
Caterina Urban

Formal Verification  
of Machine Learning
MPRI 2-6: Abstract Interpretation,  
Application to Verification and Static Analysis

Year 2022-2023November 14th, 2022

Caterina UrbanFormal Verification of Machine LearningLesson 8 2

Machine Learning Revolution
Computer software able to efficiently and autonomously perform tasks  
that are difficult or even impossible to design using explicit programming

Examples: object recognition, image classification, speech recognition, etc.

Caterina UrbanFormal Verification of Machine LearningLesson 8 3

ML in Safety-Critical Applications

Self-Driving Cars

Image-Based Taxiing, Takeoff, Landing Aircraft Voice Control

Enables new functions that could not be envisioned before

Caterina UrbanFormal Verification of Machine LearningLesson 8 4

Diagnosis and Drug Discovery

Aircraft Collision Avoidance

Approximates complex systems and automates decision-making

Deep Neural Network Compression for Aircraft

Collision Avoidance Systems

Kyle D. Julian1 and Mykel J. Kochenderfer2 and Michael P. Owen3

Abstract—One approach to designing decision making logic for

an aircraft collision avoidance system frames the problem as a

Markov decision process and optimizes the system using dynamic

programming. The resulting collision avoidance strategy can be

represented as a numeric table. This methodology has been used

in the development of the Airborne Collision Avoidance System X

(ACAS X) family of collision avoidance systems for manned and

unmanned aircraft, but the high dimensionality of the state space

leads to very large tables. To improve storage efficiency, a deep

neural network is used to approximate the table. With the use of

an asymmetric loss function and a gradient descent algorithm, the

parameters for this network can be trained to provide accurate

estimates of table values while preserving the relative preferences

of the possible advisories for each state. By training multiple

networks to represent subtables, the network also decreases the

required runtime for computing the collision avoidance advisory.

Simulation studies show that the network improves the safety

and efficiency of the collision avoidance system. Because only the

network parameters need to be stored, the required storage space

is reduced by a factor of 1000, enabling the collision avoidance

system to operate using current avionics systems.

I. INTRODUCTION

Decades of research have explored a variety of approaches

to designing decision making logic for aircraft collision

avoidance systems for both manned and unmanned aircraft

[1]. Recent work on formulating the problem of collision

avoidance as a partially observable Markov decision process

(POMDP) has led to the development of the Airborne Collision

Avoidance System X (ACAS X) family of collision avoidance

systems [2], [3], [4]. The version for manned aircraft, ACAS

Xa, is expected to become the next international standard for

large commercial transport and cargo aircraft. The variant for

unmanned aircraft, ACAS Xu, uses dynamic programming to

determine horizontal or vertical resolution advisories in order

to avoid collisions while minimizing disruptive alerts. ACAS

Xu was successfully flight tested in 2014 using NASA’s Ikhana

aircraft [5].
The dynamic programming process for creating the ACAS

Xu horizontal decision making logic results in a large numeric

lookup table that contains scores associated with different

maneuvers from millions of different discrete states. The

table is extremely large, requiring hundreds of gigabytes of

1Kyle D. Julian is a Ph.D. candidate in the Department of Aero-

nautics and Astronautics, Stanford University, Stanford, CA, 94305

kjulian3@st
anford.edu

2Mykel J. Kochenderfer is an Assistant Professor in the Department of

Aeronautics and Astronautics, Stanford University, Stanford, CA, 94305

mykel@stanf
ord.edu

3Michael P. Owen is a member of the Technical Staff at Lincoln

Laboratory, Massachusetts Institute of Technology, Lexington, MA, 02421

michael.owe
n@ll.mit.ed

u

floating point storage. A simple technique to reduce the size

of the score table is to downsample the table after dynamic

programming. To minimize the degradation in decision quality,

states are removed in areas where the variation between values

in the table are smooth. The downsampling reduces the size

of the table by a factor of 180 from that produced by dynamic

programming. For the rest of this paper, the downsampled

ACAS Xu horizontal table is referred to as the baseline,

original table.
Even after downsampling, the current table requires over

2GB of floating point storage, too large for certified avionics

systems [6]. Although modern hardware can handle 2GB of

storage, the certification process for aircraft computer hard-

ware is expensive and time-consuming, so a solution capable

of running on legacy hardware is desired [7]. While there is

no formal limit for floating point storage on legacy avionics, a

representation occupying less than 120MB would be sufficient.

For an earlier version of ACAS Xa, block compression was

introduced to take advantage of the fact that, for many discrete

states, the scores for the available actions are identical [8]. One

critical contribution of that work was the observation that the

table could be stored in IEEE half-precision with no apprecia-

ble loss of performance. Block compression was adequate for

the ACAS Xa tables that limit advisories to vertical maneuvers,

but the ACAS Xu tables for horizontal maneuvers are much

larger. Recent work explored a new algorithm that exploits the

score table’s natural symmetry to remove redundancy within

the table [9]. However, results showed that this compression

algorithm could not achieve sufficient reduction in storage

before compromising performance.

Discretized score tables like this can be represented as

Gaussian processes [10] or kd-trees [11]. Decision trees offer

a way to compress the table by organizing the data into a tree

structure to remove table redundancy. In addition a decision

tree can increase compression by simplifying areas of the table

with low variance, although this will result in a lossy compres-

sion. Decision trees are a popular machine learning algorithm

and have been applied to numerous problems including land

cover classification and energy consumption prediction [12],

[13].
Other approaches to compressing the table seek to find a

robust nonlinear function approximation that represents the

table. Linear regression is popular for smaller datasets, but

this approach does not generalize well for large datasets with

many more examples than features. Support Vector Machines

(SVM) are also a popular regression algorithm. By storing

only the supporting vectors found by the algorithm, less data

would need to be stored, effectively compressing the dataset.

ar
X

iv
:1

81
0.

04
24

0v
1

 [c
s.L

G
]

9
O

ct
 2

01
8

Formal Verification of Machine LearningLesson 8

ML in Safety-Critical Applications

Caterina UrbanFormal Verification of Machine LearningLesson 8 5

ML in Safety-Critical Applications

07/10/2019, 23*16A self-driving Uber ran a red light last December, contrary to company claims - The Verge

Page 1 of 3https://www.theverge.com/2017/2/25/14737374/uber-self-driving-car-red-light-december-contrary-company-claims

A self-driving Uber ran a red
light last December, contrary to
company claims
Internal documents reveal that the car was at fault
By Andrew Liptak @AndrewLiptak Feb 25, 2017, 11:08am EST

TRANSPORTATION UBER RIDE-SHARING

8

Last December, a self-driving Uber was caught on camera running a red light in
San Francisco, shortly after the vehicles began testing on the roads. While Uber
claimed at the time that a driver was at fault, a report from The New York Times

07/12/20, 12:05Self-Driving Uber SUV Didn't Recognize Jaywalking Pedestrian In Fatal Crash : NPR

Page 1 of 3https://www.npr.org/2019/11/07/777438412/feds-say-self-driving-ube…did-not-recognize-jaywalking-pedestrian-in-fatal-?t=1607339086095

Feds Say Self-Driving Uber SUV Did
Not Recognize Jaywalking
Pedestrian In Fatal Crash
Richard Gonzales November 7, 201910:57 PM ET

The self-driving Uber SUV that struck pedestrian Elaine Herzberg on March 18, 2018, in Tempe,
Ariz.

Tempe Police Department via AP

The self-driving Uber SUV involved in a crash that killed a Tempe, Ariz.,
woman last year did not recognize her as a jaywalking pedestrian and its
braking system was not designed to avoid an imminent collision,
according to a federal report released this week.

07/10/2019, 22)58

IBM's Watson recommended 'unsafe and incorrect' cancer treatments - STAT

Page 1 of 2

https://www.statnews.com/2018/07/25/ibm-watson-recommended-unsafe-incorrect-treatments/

I

1

 2

IBM’s Watson supercomputer recommended ‘unsafe and incorrect’

cancer treatments, internal documents show

By Casey Ross3 @caseymross4 and Ike Swetlitz

July 25, 2018

Alex Hogan/STAT

nternal IBM documents show that its Watson supercomputer often spit out

erroneous cancer treatment advice and that company medical specialists and

customers identified “multiple examples of unsafe and incorrect treatment

recommendations” as IBM was promoting the product to hospitals and physicians

around the world.

The documents — slide decks presented last summer by IBM Watson Health’s

deputy chief health officer — largely blame the problems on the training of

Caterina UrbanFormal Verification of Machine LearningLesson 8 6

Machine Learning Pipeline

data preparation model training model deploymentdata predictions

NEXT WEEKLAST WEEK

Caterina UrbanFormal Verification of Machine LearningLesson 8 7

Machine Learning Pipeline

data preparation model training model deploymentdata predictions

no predictability and traceability

Model Training is Highly Non-Deterministic

Caterina UrbanFormal Verification of Machine LearningLesson 8 8

Machine Learning Pipeline

data preparation model training model deploymentdata predictions

Models Only Give Probabilistic Guarantees

Stop
Max Speed 100

+ = not sufficient for guaranteeing  
an acceptable failure rate  
under any circumstance

Caterina UrbanFormal Verification of Machine LearningLesson 8 9

Formal Methods
Mathematical Guarantees of Safety

Robert W. Floyd Tony Hoare

Deductive Verification
• extremely expressive
• relies on the user to guide the proof

Radhia CousotPatrick Cousot

Static Analysis
• analysis of the software

at some level of abstraction
• fully automatic and sound by construction
• generally not complete

Edmund Clarke Allen Emerson

Model Checking
• analysis of a model of the software
• sound and complete

with respect to the model

Caterina UrbanFormal Verification of Machine LearningLesson 8 10

Formal Methods  
for Trained Models

Caterina UrbanFormal Verification of Machine LearningLesson 8 11

Neural Networks

input layer output layerhidden layers

output maxj xN, j

…

x0,0

x0,1

x0,2

x0,|L0|

x0,3 …

xi,j = max {∑
k

wi−1
j,k ⋅ xi−1,k + bi,j, 0}

Rectified Linear Unit (ReLU)

x1,0

x1,1

x1,|L1|

xN,0

xN,|LN|

Feed-Forward Fully-Connected Neural Networks 
with ReLU Activation Functions

Caterina UrbanFormal Verification of Machine LearningLesson 8 12

Neural Networks

Caterina UrbanFormal Verification of Machine LearningLesson 8 13

Feed-Forward Fully-Connected
ReLU Networks as Programs

x00 = input()
x01 = input()

x10 = -0.31 * x00 + 0.99 * x01 + (-0.63)
x11 = -1.25 * x00 + (-0.64) * x01 + 1.88

x10 = 0 if x10 < 0 else x10
x11 = 0 if x11 < 0 else x11

x20 = 0.40 * x10 + 1.21 * x11 + 0.00
x21 = 0.64 * x10 + 0.69 * x11 + (-0.39)

x20 = 0 if x20 < 0 else x20
x21 = 0 if x21 < 0 else x21

x30 = 0.26 * x20 + 0.33 * x21 + 0.45
X31 = 1.42 * x20 + 0.40 * x21 + (-0.45)

return ‘ ’ if x31 < 30 else ‘ ’

x00

x01

x10 x20

x30

x31

-0.31

-0.64

-1.25

0.9
9

-0.63

x11

0.40

0.69

0.00

0.64

1.2
1

x21

0.40

0.26

0.45

1.42

0.3
3

-0.45

-0.391.88

Caterina UrbanFormal Verification of Machine LearningLesson 8 14

Maximal Trace Semantics

x00 = input()
x01 = input()

x10 = -0.31 * x00 + 0.99 * x01 + (-0.63)
x11 = -1.25 * x00 + (-0.64) * x01 + 1.88

x10 = 0 if x10 < 0 else x10
x11 = 0 if x11 < 0 else x11

x20 = 0.40 * x10 + 1.21 * x11 + 0.00
x21 = 0.64 * x10 + 0.69 * x11 + (-0.39)

x20 = 0 if x20 < 0 else x20
x21 = 0 if x21 < 0 else x21

x30 = 0.26 * x20 + 0.33 * x21 + 0.45
X31 = 1.42 * x20 + 0.40 * x21 + (-0.45)

return ‘ ’ if x31 < 30 else ‘ ’

[[M]]

M

Caterina UrbanFormal Verification of Machine LearningLesson 8 15

Neural Network Verification

Caterina UrbanFormal Verification of Machine LearningLesson 8

x00 = input()
x01 = input()

x10 = -0.31 * x00 + 0.99 * x01 + (-0.63)
x11 = -1.25 * x00 + (-0.64) * x01 + 1.88

x10 = 0 if x10 < 0 else x10
x11 = 0 if x11 < 0 else x11

x20 = 0.40 * x10 + 1.21 * x11 + 0.00
x21 = 0.64 * x10 + 0.69 * x11 + (-0.39)

x20 = 0 if x20 < 0 else x20
x21 = 0 if x21 < 0 else x21

x30 = 0.26 * x20 + 0.33 * x21 + 0.45
X31 = 1.42 * x20 + 0.40 * x21 + (-0.45)

return ‘ ’ if x31 < 30 else ‘ ’

M

16

Collecting semantics and properties
General collecting semantics
The collecting semantics Col : Prog æ P(P(�ú))

is the strongest property of a programHence: Col(prog) def= {J prog K }Benefits: uniformity of semantics and properties, ™ information order

given a program prog and a property P œ P(P(�ú))

the verification problem is an inclusion check:
Col(prog) ™ P

generally, the collecting semantics cannot be computed,

we settle for a weaker property S ˘ that
is sound: Col(prog) ™ S ˘implies the desired property: S ˘

™ P
Course 2

Program Semantics and Properties

Antoine Miné
p. 24 / 98

{[[M]]}

Collecting Semantics

Caterina UrbanFormal Verification of Machine LearningLesson 8 17

Stability

Safety

Fairness

Stop Max Speed 100

+ =
Goal G3 in [Kurd03]

Goal G4 in [Kurd03]

Caterina UrbanFormal Verification of Machine LearningLesson 8 18

Stability

Safety

Fairness

Stop Max Speed 100

+ =
Goal G3 in [Kurd03]

Goal G4 in [Kurd03]

Caterina UrbanFormal Verification of Machine LearningLesson 8 19

Local Stability
The classification is unaffected by small input perturbations

Caterina UrbanFormal Verification of Machine LearningLesson 8 20

Local Stability

ℛδ,ϵ
x

def= {[[M]] ∈ %(Σ*) ∣ STABLEδ,ϵ
x ([[M]])}

 is the set of all neural networks M (or, rather, their semantics)  
that are stable in the neighborhood of a given input
ℛδ,ϵ

x [[M]]
Pδ,ϵ(x) x

Distance-Based Perturbations
Pδ,ϵ(x) def= {x′ ∈ ℛ|L0| ∣ δ(x, x′) ≤ ϵ}

Example (distance): L∞ P∞,ϵ(x) def= {x′ ∈ ℛ|L0| ∣ maxi |xi − x′ i | ≤ ϵ}

M ⊧ ℛδ,ϵ
x ⇔ {[[M]]} ⊆ ℛδ,ϵ

x

Theorem

M ⊧ ℛδ,ϵ
x ⇔ [[M]] ⊆ ⋃ℛδ,ϵ

x

Corollary

STABLEδ,ϵ
x ([[M]]) def=

∀t ∈ [[M]] : (∃t′ ∈ [[M]] : ∀0 ≤ i ≤ |L0 | : t′ 0(x0,i) = xi)
∧ (∃x′ ∈ Pδ,ϵ(x) : ∀0 ≤ i ≤ |L0 | : t0(x0,i) = x′ i)
⇒ maxj tω(xN,j) = maxj t′ ω(xN,j)

Caterina UrbanFormal Verification of Machine LearningLesson 8 21

Static Analysis Methods
Caterina Urban

Formal Verification of Machine Learning

Lesson 8

9

Formal MethodsMathematical Guarantees of Safety

Robert W. Floyd Tony Hoare

Deductive Verification
• extremely expressive

• relies on the user to guide the proof

Radhia Cousot

Patrick Cousot

Static Analysis • analysis of the software at some level of abstraction
• fully automatic and sound by construction

• generally not complete

Edmund Clarke Allen Emerson

Model Checking • analysis of a model of the software

• sound and complete with respect to the model

Caterina UrbanFormal Verification of Machine LearningLesson 8 22

Forward Analysis

…

…

1. proceed forwards from
an abstraction of all
possible perturbations

2. check output for inclusion  
in expected output:
included stable
otherwise alarm

→
→!

Caterina UrbanFormal Verification of Machine LearningLesson 8 23

Example

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3

3

0.5

0.75

x20

x30

x31

0

x21

-1.5

1

-14

0.5

-1

-8

0

Caterina UrbanFormal Verification of Machine LearningLesson 8 23

Example

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3

3

0.5

0.75

x20

x30

x31

0

x21

-1.5

1

-14

0.5

-1

-8

0

P(⟨0.5,0.75⟩) def= {x ∈ ℛ × ℛ ∣ 0 ≤ x0 ≤ 1 ∧ 0 ≤ x1 ≤ 1}

Caterina UrbanFormal Verification of Machine LearningLesson 8 24

Interval Domain

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1
1

3

3

x20

x30

x31

0

x21

-1.5

1

-14
0.5

-1

-8

0

x00 ↦ [0, 1]

x01 ↦ [0, 1]

x10 ↦ [4, 6]
ReLU

x11 ↦ [3, 4]

x11 ↦ [3, 4]
ReLU

x10 ↦ [4, 6]

x20 ↦ [17, 24]

x20 ↦ [17, 24]

x21 ↦ [0, 3]

x21 ↦ [0, 3]

x30 ↦ [0, 10]

x31 ↦ [−4, 4]

not precise enough!

ReLU

ReLU

xi,j ↦ [a, b]
a, b ∈ ℛ

Caterina UrbanFormal Verification of Machine LearningLesson 8 25

Interval Domain
with Symbolic Constant Propagation [Li19]

J. Li et al. - Analyzing Deep Neural Networks with Symbolic Propagation (SAS 2019)

each neuron as a linear combination of the inputs  and the previous ReLUs

xi,j ↦ {∑i−1
k=0 ck ⋅ xk + c ck, c ∈ ℛ|Xk|

[a, b] a, b ∈ ℛ

0 ≤ axi,j ↦ {Ei,j
[a, b]

a < 0 ∧ 0 < bxi,j ↦ {xi,j
[0, b]

b ≤ 0xi,j ↦ {0
[0, 0]

xi,j ↦ {Ei,j
[a, b]

ReLU

xi−1,0 ↦ Ei−1,0…
xi−1,j ↦ Ei−1,j…

xi,j ↦ ∑
k

wi−1
j,k ⋅ Ei−1,k + bi,j

xi, j = ∑
k

wi−1
j,k ⋅ xi−1,k + bi, j

Caterina UrbanFormal Verification of Machine LearningLesson 8 26

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3

3

x20

x30

x31

0

x21

-1.5

1

-14

0.5

-1

-8

0

x00 ↦ {x00
[0, 1]

x01 ↦ {x01
[0, 1]

x11 ↦ {0.5 ⋅ x00 + 0.5 ⋅ x01 + 3
[3, 4]

x10 ↦ {x00 + x01 + 4
[4, 6] x20 ↦ {2 ⋅ (x00 + x01 + 4) + 3 ⋅ (0.5 ⋅ x00 + 0.5 ⋅ x01 + 3)

[17, 24]

x21 ↦ {(x00 + x01 + 4) − 1 ⋅ (0.5 ⋅ x00 + 0.5 ⋅ x01 + 3)
[1, 2]

x30 ↦ {3 ⋅ x00 + 3 ⋅ x01 + 2
[2, 8]

x31 ↦ {x00 + x01 − 1
[−1, 1]

Interval Domain
with Symbolic Constant Propagation [Li19]

Caterina UrbanFormal Verification of Machine LearningLesson 8 27

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3

3

x20 x30

x40

x41

0

x21

1

-1.5

-14

0.5

-1

x31

1

0.5

1

0

-2

0

-80

0.5

0.75

x00 ↦ {x00
[0, 1]

x01 ↦ {x01
[0, 1]

x30 ↦ {3 ⋅ x00 + 3 ⋅ x01 + 2
[2, 8]

x40 ↦ {1.5 ⋅ x00 + 1.5 ⋅ x01 + 2 ⋅ x31 + 2
[0, 5]

x41 ↦ {x31
[0, 1]

x31 ↦ {x00 + x01 − 1
[−1, 1]

x31 ↦ {x31
[0, 1]

ReLU

not precise enough!

Interval Domain
with Symbolic Constant Propagation [Li19]

Caterina UrbanFormal Verification of Machine LearningLesson 8 28

DeepPoly [Singh19]

maintain symbolic lower- and  upper-bounds for each neuron  + convex ReLU approximations

G. Singh, T. Gehr, M. Püschel, and M. Vechev - An Abstract Domain for Certifying Neural Networks (POPL 2019)

xi+1,j ↦ {[∑k ci,k ⋅ xi,k + c, ∑k di,k ⋅ xi,k + d] ci,k, c, di,k, d ∈ ℛ
[a, b] a, b ∈ ℛ

ba x

ReLU(x)

ReLU(x) ≤
b(x − a)

b − a

0 ≤ ReLU(x)

xi,j ↦ [0, b(xi,j − a)
b − a]

[0, b]

ba x

ReLU(x)

ReLU(x) ≤
b(x − a)

b − a

x ≤ ReL
U(x)

xi,j ↦ [xi,j,
b(xi,j − a)

b − a]
[a, b]

xi,j ↦ {[Li,j, Ui,j]
[a, b]

xi,j ↦ {[Li,j, Ui,j]
[a, b]

xi,j ↦ {[0, 0]
[0, 0]

0 ≤ a

b ≤ 0

ReLU

ReLU

ReLU a < 0 ∧ 0 < b

b ≤ − a

−a < b

Caterina UrbanFormal Verification of Machine LearningLesson 8 30

DeepPoly [Singh19]

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3
3

x20 x30

x40

x41

0

x21

1

-1.5

-14

0.5

-1

x31

1

0.5

1

0

-2

0

-80

0.5

0.75

x00 ↦ {[x00, x00]
[0, 1]

x01 ↦ {[x01, x01]
[0, 1]

x10 ↦ {[x00 + x01 + 4, x00 + x01 + 4]
[4, 6]

x11 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 3, 0.5 ⋅ x00 + 0.5 ⋅ x01 + 3]
[3, 4]

Caterina UrbanFormal Verification of Machine LearningLesson 8 31

DeepPoly [Singh19]

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3
3

x20 x30

x40

x41

0

x21

1

-1.5

-14

0.5

-1

x31

1

0.5

1

0

-2

0

-80

0.5

0.75

x00 ↦ {[x00, x00]
[0, 1]

x01 ↦ {[x01, x01]
[0, 1]

x20 ↦ {[2 ⋅ x10 + 3 ⋅ x11, 2 ⋅ x10 + 3 ⋅ x11]
[17, 24]

x21 ↦ {[x10 − x11, x10 − x11]
[1, 2]

Caterina UrbanFormal Verification of Machine LearningLesson 8 32

DeepPoly [Singh19]

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3
3

x20 x30

x40

x41

0

x21

1

-1.5

-14

0.5

-1

x31

1

0.5

1

0

-2

0

-80

0.5

0.75

x00 ↦ {[x00, x00]
[0, 1]

x01 ↦ {[x01, x01]
[0, 1]

x30 ↦ {[x20 − x21 − 14, x20 − x21 − 14]
[2, 8]

x31 ↦ {[0.5 ⋅ x20 − 1.5 ⋅ x21 − 8, 0.5 ⋅ x20 − 1.5 ⋅ x21 − 8]
[−1, 1]

x31 ↦ {[0, 0.5 ⋅ x31 + 0.5]
[0, 1]

ReLU

ba
x

ReLU(x)

ReLU(x) ≤
b (x − a)

b − a

0 ≤ ReLU(x)

Caterina UrbanFormal Verification of Machine LearningLesson 8 33

DeepPoly [Singh19]

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3
3

x20 x30

x40

x41

0

x21

1

-1.5

-14

0.5

-1

x31

1

0.5

1

0

-2

0

-80

0.5

0.75

x00 ↦ {[x00, x00]
[0, 1]

x01 ↦ {[x01, x01]
[0, 1]

x40 ↦ {[0.5 ⋅ x30 − 2 ⋅ x31 + 1, 0.5 ⋅ x30 − 2 ⋅ x31 + 1]
[2, 5]

Caterina UrbanFormal Verification of Machine LearningLesson 8 34

DeepPoly [Singh19]

x00 ↦ {[x00, x00]
[0, 1] x01 ↦ {[x01, x01]

[0, 1]

x30 ↦ {[x20 − x21 − 14, x20 − x21 − 14]
[2, 8] x31 ↦ {[0, 0.5 ⋅ (0.5 ⋅ x20 − 1.5 ⋅ x21 − 8) + 0.5]

[0, 1]

x40 ↦ {[0.5 ⋅ x30 − 2 ⋅ x31 + 1, 0.5 ⋅ x30 − 2 ⋅ x31 + 1]
[2, 5]

x40 ↦ {[x21 + 1, 0.5 ⋅ x20 − 0.5 ⋅ x21 − 6]
[2, 5]

x10 ↦ {[x00 + x01 + 4, x00 + x01 + 4]
[4, 6] x11 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 3, 0.5 ⋅ x00 + 0.5 ⋅ x01 + 3]

[3, 4]

x20 ↦ {[2 ⋅ x10 + 3 ⋅ x11, 2 ⋅ x10 + 3 ⋅ x11]
[17, 24] x21 ↦ {[x10 − x11, x10 − x11]

[1, 2]

Caterina UrbanFormal Verification of Machine LearningLesson 8 34

DeepPoly [Singh19]

x00 ↦ {[x00, x00]
[0, 1] x01 ↦ {[x01, x01]

[0, 1]

x30 ↦ {[x20 − x21 − 14, x20 − x21 − 14]
[2, 8] x31 ↦ {[0, 0.5 ⋅ (0.5 ⋅ x20 − 1.5 ⋅ x21 − 8) + 0.5]

[0, 1]

x40 ↦ {[0.5 ⋅ x30 − 2 ⋅ x31 + 1, 0.5 ⋅ x30 − 2 ⋅ x31 + 1]
[2, 5]

x40 ↦ {[x21 + 1, 0.5 ⋅ x20 − 0.5 ⋅ x21 − 6]
[2, 5]

x40 ↦ {[x10 − x11 + 1, 0.5 ⋅ x10 + 2 ⋅ x11 − 6]
[2, 5]

x10 ↦ {[x00 + x01 + 4, x00 + x01 + 4]
[4, 6] x11 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 3, 0.5 ⋅ x00 + 0.5 ⋅ x01 + 3]

[3, 4]

x20 ↦ {[2 ⋅ x10 + 3 ⋅ x11, 2 ⋅ x10 + 3 ⋅ x11]
[17, 24] x21 ↦ {[x10 − x11, x10 − x11]

[1, 2]

Caterina UrbanFormal Verification of Machine LearningLesson 8 34

DeepPoly [Singh19]

x00 ↦ {[x00, x00]
[0, 1] x01 ↦ {[x01, x01]

[0, 1]

x30 ↦ {[x20 − x21 − 14, x20 − x21 − 14]
[2, 8] x31 ↦ {[0, 0.5 ⋅ (0.5 ⋅ x20 − 1.5 ⋅ x21 − 8) + 0.5]

[0, 1]

x40 ↦ {[0.5 ⋅ x30 − 2 ⋅ x31 + 1, 0.5 ⋅ x30 − 2 ⋅ x31 + 1]
[2, 5]

x40 ↦ {[x21 + 1, 0.5 ⋅ x20 − 0.5 ⋅ x21 − 6]
[2, 5]

x40 ↦ {[x10 − x11 + 1, 0.5 ⋅ x10 + 2 ⋅ x11 − 6]
[2, 5]

x10 ↦ {[x00 + x01 + 4, x00 + x01 + 4]
[4, 6] x11 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 3, 0.5 ⋅ x00 + 0.5 ⋅ x01 + 3]

[3, 4]

x20 ↦ {[2 ⋅ x10 + 3 ⋅ x11, 2 ⋅ x10 + 3 ⋅ x11]
[17, 24] x21 ↦ {[x10 − x11, x10 − x11]

[1, 2]

x40 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 2, 1.5 ⋅ x00 + 1.5 ⋅ x11 + 2]
[2, 5]

Caterina UrbanFormal Verification of Machine LearningLesson 8 34

DeepPoly [Singh19]

x00 ↦ {[x00, x00]
[0, 1] x01 ↦ {[x01, x01]

[0, 1]

x30 ↦ {[x20 − x21 − 14, x20 − x21 − 14]
[2, 8] x31 ↦ {[0, 0.5 ⋅ (0.5 ⋅ x20 − 1.5 ⋅ x21 − 8) + 0.5]

[0, 1]

x40 ↦ {[0.5 ⋅ x30 − 2 ⋅ x31 + 1, 0.5 ⋅ x30 − 2 ⋅ x31 + 1]
[2, 5]

x40 ↦ {[x21 + 1, 0.5 ⋅ x20 − 0.5 ⋅ x21 − 6]
[2, 5]

x40 ↦ {[x10 − x11 + 1, 0.5 ⋅ x10 + 2 ⋅ x11 − 6]
[2, 5]

x40 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 2, 1.5 ⋅ x00 + 1.5 ⋅ x11 + 2]
[2, 5]

x10 ↦ {[x00 + x01 + 4, x00 + x01 + 4]
[4, 6] x11 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 3, 0.5 ⋅ x00 + 0.5 ⋅ x01 + 3]

[3, 4]

x20 ↦ {[2 ⋅ x10 + 3 ⋅ x11, 2 ⋅ x10 + 3 ⋅ x11]
[17, 24] x21 ↦ {[x10 − x11, x10 − x11]

[1, 2]

Caterina UrbanFormal Verification of Machine LearningLesson 8 35

DeepPoly [Singh19]

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3
3

x20 x30

x40

x41

0

x21

1

-1.5

-14

0.5

-1

x31

1

0.5

1

0

-2

0

-80

0.5

0.75

x00 ↦ {[x00, x00]
[0, 1]

x01 ↦ {[x01, x01]
[0, 1]

x41 ↦ {[x31, x31]
[0, 1]

x40 ↦ {[0.5 ⋅ x30 − 2 ⋅ x31 + 1, 0.5 ⋅ x30 − 2 ⋅ x31 + 1]
[2, 5]

Caterina UrbanFormal Verification of Machine LearningLesson 8 36

DeepPoly [Singh19]

x00 ↦ {[x00, x00]
[0, 1] x01 ↦ {[x01, x01]

[0, 1]

x30 ↦ {[x20 − x21 − 14, x20 − x21 − 14]
[2, 8] x31 ↦ {[0, 0.5 ⋅ (0.5 ⋅ x20 − 1.5 ⋅ x21 − 8) + 0.5]

[0, 1]

x10 ↦ {[x00 + x01 + 4, x00 + x01 + 4]
[4, 6] x11 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 3, 0.5 ⋅ x00 + 0.5 ⋅ x01 + 3]

[3, 4]

x20 ↦ {[2 ⋅ x10 + 3 ⋅ x11, 2 ⋅ x10 + 3 ⋅ x11]
[17, 24] x21 ↦ {[x10 − x11, x10 − x11]

[1, 2]

x41 ↦ {[x31, x31]
[0, 1]

x41 ↦ {[0, 0.25 ⋅ x20 − 0.75 ⋅ x21 − 3.5]
[0, 1]

Caterina UrbanFormal Verification of Machine LearningLesson 8 36

DeepPoly [Singh19]

x00 ↦ {[x00, x00]
[0, 1] x01 ↦ {[x01, x01]

[0, 1]

x30 ↦ {[x20 − x21 − 14, x20 − x21 − 14]
[2, 8] x31 ↦ {[0, 0.5 ⋅ (0.5 ⋅ x20 − 1.5 ⋅ x21 − 8) + 0.5]

[0, 1]

x10 ↦ {[x00 + x01 + 4, x00 + x01 + 4]
[4, 6] x11 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 3, 0.5 ⋅ x00 + 0.5 ⋅ x01 + 3]

[3, 4]

x20 ↦ {[2 ⋅ x10 + 3 ⋅ x11, 2 ⋅ x10 + 3 ⋅ x11]
[17, 24] x21 ↦ {[x10 − x11, x10 − x11]

[1, 2]

x41 ↦ {[x31, x31]
[0, 1]

x41 ↦ {[0, 0.25 ⋅ x20 − 0.75 ⋅ x21 − 3.5]
[0, 1]

x41 ↦ {[0, − 0.25 ⋅ x10 + 1.5 ⋅ x11 − 3.5]
[0, 1]

Caterina UrbanFormal Verification of Machine LearningLesson 8 36

DeepPoly [Singh19]

x00 ↦ {[x00, x00]
[0, 1] x01 ↦ {[x01, x01]

[0, 1]

x30 ↦ {[x20 − x21 − 14, x20 − x21 − 14]
[2, 8] x31 ↦ {[0, 0.5 ⋅ (0.5 ⋅ x20 − 1.5 ⋅ x21 − 8) + 0.5]

[0, 1]

x10 ↦ {[x00 + x01 + 4, x00 + x01 + 4]
[4, 6] x11 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 3, 0.5 ⋅ x00 + 0.5 ⋅ x01 + 3]

[3, 4]

x20 ↦ {[2 ⋅ x10 + 3 ⋅ x11, 2 ⋅ x10 + 3 ⋅ x11]
[17, 24] x21 ↦ {[x10 − x11, x10 − x11]

[1, 2]

x41 ↦ {[x31, x31]
[0, 1]

x41 ↦ {[0, 0.25 ⋅ x20 − 0.75 ⋅ x21 − 3.5]
[0, 1]

x41 ↦ {[0, − 0.25 ⋅ x10 + 1.5 ⋅ x11 − 3.5]
[0, 1]

x41 ↦ {[0, 0.5 ⋅ x00 + 0.5 ⋅ x01]
[0, 1]

Caterina UrbanFormal Verification of Machine LearningLesson 8 36

DeepPoly [Singh19]

x00 ↦ {[x00, x00]
[0, 1] x01 ↦ {[x01, x01]

[0, 1]

x30 ↦ {[x20 − x21 − 14, x20 − x21 − 14]
[2, 8] x31 ↦ {[0, 0.5 ⋅ (0.5 ⋅ x20 − 1.5 ⋅ x21 − 8) + 0.5]

[0, 1]

x10 ↦ {[x00 + x01 + 4, x00 + x01 + 4]
[4, 6] x11 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 3, 0.5 ⋅ x00 + 0.5 ⋅ x01 + 3]

[3, 4]

x20 ↦ {[2 ⋅ x10 + 3 ⋅ x11, 2 ⋅ x10 + 3 ⋅ x11]
[17, 24] x21 ↦ {[x10 − x11, x10 − x11]

[1, 2]

x41 ↦ {[x31, x31]
[0, 1]

x41 ↦ {[0, 0.25 ⋅ x20 − 0.75 ⋅ x21 − 3.5]
[0, 1]

x41 ↦ {[0, − 0.25 ⋅ x10 + 1.5 ⋅ x11 − 3.5]
[0, 1]

x41 ↦ {[0, 0.5 ⋅ x00 + 0.5 ⋅ x01]
[0, 1]

Caterina UrbanFormal Verification of Machine LearningLesson 8 37

DeepPoly [Singh19]

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3
3

x20 x30

x40

x41

0

x21

1

-1.5

-14

0.5

-1

x31

1

0.5

1

0

-2

0

-80

0.5

0.75

x00 ↦ {[x00, x00]
[0, 1]

x01 ↦ {[x01, x01]
[0, 1]

x41 ↦ {[x31, x31]
[0, 1]

x40 ↦ {[0.5 ⋅ x30 − 2 ⋅ x31 + 1, 0.5 ⋅ x30 − 2 ⋅ x31 + 1]
[2, 5]

Caterina UrbanFormal Verification of Machine LearningLesson 8 38

Other Static Analysis Methods
• T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M.

Vechev. AI2: Safety and Robustness Certification of Neural Networks with
Abstract Interpretation. In S&P, 2018.  
the first use of abstract interpretation for verifying neural networks

• G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. Vechev. Fast and Effective
Robustness Certification. In NeurIPS, 2018. 
a custom zonotope domain for certifying neural networks

• G. Singh, R. Ganvir, M. Püschel, and M. Vechev. Beyond the Single Neuron
Convex Barrier for Neural Network Certification. In NeurIPS, 2019.  
a framework to jointly approximate k ReLU activations

• M. N. Müller, G. Makarchuk, G. Singh, M. Püschel, and M. Vechev. PRIMA:
General and Precise Neural Network Certification via Scalable Convex Hull
Approximations. In POPL, 2022.  
a multi-neuron abstraction via a convex-hull approximation algorithm

Caterina UrbanFormal Verification of Machine LearningLesson 8

Safety

39

Stability

Safety

Fairness

Stop Max Speed 100

+ =
Goal G3 in [Kurd03]

Goal G4 in [Kurd03]

Caterina UrbanFormal Verification of Machine LearningLesson 8 40

ACAS Xu [Julian16][Katz17]

Airborne Collision Avoidance System for Unmanned Aircraft
implemented using 45 feed-forward fully-connected ReLU networks

A DNN implementation of ACAS Xu presents new certification challenges.
Proving that a set of inputs cannot produce an erroneous alert is paramount
for certifying the system for use in safety-critical settings. Previous certification
methodologies included exhaustively testing the system in 1.5 million simulated
encounters [20], but this is insu�cient for proving that faulty behaviors do not
exist within the continuous DNNs. This highlights the need for verifying DNNs
and makes the ACAS Xu DNNs prime candidates on which to apply Reluplex.

Network Functionality. The ACAS Xu system maps input variables to action
advisories. Each advisory is assigned a score, with the lowest score corresponding
to the best action. The input state is composed of seven dimensions (shown in
Fig. 6) which represent information determined from sensor measurements [19]:
(i) ⇢: Distance from ownship to intruder; (ii) ✓: Angle to intruder relative to
ownship heading direction; (iii) : Heading angle of intruder relative to ownship
heading direction; (iv) vown: Speed of ownship; (v) vint: Speed of intruder; (vi) ⌧ :
Time until loss of vertical separation; and (vii) aprev: Previous advisory. There
are five outputs which represent the di↵erent horizontal advisories that can be
given to the ownship: Clear-of-Conflict (COC), weak right, strong right, weak
left, or strong left. Weak and strong mean heading rates of 1.5 �/s and 3.0 �/s,
respectively.

Ownship

vown

Intruder

vint

⇢

✓

Fig. 6: Geometry for ACAS Xu Horizontal Logic Table

The array of 45 DNNs was produced by discretizing ⌧ and aprev, and produc-
ing a network for each discretized combination. Each of these networks thus has
five inputs (one for each of the other dimensions) and five outputs. The DNNs
are fully connected, use ReLU activation functions, and have 6 hidden layers
with a total of 300 ReLU nodes each.

Network Properties. It is desirable to verify that the ACAS Xu networks
assign correct scores to the output advisories in various input domains. Fig. 7
illustrates this kind of property by showing a top-down view of a head-on en-
counter scenario, in which each pixel is colored to represent the best action if
the intruder were at that location. We expect the DNN’s advisories to be con-
sistent in each of these regions; however, Fig. 7 was generated from a finite set

5 input sensor measurements 

• : distance from ownship to intruder

• : angle to intruder relative to ownship heading direction

• : heading angle to intruder relative to ownship heading direction

• : speed of ownship

• : speed of intruder

ρ
θ
ψ
vown
vint

22 / 30

Properties of Interest

1. No unnecessary turning advisories
2. Alerting regions are consistent
3. Strong alerts do not appear when vertical separation

is large

5 output horizontal advisories 

• Strong Left

• Weak Left

• Clear of Conflict

• Weak Right

• Strong Right

Caterina UrbanFormal Verification of Machine LearningLesson 8 41

ACAS Xu Properties [Katz17]

Example: “if intruder is near and approaching from the left, go Strong Right”

250 ≤ ρ ≤ 400

0.2 ≤ θ ≤ 0.4

…

…

…

…

…

…

…
…

ρ

θ

ψ

vown

vint

SL

WL

CoC

WR

SR

Caterina UrbanFormal Verification of Machine LearningLesson 8 42

Safety

M ⊧ 8I
O ⇔ {[[M]]} ⊆ 8I

O

Theorem

M ⊧ 8I
O ⇔ [[M]] ⊆ ⋃8I

O

Corollary

8I
O

def= {[[M]] ∈ %(Σ*) ∣ SAFEI
O([[M]])}

 is the set of all neural networks M (or, rather, their semantics)  
that satisfy the input and output specification and
8I

O [[M]]
I O

SAFEI
O([[M]]) def= ∀t ∈ [[M]] : t0 ⊧ I ⇒ tω ⊧ O

Input-Output Properties
: input specificationI
: output specificationO

Caterina UrbanFormal Verification of Machine LearningLesson 8 43

Model Checking Methods
Caterina Urban

Formal Verification of Machine Learning

Lesson 8

9

Formal MethodsMathematical Guarantees of Safety

Robert W. Floyd Tony Hoare

Deductive Verification
• extremely expressive

• relies on the user to guide the proof

Radhia Cousot

Patrick Cousot

Static Analysis • analysis of the software at some level of abstraction
• fully automatic and sound by construction

• generally not complete

Edmund Clarke Allen Emerson

Model Checking • analysis of a model of the software

• sound and complete with respect to the model

Caterina UrbanFormal Verification of Machine LearningLesson 8 44

Safety
Example

lj ≤ x0,j ≤ uj xN > 0

Caterina UrbanFormal Verification of Machine LearningLesson 8 45

SMT-Based Methods
Verification Reduced to Constraint Satisfiability

lj ≤ x0,j ≤ uj

xN ≤ 0

j ∈ {0,…, |X0 |}

 i ∈ {1,…, n − 1},
j ∈ {0,…, |Xi |}

i ∈ {0,…, n − 1}̂xi+1,j =
|Xi|

∑
k=0

wi
j,k ⋅ xi,k + bi,j

xi,j = max{0, ̂xi,j}

input specification

(negation of)  
output specification

satisfiable counterexample
otherwise safe

→
→

Caterina UrbanFormal Verification of Machine LearningLesson 8 46

Planet use approximations to  reduce the solution search space

0 ≤ xi,j
x̂i,j ≤ xi,j

xi,j ≤
bi,j

bi,j − ai,j
⋅ (x̂i,j − ai,j)

xi,j = max{0, ̂xi,j}

ba ̂x

x

0 ≤ x

x ≤
b
b − a

⋅ (x̂ − a)

x̂ ≤ x

R. Ehlers - Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks (ATVA 2017)

Caterina UrbanFormal Verification of Machine LearningLesson 8 47

Reluplex

G. Katz et al. - Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks (CAV 2017)

based on the simplex algorithm  extended to support ReLUs

Variable Value
x00

x̂ij

xN

…

xij
…

v00

̂vij

vN

…

vij
…

Variable Value
x00

x̂ij

xN

…

xij
…

v00

̂v′ ij

vN

…

vij
…

Variable Value
x00

x̂ij

xN

…

xij
…

v00

̂v′ ij

vN

…

0
…

Variable Value
x00

x̂ij

xN

…

xij
…

v00

̂v′ ij

vN

…

̂v′ ij
…

Caterina UrbanFormal Verification of Machine LearningLesson 8 47

Reluplex

G. Katz et al. - Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks (CAV 2017)

based on the simplex algorithm  extended to support ReLUs

Variable Value
x00

x̂ij

xN

…

xij
…

v00

̂vij

vN

…

vij
…

Variable Value
x00

x̂ij

xN

…

xij
…

v00

̂v′ ij

vN

…

vij
…

Variable Value
x00

x̂ij

xN

…

xij
…

v00

̂v′ ij

vN

…

0
…

Variable Value
x00

x̂ij

xN

…

xij
…

v00

̂v′ ij

vN

…

̂v′ ij
…

Follow-up Work
 
G. Katz et al. - The
Marabou Framework for
Verification and Analysis
of Deep Neural Networks
(CAV 2019)

Caterina UrbanFormal Verification of Machine LearningLesson 8 48

Other SMT-Based Methods
• L. Pulina and A. Tacchella. An Abstraction-Refinement Approach to Verification

of Artificial Neural Networks. In CAV, 2010. 
the first formal verification method for neural networks

• O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and A.
Criminisi. Measuring Neural Net Robustness with Constraints. In NeurIPS, 2016. 
an approach for finding the nearest adversarial example according to the
L∞ distance

• X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety Verification of Deep
Neural Networks. In CAV, 2017.  
an approach for proving local robustness to adversarial perturbations

• N. Narodytska, S. Kasiviswanathan, L. Ryzhyk, M. Sagiv, and T. Walsh.
Verifying Properties of Binarized Deep Neural Networks. In AAAI, 2018. 
C. H. Cheng, G. Nührenberg, C. H. Huang, and H. Ruess. Verification of
Binarized Neural Networks via Inter-Neuron Factoring. In VSTTE, 2018. 
approaches focusing on binarized neural networks

Caterina UrbanFormal Verification of Machine LearningLesson 8 49

MILP-Based Methods
Verification Reduced to Mixed Integer Linear Program

δi,j ∈ {0, 1}
i ∈ {1,…, n − 1}
j ∈ {0,…, |Xi |}

i ∈ {0,…, n − 1}̂xi+1,j =
|Xi|

∑
k=0

wi
j,k ⋅ xi,k + bi,j

xi,j = δi,j ⋅ ̂xi,j
δi,j = 1 ⇒ ̂xi,j ≥ 0
δi,j = 0 ⇒ ̂xi,j < 0

lj ≤ x0,j ≤ uj j ∈ {0,…, |X0 |} input specification

min xN objective function
 counterexample

otherwise safe
min xN ≤ 0 →

→

Caterina UrbanFormal Verification of Machine LearningLesson 8 50

δi,j ∈ {0, 1}
i ∈ {1,…, n − 1}
j ∈ {0,…, |Xi |}

i ∈ {0,…, n − 1}̂xi+1,j =
|Xi|

∑
k=0

wi
j,k ⋅ xi,k + bi,j

MILP-Based Methods
Bounded Encoding with Symmetric Bounds

0 ≤ xi,j ≤ Mi,j ⋅ δi,j
̂xi,j ≤ xi,j ≤ ̂xi,j − Mi,j ⋅ (1 − δi,j)

Mi,j = max{−li, ui}

Caterina UrbanFormal Verification of Machine LearningLesson 8 51

̂xi+1,j =
|Xi|

∑
k=0

wi
j,k ⋅ xi,k + bi,j

0 ≤ xi,j ≤ Mi,j ⋅ δi,j
̂xi,j ≤ xi,j ≤ ̂xi,j − Mi,j ⋅ (1 − δi,j)

Mi,j = max{−li, ui}

lj ≤ x0,j ≤ uj

Sherlock
Output Range Analysis

use local search to  speed up the MILP solver

min xN

S. Dutta et al. - Output Range Analysis for Deep Feedforward Neural Networks (NFM 2018)

Caterina UrbanFormal Verification of Machine LearningLesson 8 51

̂xi+1,j =
|Xi|

∑
k=0

wi
j,k ⋅ xi,k + bi,j

0 ≤ xi,j ≤ Mi,j ⋅ δi,j
̂xi,j ≤ xi,j ≤ ̂xi,j − Mi,j ⋅ (1 − δi,j)

Mi,j = max{−li, ui}

lj ≤ x0,j ≤ uj

Sherlock
Output Range Analysis

use local search to  speed up the MILP solver

sample random input
and evaluate output

X
L

xN < L

S. Dutta et al. - Output Range Analysis for Deep Feedforward Neural Networks (NFM 2018)

Caterina UrbanFormal Verification of Machine LearningLesson 8 51

̂xi+1,j =
|Xi|

∑
k=0

wi
j,k ⋅ xi,k + bi,j

0 ≤ xi,j ≤ Mi,j ⋅ δi,j
̂xi,j ≤ xi,j ≤ ̂xi,j − Mi,j ⋅ (1 − δi,j)

Mi,j = max{−li, ui}

lj ≤ x0,j ≤ uj

Sherlock
Output Range Analysis

use local search to  speed up the MILP solver

xN < L

find another input
such that

X̂
L̂ ≤ xN

S. Dutta et al. - Output Range Analysis for Deep Feedforward Neural Networks (NFM 2018)

Caterina UrbanFormal Verification of Machine LearningLesson 8 51

̂xi+1,j =
|Xi|

∑
k=0

wi
j,k ⋅ xi,k + bi,j

0 ≤ xi,j ≤ Mi,j ⋅ δi,j
̂xi,j ≤ xi,j ≤ ̂xi,j − Mi,j ⋅ (1 − δi,j)

Mi,j = max{−li, ui}

lj ≤ x0,j ≤ uj

Sherlock
Output Range Analysis

use local search to  speed up the MILP solver

find another input
such that

X̂
L̂ ≤ xN

xN < L̂

S. Dutta et al. - Output Range Analysis for Deep Feedforward Neural Networks (NFM 2018)

Caterina UrbanFormal Verification of Machine LearningLesson 8 52

δi,j ∈ {0, 1}
i ∈ {1,…, n − 1}
j ∈ {0,…, |Xi |}

i ∈ {0,…, n − 1}̂xi+1,j =
|Xi|

∑
k=0

wi
j,k ⋅ xi,k + bi,j

MILP-Based Methods
Bounded Encoding with Asymmetric Bounds

0 ≤ xi,j ≤ ui,j ⋅ δi,j
̂xi,j ≤ xi,j ≤ ̂xi,j − li,j ⋅ (1 − δi,j)

Caterina UrbanFormal Verification of Machine LearningLesson 8 53

δi,j ∈ {0, 1}
i ∈ {1,…, n − 1}
j ∈ {0,…, |Xi |}

i ∈ {0,…, n − 1}̂xi+1,j =
|Xi|

∑
k=0

wi
j,k ⋅ xi,k + bi,j

MIPVerify
Finding Nearest Adversarial Example

0 ≤ xi,j ≤ ui,j ⋅ δi,j
̂xi,j ≤ xi,j ≤ ̂xi,j − li,j ⋅ (1 − δi,j)

V. Tjeng et al. - Evaluating Robustness of Neural Networks with Mixed Integer Programming (ICLR 2019)

minX′ d(X, X′)

xN ≠ O

Caterina UrbanFormal Verification of Machine LearningLesson 8 54

Other MILP-Based Methods
• R. Bunel, I. Turkaslan, P. H. S. Torr, P. Kohli, and M. P. Kumar. A Unified

View of Piecewise Linear Neural Network Verification. In NeurIPS, 2018. 
a unifying verification framework for piecewise-linear ReLU neural
networks

• C.-H. Cheng, G. Nührenberg, and H. Ruess. Maximum Resilience of
Artificial Neural Networks. In ATVA, 2017.  
an approach for finding a lower bound on robustness to adversarial
perturbations

• M. Fischetti and J. Jo. Deep Neural Networks and Mixed Integer Linear
Optimization. 2018.  
an approach for feature visualization and building adversarial examples

Caterina UrbanFormal Verification of Machine LearningLesson 8 55

Static Analysis Methods
Caterina Urban

Formal Verification of Machine Learning

Lesson 8

9

Formal MethodsMathematical Guarantees of Safety

Robert W. Floyd Tony Hoare

Deductive Verification
• extremely expressive

• relies on the user to guide the proof

Radhia Cousot

Patrick Cousot

Static Analysis • analysis of the software at some level of abstraction
• fully automatic and sound by construction

• generally not complete

Edmund Clarke Allen Emerson

Model Checking • analysis of a model of the software

• sound and complete with respect to the model

Caterina UrbanFormal Verification of Machine LearningLesson 8 56

Forward Analysis

…

…

1. proceed forwards from
an abstraction of the
input specification I

2. check output for inclusion  
in output specification :
included safe
otherwise alarm

O
→
→!

Caterina UrbanFormal Verification of Machine LearningLesson 8 57

Example

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

Clear of Conflict

Strong Turnθ

ρ

Caterina UrbanFormal Verification of Machine LearningLesson 8 57

Example

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1 Clear of Conflict

Caterina UrbanFormal Verification of Machine LearningLesson 8 59

DeepPoly Domain [Singh19]

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1 Clear of Conflict

Strong Turn

x01 ↦ {[x01, x01]
[−1, 1]

x00 ↦ {[x00, x00]
[0, 1]

x11 ↦ {[x00 − x01, x00 − x01]
[−1, 2]

x11 ↦ {[x11, 2
3 ⋅ x11 + 2

3]
[−1, 2]

ReLU

x10 ↦ {[x00 + x01, x00 + x01]
[−1, 2]

x10 ↦ {[x10, 2
3 ⋅ x10 + 2

3]
[−1, 2]ReLU

ba
x

ReLU(x)

ReLU(x) ≤
b (x − a)

b − a

 x

≤ ReLU(x)

Caterina UrbanFormal Verification of Machine LearningLesson 8 60

DeepPoly Domain [Singh19]

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1 Clear of Conflict

Strong Turn

x01 ↦ {[x01, x01]
[−1, 1]

x00 ↦ {[x00, x00]
[0, 1]

x20 ↦ {
[x10 + x11, x10 + x11]
[0, 8

3]

x21 ↦ {
[x10 − x11, x10 − x11]
[− 7

3 , 7
3]

x21 ↦
[0, 0.5 ⋅ x21 + 7

6]

[0, 7
3]

ReLU

ba
x

ReLU(x)

ReLU(x) ≤
b (x − a)

b − a

0 ≤ ReLU(x)

Caterina UrbanFormal Verification of Machine LearningLesson 8 61

DeepPoly Domain [Singh19]

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1 Clear of Conflict

Strong Turn

x01 ↦ {[x01, x01]
[−1, 1]

x00 ↦ {[x00, x00]
[0, 1]

x30 ↦ {[x20 + x21 + 1, x20 + x21 + 1]
[1, 5 . 5]

x31 ↦
[x21 − 1.25, x21 − 1.25]
[−1 . 25, 13

12]

not precise enough!

Caterina UrbanFormal Verification of Machine LearningLesson 8 63

Interval Domain
with Symbolic Constant Propagation [Li19]

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

Clear of Conflict

Strong Turn−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1

x01 ↦ {x01
[−1, 1]

x00 ↦ {x00
[0, 1]

x10 ↦ {x00 + x01
[−1, 2] x10 ↦ {x10

[0, 2]

x11 ↦ {x11
[0, 2]x11 ↦ {x00 − x01

[−1, 2]
ReLU

ReLU

Caterina UrbanFormal Verification of Machine LearningLesson 8 64

Interval Domain
with Symbolic Constant Propagation [Li19]

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

Clear of Conflict

Strong Turn−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1

x01 ↦ {x01
[−1, 1]

x00 ↦ {x00
[0, 1]

x20 ↦ {x10 + x11
[0, 4]

x21 ↦ {x21
[0, 2]x21 ↦ {x10 − x11

[−2, 2]
ReLU

Caterina UrbanFormal Verification of Machine LearningLesson 8 65

Interval Domain
with Symbolic Constant Propagation [Li19]

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

Clear of Conflict

−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1

x01 ↦ {x01
[−1, 1]

x00 ↦ {x00
[0, 1]

x30 ↦ {x10 + x11 + x21 + 1
[1, 7]

x31 ↦ {x21 − 1.25
[−1 . 25, 0 . 75]

Caterina UrbanFormal Verification of Machine LearningLesson 8 61

DeepPoly Domain [Singh19]

x00

x01

x10

1

-1

1

1

0

x11

1

-1

1

1

0

x20

x30

x31

0

x21

1

1

1

0

1

-1.25

0

−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1 Clear of Conflict

Strong Turn

x01 ↦ {[x01, x01]
[−1, 1]

x00 ↦ {[x00, x00]
[0, 1]

x30 ↦ {[x20 + x21 + 1, x20 + x21 + 1]
[1, 5 . 5]

x31 ↦
[x21 − 1.25, x21 − 1.25]
[−1 . 25, 13

12]

not precise enough!

Caterina UrbanFormal Verification of Machine LearningLesson 8 67

Product Domain [Mazzucato21]

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

Clear of Conflict

Strong Turn−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1

x01 ↦
x01
[x01, x01]
[−1, 1]

x00 ↦
x00
[x00, x00]
[0, 1]

x10 ↦
x00 + x01
[x00 + x01, x00 + x01]
[−1, 2]

x10 ↦
x10 → [0, 2]
[x10, 2

3 ⋅ x10 + 2
3] → [−1, 2]

[0, 2]
ReLU

x11 ↦
x00 − x01
[x00 − x01, x00 − x01]
[−1, 2]

x11 ↦
x11 → [0, 2]
[x11, 2

3 ⋅ x11 + 2
3] → [−1, 2]

[0, 2]
ReLU

Caterina UrbanFormal Verification of Machine LearningLesson 8 68

Product Domain [Mazzucato21]

x21 ↦

x21 → [0, 2]
[0, 0.5 ⋅ x21 + 0.5] → [0, 5

3]

[0, 5
3]

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

Clear of Conflict

Strong Turn−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1

x01 ↦
x01
[x01, x01]
[−1, 1]

x00 ↦
x00
[x00, x00]
[0, 1]

x21 ↦
x10 − x11 → [−2, 2]
[x10 − x11, x10 − x11] → [− 7

3 , 7
3]

[−2, 2] ReLU

x20 ↦

x10 + x11 → [0, 4]
[x10 + x11, x10 + x11] → [0, 8

3]

[0, 8
3]

Caterina UrbanFormal Verification of Machine LearningLesson 8 69

Product Domain [Mazzucato21]

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

Clear of Conflict

−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1

x01 ↦
x01
[x01, x01]
[−1, 1]

x00 ↦
x00
[x00, x00]
[0, 1]

x30 ↦
x10 + x11 + x21 + 1 → [1, 20

3]
[x20 + x21 + 1, x20 + x21 + 1] → [1, 4 . 5]
[1, 4 . 5]

x31 ↦

x21 − 1.25 → [−1 . 25, 5
12]

[x21 − 1.25, x21 − 1.25] → [−1 . 25, 5
12]

[−1 . 25, 5
12]

Caterina UrbanFormal Verification of Machine LearningLesson 8 70

Other Complete Methods
Caterina Urban

Formal Verification of Machine Learning

Lesson 8

9

Formal MethodsMathematical Guarantees of Safety

Robert W. Floyd Tony Hoare

Deductive Verification
• extremely expressive

• relies on the user to guide the proof

Radhia Cousot

Patrick Cousot

Static Analysis • analysis of the software at some level of abstraction
• fully automatic and sound by construction

• generally not complete

Edmund Clarke Allen Emerson

Model Checking • analysis of a model of the software

• sound and complete with respect to the model

Caterina UrbanFormal Verification of Machine LearningLesson 8 71

Star Sets
Exact Static Analysis Method

use union of  efficient representations of bounded convex polyhedra

H.-D. Tran et al. - Star-Based Reachability Analysis of Deep Neural Networks (FM 2018)

Θ def= ⟨c, V, P⟩
: center

: basis vectors in
: predicate

c ∈ ℛn

V = {v1, …, vm} ℛn

P : ℛm → { ⊥ , ⊤ }

[[Θ]] = {x ∣ x = c +
m

∑
i=1

αivi such that P(α1, …, αm) = ⊤ }

• fast and cheap affine mapping operations neural network layers
• inexpensive intersections with half-spaces ReLU activations

→
→

Caterina UrbanFormal Verification of Machine LearningLesson 8 71

Star Sets
Exact Static Analysis Method

use union of  efficient representations of bounded convex polyhedra

H.-D. Tran et al. - Star-Based Reachability Analysis of Deep Neural Networks (FM 2018)

Θ def= ⟨c, V, P⟩
: center

: basis vectors in
: predicate

c ∈ ℛn

V = {v1, …, vm} ℛn

P : ℛm → { ⊥ , ⊤ }

[[Θ]] = {x ∣ x = c +
m

∑
i=1

αivi such that P(α1, …, αm) = ⊤ }

• fast and cheap affine mapping operations neural network layers
• inexpensive intersections with half-spaces ReLU activations

→
→

Follow-up Work
 
H.-D. Tran et al. -
Verification of Deep
Convolutional Neural
Networks Using
ImageStars (CAV 2020)

Caterina UrbanFormal Verification of Machine LearningLesson 8 72

ReluVal
Asymptotically Complete Method

use symbolic propagation + iterative input refinement

S. Wang et al. - Formal Security Analysis of Neural Networks Using Symbolic Intervals (USENIX Security 2018)

 safe

Caterina UrbanFormal Verification of Machine LearningLesson 8 73

Neurify
Asymptotically Complete Method

use symbolic propagation + convex ReLU approximation +  iterative input/ReLU refinement

S. Wang et al. - Formal Security Analysis of Neural Networks Using Symbolic Intervals (USENIX Security 2018)

xi,j ↦ {[∑k c0,k ⋅ x0,k + c, ∑k d0,k ⋅ x0,k + d] c0,k, c, d0,k, d ∈ ℛ
[a, b] a, b ∈ ℛ

xi,j ↦ {[Ei,j, Ei,j]
[a, b]

xi,j ↦ {[Ei,j, Ei,j]
[a, b]

xi,j ↦ {[0, 0]
[0, 0]

ReLU

ReLU

ReLU

0 ≤ a

a < 0 ∧ 0 < b

b ≤ 0

ba x

ReLU(x)

b
b − a

x ≤ ReLU(x)

ReLU(x) ≤
b
b − a

(x − a)
xi,j ↦ {[b

b − a Ei,j, b
b − a (Ei,j − a)]

[a, b]

Caterina UrbanFormal Verification of Machine LearningLesson 8 74

Further Complete Methods

• W. Ruan, X. Huang, and M. Kwiatkowska. Reachability Analysis of Deep
Neural Networks with Provable Guarantees. In IJCAI, 2018. 
a global optimization-based approach for verifying Lipschitz
continuous neural networks

• G. Singh, T. Gehr, M. Püschel, and M. Vechev. Boosting Robustness
Certification of Neural Networks. In ICLR, 2019. 
an approach combining abstract interpretation and (mixed integer)
linear programming

Caterina UrbanFormal Verification of Machine LearningLesson 8 75

Other Incomplete Methods
Caterina Urban

Formal Verification of Machine Learning

Lesson 8

9

Formal MethodsMathematical Guarantees of Safety

Robert W. Floyd Tony Hoare

Deductive Verification
• extremely expressive

• relies on the user to guide the proof

Radhia Cousot

Patrick Cousot

Static Analysis • analysis of the software at some level of abstraction
• fully automatic and sound by construction

• generally not complete

Edmund Clarke Allen Emerson

Model Checking • analysis of a model of the software

• sound and complete with respect to the model

Caterina UrbanFormal Verification of Machine LearningLesson 8 76

Interval Neural Networks
Abstraction-Based Method

merge neurons layer-wise  

based on partitioning strategy +

replace weights with intervals

P. Prabhakar and Z. R. Afza - Abstraction based Output Range Analysis for Neural Networks (NeurIPS 2019)

[w
01 , w

01]

[w21, w21]
[w11, w11]

lj ≤ x0,j ≤ uj xN > 0

Related Work
 
Y. Y. Elboher et al. - An
Abstraction-Based
Framework for Neural
Network Verification (CAV
2020)

Caterina UrbanFormal Verification of Machine LearningLesson 8 77

Further Incomplete Methods

• W. Xiang, H.-D. Tran, and T. T. Johnson. Output Reachable Set Estimation
and Verification for Multi-Layer Neural Networks. 2018. 
an approach combining simulation and linear programming

• K. Dvijotham, R. Stanforth, S. Gowal, T. Mann, and P. Kohli. A Dual
Approach to Scalable Verification of Deep Networks. In UAI, 2018. 
an approach based on duality for verifying neural networks

Caterina UrbanFormal Verification of Machine LearningLesson 8 78

Further Incomplete Methods

• E. Wong and Z. Kolter. Provable Defenses Against Adversarial Examples
via the Convex Outer Adversarial Polytope. In ICML, 2018. 
A. Raghunathan, J. Steinhardt, and P. Liang. Certified Defenses against
Adversarial Examples. In ICML, 2018. 
T.-W. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, L. Daniel, D.
Boning, and I. Dhillon. Towards Fast Computation of Certified Robustness
for ReLU Networks. In ICML, 2018.  
H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel. Efficient
Neural Network Robustness Certification with General Activation Functions.
In NeurIPS, 2018. 
approaches for finding a lower bound on robustness to adversarial
perturbations

Caterina UrbanFormal Verification of Machine LearningLesson 8 79

Further Incomplete Methods
• A. Boopathy, T.-W. Weng, P.-Y. Chen, S. Liu, and L. Daniel. CNN-Cert: An

Efficient Framework for Certifying Robustness of Convolutional Neural
Networks. In AAAI, 2019.  
approach focusing on convolutional neural networks

• C.-Y. Ko, Z. Lyu, T.-W. Weng, L. Daniel, N. Wong, and D. Lin. POPQORN:
Quantifying Robustness of Recurrent Neural Networks. In ICML, 2019. 
H. Zhang, M. Shinn, A. Gupta, A. Gurfinkel, N. Le, and N. Narodytska.
Verification of Recurrent Neural Networks for Cognitive Tasks via
Reachability Analysis. In ECAI, 2020.  
approaches focusing on recurrent neural networks

• D. Gopinath, H. Converse, C. S. Pasareanu, and A. Taly. Property
Inference for Deep Neural Networks. In ASE, 2019. 
an approach for inferring safety properties of neural networks

Caterina UrbanFormal Verification of Machine LearningLesson 8

suffer from false positives

Disadvantages

able to scale to large models

sound often also with respect to  
floating-point arithmetic

less limited to certain  
model architectures

Advantages

80

Complete Methods
Advantages

sound and complete

Disadvantages

soundness not typically guaranteed  
with respect to floating-point arithmetic  

do not scale to large models 

often limited to certain  
model architectures

Incomplete Methods

Caterina UrbanFormal Verification of Machine LearningLesson 8 81

Stability

Safety

Fairness

Stop Max Speed 100

+ =
Goal G3 in [Kurd03]

Goal G4 in [Kurd03]

Caterina UrbanFormal Verification of Machine LearningLesson 8 82

ML Impacts Our Society

30/09/2019, 13)13AI used for first time in job interviews in UK to find best applicants

Page 1 of 8https://www.telegraph.co.uk/news/2019/09/27/ai-facial-recognition-used-first-time-job-interviews-uk-find/amp/?__twitter_impression=true

A

AI used for first time in job interviews in UK to
find best applicants

An applicant being interviewed on their phone

By Charles Hymas

27 SEPTEMBER 2019 • 10:00 PM

rtificial intelligence (AI) and facial expression technology is being used

for the first time in job interviews in the UK to identify the best

candidates.

Unilever, the consumer goods giant, is among companies using AI

technology to analyse the language, tone and facial expressions of candidates

when they are asked a set of identical job questions which they film on their

mobile phone or laptop.

share

30/09/2019, 13)13AI used for first time in job interviews in UK to find best applicants

Page 1 of 8https://www.telegraph.co.uk/news/2019/09/27/ai-facial-recognition-used-first-time-job-interviews-uk-find/amp/?__twitter_impression=true

A

AI used for first time in job interviews in UK to
find best applicants

An applicant being interviewed on their phone

By Charles Hymas

27 SEPTEMBER 2019 • 10:00 PM

rtificial intelligence (AI) and facial expression technology is being used

for the first time in job interviews in the UK to identify the best

candidates.

Unilever, the consumer goods giant, is among companies using AI

technology to analyse the language, tone and facial expressions of candidates

when they are asked a set of identical job questions which they film on their

mobile phone or laptop.

share

30/09/2019, 14*52

In 2019, predictive algorithms will start to make banking fair for all | WIRED UK

Page 1 of 12

https://www.wired.co.uk/article/banking-algorithms-predictions

Fintech

In 2019, predictive algorithms will start to make banking fair for all

This year we will see a technology-led democratisation of access to capital for small businesses give new opportunities to every

community

By KATHRYN PETRALIA
11 Jan 2019

We use cookies to personalise content and ads, to provide social media

features and to analyse our traffic. We also share information about your

use of our site with our social media, advertising and analytics partners.

View Cookie Policy

✓ Accept Cookies

Manage Preferences

›

30/09/2019, 14*52

In 2019, predictive algorithms will start to make banking fair for all | WIRED UK

Page 1 of 12

https://www.wired.co.uk/article/banking-algorithms-predictions

Fintech

In 2019, predictive algorithms will start to make banking fair for all

This year we will see a technology-led democratisation of access to capital for small businesses give new opportunities to every

community

By KATHRYN PETRALIA
11 Jan 2019

We use cookies to personalise content and ads, to provide social media

features and to analyse our traffic. We also share information about your

use of our site with our social media, advertising and analytics partners.

View Cookie Policy

✓ Accept Cookies

Manage Preferences

›

30/09/2019, 14*52

In 2019, predictive algorithms will start to make banking fair for all | WIRED UK

Page 1 of 12

https://www.wired.co.uk/article/banking-algorithms-predictions

Fintech

In 2019, predictive algorithms will start to make banking fair for all

This year we will see a technology-led democratisation of access to capital for small businesses give new opportunities to every

community

By KATHRYN PETRALIA
11 Jan 2019

We use cookies to personalise content and ads, to provide social media

features and to analyse our traffic. We also share information about your

use of our site with our social media, advertising and analytics partners.

View Cookie Policy

✓ Accept Cookies

Manage Preferences

›

30/09/2019, 14*21Automated background checks are deciding whoʼs fit for a home - The Verge

Page 1 of 8https://www.theverge.com/2019/2/1/18205174/automation-background-check-criminal-records-corelogic

Part of The Real-World AI Issue

ikhail Arroyo had made it out of the coma, but he was still frail
when his mother, Carmen, tried to move him in with her. The
months had been taxing: Mikhail was severely injured in a

devastating fall in 2015. He had spent time in the hospital, and by 2016
was in a nursing home where his mother visited him daily, waiting until

M

AUTOMATED BACKGROUND CHECKS ARE
DECIDING WHO’S FIT FOR A HOME
But advocates say algorithms can’t capture the
complexity of criminal records
By Colin Lecher @colinlecher Feb 1, 2019, 8:00am EST
Illustration by Alex Castro

POLICY

30/09/2019, 14*21Automated background checks are deciding whoʼs fit for a home - The Verge

Page 1 of 8https://www.theverge.com/2019/2/1/18205174/automation-background-check-criminal-records-corelogic

Part of The Real-World AI Issue

ikhail Arroyo had made it out of the coma, but he was still frail
when his mother, Carmen, tried to move him in with her. The
months had been taxing: Mikhail was severely injured in a

devastating fall in 2015. He had spent time in the hospital, and by 2016
was in a nursing home where his mother visited him daily, waiting until

M

AUTOMATED BACKGROUND CHECKS ARE
DECIDING WHO’S FIT FOR A HOME
But advocates say algorithms can’t capture the
complexity of criminal records
By Colin Lecher @colinlecher Feb 1, 2019, 8:00am EST
Illustration by Alex Castro

POLICY

30/09/2019, 13)11

Can AI Be a Fair Judge in Court? Estonia Thinks So | WIRED

Page 1 of 10

https://www.wired.com/story/can-ai-be-fair-judge-court-estonia-thinks-so/

ERIC NIILER BUSINESS 03.25.2019 07:00 AM

Can AI Be a Fair Judge in Court?Estonia Thinks So
Estonia plans to use an artificial intelligence program to decide some

small-claims cases, part of a push to make government services
smarter.

BUSINESS
CULTURE GEAR
IDEAS SCIENCE
SECURITY

MORE SIGN IN SUBSCRIBE

Subscribe to the Series
Machine Bias: Investigating the algorithms

ON A SPRING AFTERNOON IN 2014, Brisha Borden was running late to pick up her god-
sister from school when she spotted an unlocked kid’s blue Hu!y bicycle and a silver
Razor scooter. Borden and a friend grabbed the bike and scooter and tried to ride them
down the street in the Fort Lauderdale suburb of Coral Springs.

Just as the 18-year-old girls were realizing they were too big for the tiny conveyances —
which belonged to a 6-year-old boy — a woman came running after them saying, “That’s
my kid’s stu!.” Borden and her friend immediately dropped the bike and scooter and
walked away.

But it was too late — a neighbor who witnessed the heist had already called the police.
Borden and her friend were arrested and charged with burglary and petty theft for the
items, which were valued at a total of $80.

Compare their crime with a similar one:
The previous summer, 41-year-old Vernon

Machine Bias
There’s software used across the country to predict future criminals. And it’s biased

against blacks.

by Julia Angwin, Je! Larson, Surya Mattu and Lauren Kirchner, ProPublica
May 23, 2016

ProPublica DonateShare on Facebook Share on Twitter Comment

07/10/2019, 22)55

Amazon scraps secret AI recruiting tool that showed bias against women - Reuters

Page 1 of 5

https://www.reuters.com/article/us-amazon-com-jobs-automation-in…-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G

BUSINESS NEWS OCTOBER 10, 2018 / 5:12 AM / A YEAR AGO

Amazon scraps secret AI recruiting tool that

showed bias against women

Jeffrey Dastin

8 M I N R E A D

SAN FRANCISCO (Reuters) - Amazon.com Inc’s (AMZN.O) machine-learning

specialists uncovered a big problem: their new recruiting engine did not like women.

The team had been building computer programs since 2014 to review job applicants’

resumes with the aim of mechanizing the search for top talent, five people familiar with

the effort told Reuters.

Automation has been key to Amazon’s e-commerce dominance, be it inside warehouses

or driving pricing decisions. The company’s experimental hiring tool used artificial

intelligence to give job candidates scores ranging from one to five stars - much like

shoppers rate products on Amazon, some of the people said.

“Everyone wanted this holy grail,” one of the people said. “They literally wanted it to be

an engine where I’m going to give you 100 resumes, it will spit out the top five, and

we’ll hire those.”

Business Markets World Politics TV More

Discover Thomson Reuters

07/10/2019, 22)55

Amazon scraps secret AI recruiting tool that showed bias against women - Reuters

Page 1 of 5

https://www.reuters.com/article/us-amazon-com-jobs-automation-in…-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G

BUSINESS NEWS OCTOBER 10, 2018 / 5:12 AM / A YEAR AGO

Amazon scraps secret AI recruiting tool that

showed bias against women

Jeffrey Dastin

8 M I N R E A D

SAN FRANCISCO (Reuters) - Amazon.com Inc’s (AMZN.O) machine-learning

specialists uncovered a big problem: their new recruiting engine did not like women.

The team had been building computer programs since 2014 to review job applicants’

resumes with the aim of mechanizing the search for top talent, five people familiar with

the effort told Reuters.

Automation has been key to Amazon’s e-commerce dominance, be it inside warehouses

or driving pricing decisions. The company’s experimental hiring tool used artificial

intelligence to give job candidates scores ranging from one to five stars - much like

shoppers rate products on Amazon, some of the people said.

“Everyone wanted this holy grail,” one of the people said. “They literally wanted it to be

an engine where I’m going to give you 100 resumes, it will spit out the top five, and

we’ll hire those.”

Business Markets World Politics TV More

Discover Thomson Reuters

Caterina UrbanFormal Verification of Machine LearningLesson 8 83

Caterina UrbanFormal Verification of Machine LearningLesson 8 84

Dependency Fairness [Galhotra17]

The classification is independent of the values of the sensitive inputs

"
#$

%%%

%%
$

%%
#

%%
$

%%
#

Caterina UrbanFormal Verification of Machine LearningLesson 8 85

Dependency Fairness
ℱi

def= {[[M]] ∈ %(Σ*) ∣ UNUSEDi([[M]])}
 is the set of all neural networks M (or, rather, their semantics)  

that do not use the value of the sensitive input node for classification
ℱi [[M]]

x0,i

UNUSEDi([[M]]) def=

∀t ∈ [[M]], v ∈ ℛ : t0(x0,i) ≠ v ⇒ ∃t′ ∈ [[M]] :
(∀0 ≤ j ≤ |L0 | : j ≠ i ⇒ t0(x0,j) = t′ 0(x0,j))
∧ t′ 0(x0,i) = v
∧ maxj tω(xN,j) = maxj t′ ω(xN,j)

Intuitively: any possible classification  
outcome is possible from any value

of the sensitive input node x0,i

Caterina Urban

Static Analysis for Data Science

Lesson 7

18

Input Data (Non-)Usage

!J
def= {[[P]] ∈ #(Σ+∞) ∣ UNUSEDJ([[P]])}

 is the set of all programs P (or, rather, their semantics)  

that do not use the value of the input variables in

!J

[[P]]
J ⊆ IP

UNUSEDJ([[M]]) def=

∀t ∈ [[P]], V ∈) : t0(J) ≠ V ⇒ ∃t′ ∈ [[P]] :

(∀0 ≤ i ≤ | IP| : i ∉ J ⇒ t0(i) = t′ 0(i))

∧ t′ 0(J) = V
∧ tω = t′ ω

Intuitively: any possible program  

outcome is possible from any value

of the input variables in J

P ⊧ !J ⇔ {[[P]]} ⊆ !JTheorem

Collecting semantics and properties

General properties

General settin
g:

given a program prog œ Prog

its semantics:
J · K : Prog æ P(�

ú) is a set of finite traces

a property P is the set of correct
program semantics

i.e., a set of sets of traces P œ P(P(�
ú))

™ gives an information order on properties

P ™ PÕ means that PÕ is weaker than P (allows more semantics)

Course 2

Program Semantics and Properties

Antoine Miné

p. 23 / 98

Caterina UrbanFormal Verification of Machine LearningLesson 8 86

Dependency Fairness

"
#$

%%%

#$
ℱ

%%
$
%
$
%
#
%%
%%

$
%
$

%
#

%%
#

%%
$
%
$
%
#
%%
#

Caterina UrbanFormal Verification of Machine LearningLesson 8 87

Dependency Fairness
ℱi

def= {[[M]] ∈ %(Σ*) ∣ UNUSEDi([[M]])}
 is the set of all neural networks M (or, rather, their semantics)  

that do not use the value of the sensitive input node for classification
ℱi [[M]]

x0,i

UNUSEDi([[M]]) def=

∀t ∈ [[M]], v ∈ ℛ : t0(x0,i) ≠ v ⇒ ∃t′ ∈ [[M]] :
(∀0 ≤ j ≤ |L0 | : j ≠ i ⇒ t0(x0,j) = t′ 0(x0,j))
∧ t′ 0(x0,i) = v
∧ maxj tω(xN,j) = maxj t′ ω(xN,j)

Intuitively: any possible classification  
outcome is possible from any value

of the sensitive input node x0,i

M ⊧ ℱi ⇔ {[[M]]} ⊆ ℱi

Theorem

Caterina UrbanFormal Verification of Machine LearningLesson 8 88

Hierarchy of Semantics

collecting semantics

dependency semantics

parallel semantics
α@

{[[M]]}

{[M]}@
∙

[[M]]∙

{[M]}@
↝

[[M]]↝

{[M]}@ α∙

α∙

α↝

α↝

α@

α@

outcome semantics

Caterina UrbanFormal Verification of Machine LearningLesson 8

Caterina UrbanStatic Analysis for Data ScienceLesson 7

Collecting semantics and properties
General collecting semantics
The collecting semantics Col : Prog æ P(P(�ú))

is the strongest property of a programHence: Col(prog) def= {J prog K }Benefits: uniformity of semantics and properties, ™ information order

given a program prog and a property P œ P(P(�ú))

the verification problem is an inclusion check:
Col(prog) ™ P

generally, the collecting semantics cannot be computed,

we settle for a weaker property S ˘ that
is sound: Col(prog) ™ S ˘implies the desired property: S ˘

™ P
Course 2

Program Semantics and Properties

Antoine Miné
p. 24 / 98

19

Collecting Semantics

{[[P]]}

89

Caterina Urban

Static Analysis for Data Science

Lesson 7

23

Outcome Semantics

[[M]]∙

!partitioning a set of traces

that satisfies input data

(non-)usage with respect to

the program outcome yields

sets of traces that also satisfy

input data (non-)usage

Caterina Urban

Static Analysis for Data Science

Lesson 7

31

Dependency Semantics
!to reason about input data

(non-)usage we do not need to
consider all intermediate
computations between the
initial and final states of a trace
(if any)

[[M]]↝

Caterina UrbanFormal Verification of Machine LearningLesson 8 90

Dependency Semantics

"
#$

%%%

#$
ℱ

%%
$
%%
#

%
$

%
#

%
$

%
#

%%
$
%%
#

%%
$
%
$
%
#
%%
#

%% %%%%

&partitioning with respect to
the outcome classification
induces a partition of the
space of values of the input
nodes used for classification

M ⊧ ℱi ⇔ ∀A, B ∈ [[M]]↝ : (Aω ≠ Bω ⇒ A0 |≠i ∩ B0 |≠i = ∅)
Lemma

Caterina UrbanFormal Verification of Machine LearningLesson 8 91

Naïve Abstraction

Caterina UrbanFormal Verification of Machine LearningLesson 8 92

…

…

1. proceed backwards
from all possible
classification outcomes

2. forget the values of the
sensitive input nodes

3. check for intersection:
empty fair
otherwise alarm

→
→!

Naïve Backward Analysis

Caterina UrbanFormal Verification of Machine LearningLesson 8 93

Naïve Backward Analysis
x00 = input()
x01 = input()

x10 = -0.31 * x00 + 0.99 * x01 + (-0.63)
x11 = -1.25 * x00 + (-0.64) * x01 + 1.88

x10 = 0 if x10 < 0 else x10
x11 = 0 if x11 < 0 else x11

x20 = 0.40 * x10 + 1.21 * x11 + 0.00
x21 = 0.64 * x10 + 0.69 * x11 + (-0.39)

x20 = 0 if x20 < 0 else x20
x21 = 0 if x21 < 0 else x21

x30 = 0.26 * x20 + 0.33 * x21 + 0.45
X31 = 1.42 * x20 + 0.40 * x21 + (-0.45)

return ‘ ’ if x31 < 30 else ‘ ’

x00

x01

x10 x20

x30

x31

-0.31

-0.64

-1.25

0.9
9

-0.63

x11

0.40

0.69

0.00

0.64

1.2
1

x21

0.40

0.26

0.45

1.42

0.3
3

-0.45

-0.391.88

"#$

%%%

x30 ≥ x31 x31 ≥ x30

1.16 * x20 + 0.07 * x21 ≥ 0.901.16 * x20 + 0.07 * x21 ≤ 0.90

… …

… …

too many disjunctions!

Caterina UrbanFormal Verification of Machine LearningLesson 8 94

Back to the Semantics…

Caterina UrbanFormal Verification of Machine LearningLesson 8 95

Hierarchy of Semantics

collecting semantics

dependency semantics

parallel semantics
α@

{[[M]]}

{[M]}@
∙

[[M]]∙

{[M]}@
↝

[[M]]↝

{[M]}@ α∙

α∙

α↝

α↝

α@

α@

outcome semantics

Caterina UrbanFormal Verification of Machine LearningLesson 8 96

Parallel Semantics

"
#$

%%%

#$
ℱ

&partitioning a set of traces
that satisfies dependency
fairness with respect to the
non-sensitive inputs yields
sets of traces that also satisfy
dependency fairness

%
$

%
#

%%
$
%%
%

$
%
#

%%
$
%%
#

Caterina UrbanFormal Verification of Machine LearningLesson 8 97

{[M]}@
↝

Parallel Semantics &partitioning a set of traces
that satisfies dependency
fairness with respect to the
non-sensitive inputs yields
sets of traces that also satisfy
dependency fairness

Caterina UrbanFormal Verification of Machine LearningLesson 8 98

α@(S) def= {{⟨t0, tω⟩ ∈ R ∣ t0 ∈ I} ∣ R ∈ S ∧ I ∈ @} parallel abstraction

⟨%(%(Σ × Σ)), ⊆↝ ⟩ ⟨%(%(Σ × Σ)), ⊆@ ⟩

α@

γ@

Parallel Semantics

{[M]}@
↝

def= α@([[M]]↝)
= {{⟨t0, tω⟩ ∈ Σ × Σ ∣ t ∈ [[M]] ∧ t0 ∈ I ∧ tω ∈ O} ∣ I ∈ @ ∧ O ∈ E}

M ⊧ ℱi ⇔ γ↝({[M]}@
↝) ⊆ ℱi

Theorem

M ⊧ ℱi ⇔ ∀I ∈ @ : ∀A, B ∈ {[M]}@
↝ : (AI

ω ≠ BI
ω ⇒ AI

0 |≠i ∩ BI
0 |≠i = ∅)

Lemma

Caterina UrbanFormal Verification of Machine LearningLesson 8 99

Better Abstraction

Caterina UrbanFormal Verification of Machine LearningLesson 8 100

Forward and Backward Analysis

…

…

…

…

1. partition the space of values of the non-sensitive input nodes

2. proceed forwards from all
partitions to find:
• already fair partitions
• activation patterns

Caterina UrbanFormal Verification of Machine LearningLesson 8 101

Forward and Backward Analysis

…

…

3. proceed backwards for
each activation pattern

1. partition the space of values of the non-sensitive input nodes

2. proceed forwards from all
partitions to find:
• already fair partitions
• activation patterns

U

L

Caterina UrbanFormal Verification of Machine LearningLesson 8 102

x00 = input()
x01 = input()

x10 = -0.31 * x00 + 0.99 * x01 + (-0.63)
x11 = -1.25 * x00 + (-0.64) * x01 + 1.88

x10 = 0 if x10 < 0 else x10
x11 = 0 if x11 < 0 else x11

x20 = 0.40 * x10 + 1.21 * x11 + 0.00
x21 = 0.64 * x10 + 0.69 * x11 + (-0.39)

x20 = 0 if x20 < 0 else x20
x21 = 0 if x21 < 0 else x21

x30 = 0.26 * x20 + 0.33 * x21 + 0.45
X31 = 1.42 * x20 + 0.40 * x21 + (-0.45)

return ‘ ’ if x31 < 30 else ‘ ’

x00

x01

x10 x20

x30

x31

-0.31

-0.64

-1.25

0.9
9

-0.63

x11

0.40

0.69

0.00

0.64

1.2
1

x21

0.40

0.26

0.45

1.42

0.3
3

-0.45

-0.391.88

"#$

%%%
10

0

1

x10

x11

x20

x21

x00

x01
U = 2
L = 0.25

Caterina UrbanFormal Verification of Machine LearningLesson 8 102

x00 = input()
x01 = input()

x10 = -0.31 * x00 + 0.99 * x01 + (-0.63)
x11 = -1.25 * x00 + (-0.64) * x01 + 1.88

x10 = 0 if x10 < 0 else x10
x11 = 0 if x11 < 0 else x11

x20 = 0.40 * x10 + 1.21 * x11 + 0.00
x21 = 0.64 * x10 + 0.69 * x11 + (-0.39)

x20 = 0 if x20 < 0 else x20
x21 = 0 if x21 < 0 else x21

x30 = 0.26 * x20 + 0.33 * x21 + 0.45
X31 = 1.42 * x20 + 0.40 * x21 + (-0.45)

return ‘ ’ if x31 < 30 else ‘ ’

x00

x01

x10 x20

x30

x31

-0.31

-0.64

-1.25

0.9
9

-0.63

x11

0.40

0.69

0.00

0.64

1.2
1

x21

0.40

0.26

0.45

1.42

0.3
3

-0.45

-0.391.88

"#$

%%%
10.50.50

0

1

x10

x11

x20

x21

x00

x01

x10

x11

x20

x21 U = 2
L = 0.25

Caterina UrbanFormal Verification of Machine LearningLesson 8 102

x00 = input()
x01 = input()

x10 = -0.31 * x00 + 0.99 * x01 + (-0.63)
x11 = -1.25 * x00 + (-0.64) * x01 + 1.88

x10 = 0 if x10 < 0 else x10
x11 = 0 if x11 < 0 else x11

x20 = 0.40 * x10 + 1.21 * x11 + 0.00
x21 = 0.64 * x10 + 0.69 * x11 + (-0.39)

x20 = 0 if x20 < 0 else x20
x21 = 0 if x21 < 0 else x21

x30 = 0.26 * x20 + 0.33 * x21 + 0.45
X31 = 1.42 * x20 + 0.40 * x21 + (-0.45)

return ‘ ’ if x31 < 30 else ‘ ’

x00

x01

x10 x20

x30

x31

-0.31

-0.64

-1.25

0.9
9

-0.63

x11

0.40

0.69

0.00

0.64

1.2
1

x21

0.40

0.26

0.45

1.42

0.3
3

-0.45

-0.391.88

"#$

%%%
0.75 10.750.50.50

0

1

x10

x11

x20

x21

x10

x11

x20

x21

x10

x11

x20

x21

x00

x01
U = 2
L = 0.25

Caterina UrbanFormal Verification of Machine LearningLesson 8 102

x00 = input()
x01 = input()

x10 = -0.31 * x00 + 0.99 * x01 + (-0.63)
x11 = -1.25 * x00 + (-0.64) * x01 + 1.88

x10 = 0 if x10 < 0 else x10
x11 = 0 if x11 < 0 else x11

x20 = 0.40 * x10 + 1.21 * x11 + 0.00
x21 = 0.64 * x10 + 0.69 * x11 + (-0.39)

x20 = 0 if x20 < 0 else x20
x21 = 0 if x21 < 0 else x21

x30 = 0.26 * x20 + 0.33 * x21 + 0.45
X31 = 1.42 * x20 + 0.40 * x21 + (-0.45)

return ‘ ’ if x31 < 30 else ‘ ’

x00

x01

x10 x20

x30

x31

-0.31

-0.64

-1.25

0.9
9

-0.63

x11

0.40

0.69

0.00

0.64

1.2
1

x21

0.40

0.26

0.45

1.42

0.3
3

-0.45

-0.391.88

"#$

%%%
0.75 10.750.50.50

0

1

x10

x11

x20

x21

x00

x01

'

U = 2
L = 0.25

Caterina UrbanFormal Verification of Machine LearningLesson 8 102

x00 = input()
x01 = input()

x10 = -0.31 * x00 + 0.99 * x01 + (-0.63)
x11 = -1.25 * x00 + (-0.64) * x01 + 1.88

x10 = 0 if x10 < 0 else x10
x11 = 0 if x11 < 0 else x11

x20 = 0.40 * x10 + 1.21 * x11 + 0.00
x21 = 0.64 * x10 + 0.69 * x11 + (-0.39)

x20 = 0 if x20 < 0 else x20
x21 = 0 if x21 < 0 else x21

x30 = 0.26 * x20 + 0.33 * x21 + 0.45
X31 = 1.42 * x20 + 0.40 * x21 + (-0.45)

return ‘ ’ if x31 < 30 else ‘ ’

x00

x01

x10 x20

x30

x31

-0.31

-0.64

-1.25

0.9
9

-0.63

x11

0.40

0.69

0.00

0.64

1.2
1

x21

0.40

0.26

0.45

1.42

0.3
3

-0.45

-0.391.88

"#$

%%%

x30 ≥ x31 x31 ≥ x30

1.16 * x20 + 0.07 * x21 ≥ 0.901.16 * x20 + 0.07 * x21 ≤ 0.90

0.75 10.750.50.50

0

1

x10

x11

x20

x21

x00

x01

'

U = 2
L = 0.25

Caterina UrbanFormal Verification of Machine LearningLesson 8 103

Libra caterinaurban / Libra

Code Issues Pull requests Actions Projects Security Insights

 2 branches 0 tags

README.md

Libra

Nowadays, machine-learned software plays an increasingly important role in critical
decision-making in our social, economic, and civic lives.

About

No description or website
provided.

abstract-interpretation

static-analysis

machine-learning

neural-networks # fairness

 Readme

 MPL-2.0 License

Releases

No releases published

Packages

No packages published

Languages

Python 98.7%

Shell 1.3%

 master Go to file Code

caterinaurban README 9f830db on Aug 8 53 commits

src RQ5 and RQ6 reproducibility 4 months ago

.gitignore RQ1 reproducibility 4 months ago

LICENSE Initial prototype 2 years ago

README.md RQ5 and RQ6 reproducibility 4 months ago

README.pdf README 4 months ago

icon.png icon 4 months ago

libra.png icon 4 months ago

requirements.txt some documentation 4 months ago

setup.py some documentation 4 months ago

Caterina UrbanFormal Verification of Machine LearningLesson 8 104

Formal Methods  
for Model Training

Caterina UrbanFormal Verification of Machine LearningLesson 8 105

Robust Training
Minimizing the Worst-Case Loss for Each Input

generate adversarial inputs  
and use them as training data

Adversarial Training
Minimizing a Lower Bound on the  
Worst-Case Loss for Each Input

Certified Training
Minimizing an Upper Bound on the  
Worst-Case Loss for Each Input

use upper bound as regularizer  
to encourage robustness

Caterina UrbanFormal Verification of Machine LearningLesson 8 106

 
[Kurd03] Zeshan Kurd, Tim Kelly. Establishing Safety Criteria for Artificial
Neural Networks. In KES, pages 63-169, 2003.  
 
[Li19] Jianlin Li, Jiangchao Liu, Pengfei Yang, Liqian Chen, Xiaowei
Huang, and Lijun Zhang. Analyzing Deep Neural Networks with Symbolic
Propagation: Towards Higher Precision and Faster Verification. In SAS, page
296–319, 2019.

[Singh19] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T.
Vechev. An Abstract Domain for Certifying Neural Networks. In POPL, pages
41:1 - 41:30, 2019.

[Mazzucato21] Denis Mazzucato and Caterina Urban. Reduced Products of
Abstract Domains for Fairness Certification of Neural Networks. In SAS, 2021.

Bibliography

Caterina UrbanFormal Verification of Machine LearningLesson 8 107

[Julian16] Kyle D. Julian, Jessica Lopez, Jeffrey S. Brush, Michael P. Owen,
Mykel J. Kochenderfer. Policy Compression for Aircraft Collision Avoidance
Systems. In DASC, pages 1–10, 2016.  
 
[Katz17] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, Mykel J.
Kochenderfer. Reluplex: An Efficient SMT Solver for Verifying Deep Neural
Networks. In CAV, pages 97–117, 2017. 
 
[Galhotra17] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. Fairness
Testing: Testing Software for Discrimination. In FSE, pages 498–510, 2017.

[Urban20] Caterina Urban, Maria Christakis, Valentin Wüstholz, and
Fuyuan Zhang. Perfectly Parallel Fairness Certification of Neural Networks. In
OOPSLA, pages 185:1–185:30, 2020.  
 
[Urban21] Caterina Urban and Antoine Miné. A Review of Formal Methods
applied to Machine Learning. https://arxiv.org/abs/2104.02466, 2021.

Bibliography

https://arxiv.org/abs/2104.02466

