coincides with the states that satisfy QGφ (cf. Equations 3.1 and 3.2).

Finally, all other cases (¬φ, φ1 ∧ φ2, and φ1 ∨ φ2) follow immediately from
the induction hypothesis, the semantics of the CTL formulas (cf. Equation 3.1)
and the definition of the corresponding program semantics (cf. Definition 1 and
the CTL abstractions in Figure 2). ut

The program semantics for a CTL formula is not computable when the pro-
gram state space is infinite. In the next section, we present decidable abstractions
by means of piecewise-defined functions [38,39].

5 Static Analysis for CTL Properties

We recall here the features of the abstract domain of piecewise-defined functions
[39] that are relevant for our purposes, and describe the new elements that we
need to introduce to obtain a static analysis for proving CTL properties. We
refer to [38] for an exhaustive presentation of the original abstract domain.

For illustration, we model a program using a control flow graph 〈L, E〉, where
L is the set of program points and E ⊆ L × A × L is the set of edges in the
control flow graph. Each edge is labeled by an action s ∈ A; possible actions are
skip, a boolean condition b, or an assignment x := e. In the following, we write
out(l) to denote the set of outgoing edges from a program point l.

Piecewise-Defined Functions Abstract Domain. An element t ∈ T of the
abstract domain is a piecewise-defined partial function represented by a deci-
sion tree, where the decision nodes are labeled by linear constraints over the
program variables, and the leaf nodes are labeled by functions of the program
variables. The decision nodes recursively partition the space of possible values
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of the program variables, and the leaf nodes represent the value of the func-
tion corresponding to each partition. An example of (simplified) decision tree
representation of a piecewise-defined function is shown in Figure 3.

Specifically, the decision nodes are labeled by linear constraints supported
by an existing underlying numerical domain, i.e., interval [15] constraints (of the
form ±x ≤ c), octagonal [30] constraints (of the form ±xi±xj ≤ c), or polyhedral
[19] constraints (of the form c1 · x1 + · · · + ck · xk ≤ ck+1). The leaf nodes are
labeled by affine functions of the program variables (of the form m1 ·x1+· · ·+mk ·
xk + q), or the special elements ⊥ and >, which explicitly represent undefined
functions. The element > is introduced to manifest an irrecoverable precision
loss of the analysis. We also support lexicographic affine functions (fk, . . . , f1, f0)
in the isomorphic form of ordinals ωk · fk + · · ·+ ω · f1 + f0 [29,40].

The partitioning is dynamic: during the analysis of a control flow graph,
partitions (i.e. decision nodes and constraints) are modified by assignments and
split (i.e., added) by boolean conditions and when merging control flows. More
specifically, for each action s ∈ A, we define sound over-approximating abstract
transformers JsKo : T → T as well as new under-approximating abstract trans-
formers JsKu : T → T . These transformers always increase by one the value of
the functions labeling the leaves of a given decision tree to count the number
of executed program steps (i.e., actions in the control flow graph). The trans-
formers for boolean conditions and assignments additionally modify the decision
nodes by building upon the underlying numerical abstract domain. For instance,
the abstract transformer JbKo (resp. JbKu) for a boolean condition b uses the
underlying numerical domain to obtain an over-approximation (resp. an under-
approximation) of b as a set of linear constraints; then it adds these constraints
to the given decision tree and discards the paths that become unfeasible (be-
cause they do not satisfy the added constraints). Let {n ≤ 0} (resp. {n = 0})
be the set of constraints obtained by JbKo (resp. JbKu) for the boolean condition
b ≡ n ≤ 0∧ n%2 = 0; then, given the right subtree in Figure 3, JbKo (resp. JbKu)
would discard the path leading to the leaf with value 2n+ 2 by replacing it with
a leaf with undefined value ⊥ (resp. replace n ≤ 0 with n = 0 and replace 2n+ 2
with ⊥). Decision trees are merged using either the approximation join g or
the computational join t. Both join operators add missing decision nodes from
either of the given trees; g retains the leaves that are labeled with an undefined
function in at least one of the given trees, while t preserves the leaves that are
labeled with a defined function over the leaves labeled with ⊥ (but preserves the
leaves labeled with > over all other leaves). To minimize the cost of the analysis
and to enforce termination, a (dual) widening operator limits the height of the
decision trees and the number of maintained partitions.

Abstract Program Semantics for CTL Properties. The abstract program
semantics Λ\φ : L → T for a CTL formula φ maps each program point l ∈ L to an
element t ∈ T of the piecewise-defined functions abstract domain. The definition
of Λ\φ for each CTL formula φ is summarized in Figure 4 and explained in some
detail below. More details and formal definitions can be found in [37,38].
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Λ\a
def
= λl. reset JaK (⊥) (5.1)

Λ\QXφ

def
= λl. zero

 ⊔
Q

(l,s,l′)∈out(l)

JsKQ (Λ\φ(l′))

 (5.2)

Λ\Q(φ1Uφ2)

def
= lfp\λl.⊥ λm. λl. until

r
Λ\φ1

(l), Λ\φ2
(l)

z
 ⊔

Q

(l,s,l′)∈out(l)

JsKQ (m(l′))

 (5.3)

Λ\QGφ

def
= gfp\

Λ
\
φ

λm. λl. mask

u

v
⊔
Q

(l,s,l′)∈out(l)

JsKQ (m(l′))

}

~ (m(l)) (5.4)

Λ\¬φ
def
= λl. complement(Λ\φ(l)) (5.5)

Λ\φ1∧φ2

def
= λl. Λ\φ1

(l) g Λ\φ2
(l) (5.6)

Λ\φ1∨φ2

def
= λl. Λ\φ1

(l) t Λ\φ2
(l) (5.7)

Fig. 4: Abstract program semantics Λ\φ for each CTL formula φ. The join operator⊔
Q and the abstract transformer JsKQ respectively stand for t and JsKu, if Q is E,
or g and JsKo, if Q is A. With abuse of notation, we use ⊥ to denote a decision
tree with a single undefined leaf node.

The analysis starts with the totally undefined function (i.e., a decision tree
that consists of a single leaf with undefined value ⊥) at the final program points
(i.e., nodes without outgoing edges in the control flow graph). Then it proceeds
backwards through the control flow graph, taking the encountered actions into
account, and joining decision trees when merging control flows. For existential
CTL properties, the analysis uses the under-approximating abstract transform-
ers JsKu for each action s, to ensure that program states that do not satisfy
the CTL property are discarded (i.e., removed from the domain of the current
piecewise-defined function), and joins decision trees using the computational join
t, to ensure that the current piecewise-defined function remains defined over
states that satisfy the CTL property in at least one of the merged control flows.
Dually, for universal CTL properties, the analysis uses the over-approximating
abstract transformers JsKo and joins decision trees using the approximation join
g, to ensure that the current piecewise-defined function remains defined only
over states that satisfy the CTL property in all of the merged control flows.

At each program point, the analysis additionally performs operations that
are specific to the considered CTL formula φ. For an atomic proposition a (cf.
Equation 5.1), the analysis performs a reset JaK operation, which is analogous
to the under-approximating transformer for boolean conditions but additionally
replaces all the leaves that satisfy a with leaves labeled with the function with
value zero. For example, given the atomic proposition n = 0 and the right
subtree in Figure 3, reset Jn = 0K would replace the constraint n ≤ 0 with
n = 0, the leaf 2n + 2 with ⊥ and the leaf 2 with 0. For a next-formula QXφ



14 Caterina Urban, Samuel Ueltschi, and Peter Müller

(cf. Equation 5.2), the analysis approximates the effect of the transition from
each program point l to each successor program point l′ and performs a zero
operation to replace all defined functions labeling the leaves of the so obtained
decision tree with the function with value zero. For an until-formula Q(φ1 U φ2)
(cf. Equation 5.3), the analysis performs an ascending iteration with widening
[13]. At each iteration, the analysis approximates the effect of the transition
from each program point l to each successor program point l′ and performs
an until operation to model the until temporal operator: until replaces with
the function with value zero all leaves that correspond to defined leaves in the
decision tree Λ\φ2

(l) obtained for φ2, and retains all leaves that are labeled with

an undefined function in both Λ\φ1
(l) and Λ\φ1

(l). For a globally-formula QGφ (cf.
Equation 5.4), the analysis performs a descending iteration with dual widening

[41], starting from the abstract semantics Λ\φ obtained for φ. At each iteration,
the mask operation models the globally temporal operator: it discards all defined
partitions in Λ\φ(l) that become undefined as a result of the transition from each
program point l to each successor program point l′; at the limit, the only defined
partitions are those that remain defined across transitions and thus satisfy the
globally-formula. For a negation formula ¬φ (cf. Equation 5.5), the analysis

performs a complement operation on the decision tree Λ\φ(l) obtained for φ at
each program point l; complement replaces all defined functions labeling the
leaves of a decision tree with ⊥, and all ⊥ with the function with value zero.
Note that Λ\φ is an abstraction of Λφ and thus not all undefined partitions in Λ\φ
necessarily correspond to undefined partitions in Λφ. Leaves that are undefined

in Λ\φ due to this uncertainty are labeled with >, and are left unchanged by
complement to guarantee the soundness of the analysis. Finally, for binary
formulas φ1 ∧ φ2 and φ1 ∨ φ2, the abstract semantics Λ\φ1∧φ2

and Λ\φ1∨φ2
(cf.

Equations 5.6 and 5.7) merge the decision trees obtained for φ1 and φ2 using
the approximation join g and the computational join t, respectively.

The abstract program semantics Λ\φ for each CTL formula φ is sound with
respect to the approximation order f1 4 f2 ⇔ dom(f1) ⊇ dom(f2) ∧ ∀x ∈
dom(f1) : f1(x) ≤ f2(x), which means that the abstract semantics Λ\φ over-
approximates the value of the concrete semantics Λφ and under-approximates
its domain of definition dom(Λφ). In this way, the abstraction provides sufficient
preconditions for the CTL property φ: if the abstraction is defined for a state
then that state satisfies φ.

Theorem 2. A program satisfies a CTL formula φ for all traces starting from
a given set of states I if I ⊆ dom(γ(Λ\φ)).

Proof (Sketch). The proof proceeds by induction over the structure of the for-
mula φ. The base case are atomic propositions for which the proof is immediate.

For a next-formula QXφ, by induction hypothesis, dom(Λ\φ) is a subset of
the set of states that satisfy φ. Using the over-approximating transformers JsKo
together with the approximation join g (resp. the under-approximating trans-

formers JsKu together with the computational join t) ensures that Λ\QXφ soundly
under-approximates the set of states that satisfy QXφ.
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For an until-formula Q(φ1 U φ2), by induction hypothesis, dom(Λ\φ1
) and

dom(Λ\φ2
) are a subset of the set of states that satisfy φ1 and φ2, respectively.

By definition, ΛQ(φ1Uφ2) is the limit of an ascending iteration sequence using
widening. Again, using the over-approximating transformers JsKo together with
the approximation join g (resp. the under-approximating transformers JsKu to-
gether with the computational join t) guarantees the soundness of the analysis
with respect to each transition. The soundness of each iteration without widen-
ing is then guaranteed by the definition of the until operation. The iterations
with widening are allowed to be unsound but the limit of the iterations (i.e.,
ΛQ(φ1Uφ2)) is guaranteed to soundly under-approximate the set of states that
satisfy (φ1 U φ2). We refer to [38] for a detailed proof for formulas of the form
(true U φ2). The generalization to (φ1 U φ2) is trivial.

For a globally-formula QGφ, ΛQGφ is the limit of a descending iteration se-

quence with dual widening, starting from Λ\φ, which soundly under-approximates
the set of states that satisfy φ. The soundness of each iteration is guaranteed by
the definition of the mask operation and the dual widening operator (see [38]).

The case of a negation ¬φ is non-trivial since, by induction hypothesis,
dom(Λ\φ) is a subset of the set of states that satisfy φ. Specifically, Λ\φ maps
each program point l ∈ L to a decision tree whose leaves determine this under-
approximation: leaves labeled with ⊥ represent states that do not satisfy φ
while leaves labeled with > represent states that may or may not satisfy φ.
The complement operation performed by Λ\¬φ only considers leaves labeled by

⊥ and ignores (i.e., leaves unchanged) leaves labeled by >. Thus, Λ\¬φ soundly
under-approximates the set of states that satisfy ¬φ.

Finally, for binary formulas φ1∧φ2 and φ1∨φ2, the proof follows immediately
from the definition of the approximation join g and the computational join t
used in the definition of Λ\φ1∧φ2

and Λ\φ1∨φ2
, respectively. ut

6 Implementation

The proposed static analysis method for proving CTL properties is implemented
in the prototype static analyzer FuncTion [13].

The implementation is in OCaml and consists of around 9K lines of code.
The current front-end of FuncTion accepts non-deterministic programs written
in a C-like syntax (without support for pointers, struct and union types).
The only basic data type is mathematical integers. FuncTion accepts CTL
properties written using a syntax similar to the one used in the rest of this
paper, with atomic propositions written as C-like pure expressions. The abstract
domain of piecewise-defined functions builds on the numerical abstract domains
provided by the Apron library [24], and the under-approximating numerical
operators provided by the Banal static analyzer [31].

The analysis is performed backwards on the control flow graph of a pro-
gram with a standard worklist algorithm [32], using widening and dual widening
at loop heads. Non-recursive function calls are inlined, while recursion is sup-
ported by augmenting the control flow graphs with call and return edges. The
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No Program CTL Property Result Time

1.1 and test.c AGAF(n = 1) ∧ AF(n = 0) 3 0.05s
1.2 and test.c EGAF(n = 1) 3 0.05s
1.4 global test.c AGEF(x ≤ −10) 3 0.15s
1.7 or test.c AFEG(x < −100) ∨ AF(x = 20) 3 0.05s
1.8 may term. . . EF(exit : true) 7 -
1.9 until test.c A(x ≥ y U x = y) 3 0.03s
1.11 fin ex.c EGEF(n = 1) 3 0.04s
1.12 until ex.c E(x ≥ y U x = y) 3 0.03s

2.3 win4.c AFAG(WItemsNum ≥ 1) 3 0.15s
2.4 toylin.c (c ≤ 5 ∧ c > 0) ∨ AF(resp > 5) 7 -

3.9 cb5 safe.c A(i = 0 U (A(i = 1 U AG(i = 3)) ∨ AG(i = 1))) 7 -
3.14 timer. . . ¬AG(timer = 0⇒ AF(output = 1)) 7 -
3.15 togglec. . . AG(AF(t = 1) ∧ AF(t = 0)) 7 -

4.1 Bangalore. . . EF(x < 0) 7 -
4.2 Ex02. . . i < 5⇒ AF(exit : true) 3 0.04s
4.3 Ex07. . . AFEG(i = 0) 3 0.1s
4.4 java Seq. . . EF(AF(j ≥ 21) ∧ i = 100) 3 0.3s
4.5 Madrid. . . AF(x = 7 ∧ EFAG(x = 2)) 3 0.02s

Fig. 5: Evaluation of FuncTion on selected test cases collected from various
sources. All test cases were analyzed using polyhedral constraints for the decision
nodes, and affine functions for the leaf nodes of the decision tree.

precision of the analysis can be tuned by choosing the underlying numerical ab-
stract domain, by activating the extension to ordinal-value functions [40], and
by adjusting the precision of the widening [13] and the widening delay. It is also
possible to refine the analysis by considering only reachable states.

Experimental Evaluation. We evaluated our technique on a number of test cases
obtained from various sources, and compared FuncTion against T2 [8] and
Ultimate LTL Automizer [20] as well as E-HSF [4], and the prototype im-
plementation from [10]. Figures 5 and 6 show an excerpt of the results, which
demonstrates the differences between FuncTion, T2 [8] and Ultimate LTL
Automizer. The first set of test cases are programs that we used to test our
implementation. The second and third set were collected from [25] and the web
interface of Ultimate LTL Automizer [20]. The fourth set are examples from
the termination category of the 6th International Competition on Software Veri-
fication (SV-COMP 2017). The experiments were conducted on an Intel i7-6600U
processor with 20GB of RAM on Arch Linux with Linux 4.11 and OCaml 4.04.1.

FuncTion passes all test cases with the exception of 2.4, 3.9, 3.14, and
3.15, which fail due to imprecisions introduced by the widening, and 1.8 and 4.1,
which fail due to an unfortunate interaction of the under-approximations needed
for existential properties and non-deterministic assignments in the programs.
However, note that for these test cases we still get some useful information. For
instance, for 3.15, FuncTion infers that the CTL property is satisfied if x < 0.
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No FuncTion T2 [8] Ultimate LTL Automizer [20]

1.1 3 7 3

1.2 3 7 -
1.4 3 7 -
1.7 3 7 (error) -
1.8 7 3 -
1.9 3 7 3

1.11 3 7 -
1.12 3 7 (no implementation) -

2.3 3 7 3

2.4 7 7 3

3.9 7 - 3

3.14 7 - 3

3.15 7 - 3

4.1 7 3 -
4.2 3 7 (out of memory) 3

4.3 3 7 -
4.4 3 7 (error) -
4.5 3 7 -

Fig. 6: Differences between FuncTion, T2, and Ultimate LTL Automizer.

In Figure 6, the missing results for T2 are due to a missing conversion of
the test cases to the T2 input format. The comparison with Ultimate LTL
Automizer is limited to the test cases where the CTL property can be equiva-
lently expressed in LTL (i.e., universal CTL properties). The results show that
only FuncTion succeeds on numerous test cases (1.2, 1.4, 1.7, 1.11, 1.12, 4.3,
4.4, and 4.5). Ultimate LTL Automizer performs well on the supported test
cases, but FuncTion still succeeds on most of the test cases provided by Ulti-
mate LTL Automizer (not shown in Figure 6, since there are no differences
between the results of FuncTion and Ultimate LTL Automizer). Overall,
none of the tools subsumes the others. In fact, we observe that their combination
is more powerful than any of the tools alone, as it would succeed on all test cases.

Finally, FuncTion only succeeds on two of the industrial benchmarks from
[10], while T2, E-HSF and [10] fare much better (see [8, Figure 11]). The reason
for the poor performance is that in these benchmarks the effect of function
calls is modeled as a non-deterministic assignment and this heavily impacts the
precision of FuncTion. We are confident that we would obtain better results
on the original benchmarks, where function calls are not abstracted away.

7 Related Work

In the recent past, a large body of work has been devoted to proving CTL
properties of programs. The problem has been extensively studied for finite-
state programs [7,26, etc.], while most of the existing approaches for infinite-state
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systems have limitations that restrict their applicability. For instance, they only
support certain classes of programs [36], or they limit their scope to a subset
of CTL [11], or to a single CTL property such as termination [27,34, etc.] or
non-termination [2,5, etc.]. Our approach does not suffer from these limitations.

Some other approaches for proving CTL properties do not reliably support
CTL formulas with arbitrary nesting of universal and existential path quanti-
fiers [23], or support existential path quantifiers only indirectly by building upon
recent work for proving non-termination [22], or by considering their universal
dual [8]. In particular, the latter approach is problematic: since the universal
dual of an existential until formula is non-trivial to define, the current imple-
mentation of T2 does not support such formulas (see Figure 6). Other indirect
approaches [4,10] perform unnecessary computations that result in slower run-
times (see [8, Figure 12]). In comparison to all these approaches, our approach
provides strictly more information in the form of a ranking function whose do-
main gives a precondition for a given CTL property and whose value estimates
the number of program execution steps until the property is satisfied.

In [17], Cousot and Cousot define a trace-based semantics for a very gen-
eral temporal language which subsumes LTL and CTL; this is subsequently
abstracted to a state-based semantics. The abstraction has been later shown to
be incomplete by Giacobazzi and Ranzato [21]. In contrast to the work of Cousot
and Cousot, we do not define a trace-based semantics for CTL. The semantics
that we propose is close to their state-based semantics in that their state-based
semantics coincides with the domain of the functions that we define. Note that
Theorem 1 is not in contrast with the result of Giacobazzi and Ranzato because
completeness is proven with respect to the state-based semantics of CTL.

Finally, our abstract interpretation framework generalizes an existing frame-
work [41] for proving guarantee and recurrence properties of programs [28]. Guar-
antee and recurrence properties are equivalently expressed in CTL as A(true U φ)
and AGA(true U φ), respectively. In fact, we rediscover the guarantee and re-
currence program semantics defined in [41] as instances of our framework: the
guarantee semantics coincides with ΛA(trueUφ) (cf. Section 4) and the recurrence
semantics coincides with ΛAGA(trueUφ) (cf. Section 4). The common insight with
our work is the observation that CTL (sub)formulas are satisfied by finite sub-
sequences (which can also be single states) of possibly infinite sequences. The
program semantics for these (sub)formulas then counts the number of steps in
these subsequences. Our work generalizes this idea to all CTL formulas and
integrates the corresponding semantics in a uniform framework.

8 Conclusion and Future Work

In this paper, we have presented a new static analysis method for inferring
preconditions for CTL properties of programs that overcomes the limitations of
existing approaches. We have derived our static analysis within the framework
of abstract interpretation by abstraction of the operational trace semantics of
a program. Using experimental evidence, we have shown that our analysis is
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effective and performs well on a wide variety of benchmarks, and is able to prove
CTL properties that are out of reach for state-of-the-art tools.

It remains for future work to investigate and improve the precision of the
analysis in the presence of non-deterministic program assignments. We also plan
to support LTL properties [20] or, more generally, CTL∗ properties [9]. This re-
quires some form of trace partitioning [35] as the interpretation of LTL formulas
is defined in terms of program executions instead of program states as CTL.
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24. B. Jeannet and A. Miné. Apron: A Library of Numerical Abstract Domains for
Static Analysis. In CAV, page 661667, 2009.

25. E. Koskinen. Temporal Verification of Programs. PhD thesis, University of Cam-
bridge, November 2012.

26. O. Kupferman, M. Y. Vardi, and P. Wolper. An Automata-Theoretic Approach to
Branching-Time Model Checking. Journal of the ACM, 47(2):312–360, 2000.

27. C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The Size-Change Principle for
Program Termination. In POPL, pages 81–92, 2001.

28. Z. Manna and A. Pnueli. A Hierarchy of Temporal Properties. In PODC, pages
377–410, 1990.

29. Z. Manna and A. Pnueli. The Temporal Verification of Reactive Systems: Progress,
1996.
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31. A. Miné. Inferring Sufficient Conditions with Backward Polyhedral Under-
Approximations. Electronic Notes in Theoretical Computer Science, 287:89–100,
2012.

32. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer,
1999.

33. A. Pnueli. The Temporal Logic of Programs. In FOCS, pages 46–57, 1977.
34. A. Podelski and A. Rybalchenko. Transition Invariants. In LICS, pages 32–41,

2004.
35. X. Rival and L. Mauborgne. The Trace Partitioning Abstract Domain. ACM

TOPLAS, 29(5):26, 2007.
36. F. Song and T. Touili. Efficient CTL Model-Checking for Pushdown Systems.

Theoretical Computer Science, 549:127–145, 2014.
37. S. Ueltschi. Proving Temporal Properties by Abstract Interpretation. Master’s

thesis, ETH Zurich, Zurich, Switzerland, 2017.
38. C. Urban. Static Analysis by Abstract Interpretation of Functional Temporal Prop-
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