An abstract domain for trees with numeric
relations *

Matthieu Journault!, Antoine Miné! 2, Abdelraouf Ouadjaout!

! Sorbonne Université, CNRS,
Laboratoire d’Informatique de Paris 6, LIP6,
F-75005 Paris, France
2 Institut universitaire de France
(matthieu. journault|lantoine.mine|labdelraouf .ouadjaout)@lip6.fr

Abstract. We present an abstract domain able to infer invariants on
programs manipulating trees. Trees considered in the article are defined
over a finite alphabet and can contain unbounded numeric values at their
leaves. Our domain can infer the possible shapes of the tree values of each
variable and find numeric relations between: the values at the leaves as
well as the size and depth of the tree values of different variables. The
abstract domain is described as a product of (1) a symbolic domain based
on a tree automata representation and (2) a numerical domain lifted, for
the occasion, to describe numerical maps with potentially infinite and
heterogeneous definition set. In addition to abstract set operations and
widening we define concrete and abstract transformers on these environ-
ments. We present possible applications, such as the ability to describe
memory zones, or track symbolic equalities between program variables.
We implemented our domain in a static analysis platform and present
preliminary results analyzing a tree-manipulating toy-language.

1 Introduction

The abstract interpretation framework [5] enables the development of sound
static analyzers by inferring and proving invariants on reachable states of pro-
grams. Invariants in the scope of abstract interpretation are elements of a lattice
called an abstract domain. Most domains focus on numeric or pointer variables.
By contrast, we propose an abstract domain for variables whose values are tree
data-structures. Tree values appear natively in some languages (such as OCaml)
and applications (such as the DOM in web programming) or can be encoded
through pointer manipulations (as in C). Trees can abstract terms in logic pro-
gramming. A tree domain can also be useful to collect symbolic expressions
appearing in a program.

* This work is supported by the European Research Council under Consolidator Grant
Agreement 681393 — MOPSA.

float golden_ratio(int n) {

int i = 0;
float r = 1;
typedef struct node while (i < n) {
r=1+1/r;
int data; i += 1;
struct node* next; }
} node; return r;

node* append(node* head, int data) L.
Program 2: Golden ratio in C

if (head==NULL) {
return (create(data, NULL));

} else { let rec f x n =
node *cursor=head; match n with
while (cursor ->next != NULL) | o ->[]
cursor=cursor ->next; | _ -> (x+1)::(x-1)::(f x (n-1))
node* new_node=create (data,NULL) ;
cursor->next=new_node; let () =
return head; (*Assume x:int and n:int>=0%*)
} let t = f x n in
} match t with
C e I -> 0
Program 1: Append to list in C | p :: qwhen p > x -> O

| _ -> assert false

Program 3: List type in OCaml

Used memory zones. Prog. 1 describes an append function defined in the C lan-
guage, this function adds an integer at the end of a linked list. The infinite set of
unbounded terms of the form *(x(...*(head + 4) ...+ 4) + 4) represents
memory zones that are used by the append function. Our analyzer is able to infer
and represent such sets of terms. This provides the information that Prog. 1 does
not use any of the data field of the linked list. Such a function would be fairly
commonly called in a real-life project. In a classical top-down static analysis by
abstract interpretation, function calls are inlined at each call site. A way to im-
prove scalability is to design modular analyzers able to reuse previous analysis
results (as emphasized in [7]). In order to be able to successfully reuse function
body analysis, input states must be unified. Moreover the cost of performing the
analysis of the body of functions grows with the number of variables that need to
be tracked. A common way to deal with both problems is to use framing on the
inputs of the functions (as in separation logic [25]). This improves (1) precision:
as we know that they are not modified by the function call, (2) body analysis
efficiency: as the input state is reduced and finally (3) modularity: as constraints
on the usage of the first analysis are relaxed by the removal of constraints.

Symbolic relations. Prog. 2 is a C function computing an approximation of the
golden ration (as it is the limit of the sequence ro = 1, 1,41 = 1+ %) As classical
numerical domains can not represent such numerical relations, methods were
proposed to track symbolic equality between expressions (see [23]). However such
methods can not handle the unbounded iteration of Prog. 2. The set of reachable
states at the end of Prog. 2 can be expressed by r =1+1/(14+1/...1...) with
depth n. Please note that to infer such results we need to express numerical
relations between the size of trees and the numeric variables from the program.

Numerical environment. Consider now the OCaml Prog. 3, we want to prove
that the assert false expression is never reached. This program builds a list
of size 2 * n with alternating values x + 1 and x — 1. The assertion states that
the head of the list is x + 1. After the definition of t there are two types of
reachable states. (1) Those that have not gone through the loop (t — [1,x —
Z,n +— 0), and (2) those that have gone through at least one iteration of the
loop: (t — [ai;a2; az; ...J,z — a,n > 0,a; = a+1l,aa = a—1,a3 —
a + 1), where « € Z. Therefore we need to be able to keep numerical relations
between the parametric and unbounded number of numeric values appearing
in t and numeric variables from the program. Classical numeric domains do
not provide out-of-the-box abstractions for sets of partially defined numerical
functions, therefore we define such an abstraction. As an example of analysis
result, the memory representation obtained by our analysis for t describes the
set of trees of the form: Cons(a, Cons(b, Cons(a, ..., Nil) ...)) where
a=x+1 and b = x — 1. Therefore we are able to prove that the assert false
expression is never reached.

Contributions. The main contributions of the article are threefold: (1) The ex-
tension of results on tree automata to the abstract interpretation framework by
definition of a widening operator, in order to represent the set of tree shapes
that a variable can contain. (2) The definition of a numerical domain built upon
classical abstract domains able to represent sets of partial numerical maps with
heterogeneous and unbounded definition sets. This is necessary to represent the
numeric values at the leaves of a set of trees, as trees are unbounded and can
contain a different number of leaves. (3) The definition of a novel abstraction
for trees that can contain numerical values at their leaves. This last domain
combines the abstractions (1) and (2). Moreover it is relational as it can express
relations between numerical values found in trees and in the rest of the program,
and relations between trees. Finally all results were implemented in an existing
framework and experimented on a toy-language.

Limitations. At this point, analyses can only be performed on the toy language
presented thereinafter, not on real life code, therefore we do not present any
benchmark results, even though examples of analysis results will be put forth.
Indeed Prog. 1, 2 and 3 were precisely analyzed once encoded into our toy-
language (see Prog 4 and Prog 5).

Outline. We start, in Sec. 2, by presenting the concrete semantic we want to
abstract. In Sec. 3 we build a first abstraction which forgets numerical values
and focuses on abstracting tree shapes. Sec. 4 presents a novel numerical ab-
stract domain required for the definition of the abstract domain of Sec. 5, which
aims at precisely representing numerical constraints between trees and program
variables. In Sec. 6 we provide remarks on the implementation and results of the
analyzer. Finally Sec. 7 mentions related works while Sec. 8 concludes.

Notations. Classical Galois connections (see [5]) are denoted (A,C4) %
(B,Cp). When no best abstraction can be defined, we use the representation
framework (as defined by Bourdoncle in [3], also known as concretization only
framework), representations are denoted by (4, C4) <~ (B,Cg). A - B denotes
the set of partial maps from A to B, and A42.f(z) € B denotes the map in
A — B that associates f(z) to z. Finally when f € A — C and g € B — C,
with AN B =0, fWg is the function defined on A U B, that associates f(z)
(resp. g(x)) to x whenever x € A (resp. x € B).

2 Syntax and concrete semantics

Definition 1. An alphabet F is a finite set, a ranked alphabet is a pair R =
(F,a) where F is an alphabet and a € F — N. For f € F, we call arity of f
the value a(f). We assume that Z and F are disjoint and we define the set of
natural terms over R (denoted Tz(R)) to be the smallest set defined by:

— ZCTz(R)

-Vp>0, feF,ti, ..., t, € Tz(R), a(f) =p= f(t1,...,tp) € Tz(R)
Moreover when R contains at least one symbol of arity 0, we define terms over
R (denoted T(R)) to be the smallest set defined by:

- Vp>0, feF,t1, ..., tp €T(R), a(f) =p= f(t1,...,tp) € T(R)

In the following, F,, denotes the subset of F of arity n. Moreover given a term
t € T(R) we denote f = head(t) € F and sons(t) a possibly empty tuple
(t1,...,tn) of elements of T(R) such that t = f(t1,...,t,).

Remark 1. Numerical leaves are defined to contain integers, however this could
be modified to rationals, real numbers or floats. We are parametric in the type
of numeric values, as they are delegated to an underlying numerical domain.

Ezample 1. Consider the ranked alphabet R = {*(1),&(1),+(2),x(0)}, u(n)
means that symbol w has arity n. Then &x € T(R), but *(&x+4) € Tz(R),
and *(&x+4) ¢ T(R). Using this alphabet we can model C pointer arithmetic.

Ezample 2. U = {+(z,y) | x <y} and V = {+(z,+(2,y)) | z <y Az < y} are
two sets of natural terms over R = {+(2)} which we use as running examples.

Syntazr of the language and concrete operations. We assume already defined
a small imperative language and extend it (in Fig. 1) with statements, tree
expressions (tree-expr) which are expressions that are evaluated to trees, and
simple symbol expressions (sym-expr) which enable the manipulation of sym-
bols. We add the ability to build a tree which contains only a numerical leaf:
make_integer(e), the ability to read the i-th son of a tree ¢: get_son(¢,i),
Fig. 2 defines concrete operations over the set p(7z(R)). Fig. 2 assumes given
a set of program numerical variables V), a set of numerical expressions (over
V) denoted expr, a set of statements stmf, a notion of numerical environment
E € &€=V — 7Z, a set of tree program variables 7', a notion of tree environment

tree-expr = | make_symbolic(F,
tree-expr, . . ., tree-expr)
| make_integer(cxpr)
| get_son(iree-cxpr, expr)
a
stmt=...

| T = tree-expr

sym-expr 2 | get_sym head((ree-cxpr)

IS

expr .
| get_num head(tree-expr)
| is_symbol(lrec-expr)

| sym-expr ==

Fig. 1: Syntax extension of the language

E[make_symbolic(s € Fp, 11, ...

ST)E, F) = {s(ta, . ..

vtm) | Vi, ti € B[TI(E, F)}

E[make_integer(e € capr)|(E, F) = E[e](E, F)
E[is_symbol(T)](E, F) = {true | It € E[T|(E, F),3f € R, t = f(...)}
U {false | 3t € E[T|(E, F),t € Z}
Elget-son(T,e)|(E,F) = {t | Ji € E[e](E, F), t' € E[T|(E,F), f € Fr>i,
t'= f(to, ... tm—1) ANt; =t}
E[get num head(T)|(E,F) ={i € Z | 3t € E[T](E, F), t =i}
Elget_symhead(T)[(E,F)={s € R | € E[T](E,F), t =s(...)}

Fig. 2: Concrete operations on natural terms

int i;

int n;

tree y;

assume (n >= 0);

i = 0;

y = make_symbolic("p",{});
while (i < n) {

y = make_symbolic("*",

{make_symbolic("+",

iy,
make_integer (4)

b

s

i= i+
}

Program 4: *(p+4) iterated

int n; int i; int x; int rep;
tree t;

assume (n>=0) ;

i = 0;

t = make_symbolic("Nil",{});
while (i < n) {

t = make_symbolic("Cons",
{make_integer (x-1), t});
t = make_symbolic("Cons",
{make_integer (x+1), t});
i=1i+1;
};
if (get_sym_head(t) != "Nil") {

rep = get_num_head(get_son(t,0));
assert (rep > x);

}
Program 5: List manipulation

FeF=T — p(Tz(R)), D= FE x F is our concrete domain. Finally we as-
sume already partially defined on numerical expressions an evaluation function
Efle € copr)(E €V = Z,F € T — p(Tz(R))) € o(Z). Using this operator we
are able to define Prog. 4 which computes the memory zones used by append
from Prog 1, and Prog. 5 that simulates the behavior of Prog. 3.

3 Natural term abstraction by tree automata

In this section we start by defining a value abstraction for tree sets (in Sec. 3.1),
which is then lifted to an environment abstraction (in Sec. 3.2).

3.1 Value abstraction

As a first abstraction for natural terms, we put aside numerical values and define
an abstraction able to describe sets of tree shapes. Tree automata enable the
description of set of terms built upon a finite ranked alphabet. The ranked
alphabet of the language we want to analyze is extend with the [J symbol to
denote potential positions of numerical values.

Definition 2 (Finite tree automata). A finite tree automaton (FTA) over
a ranked alphabet R is a tuple (Q,R,Qy,d), where Q is a (finite) set of states,
Qy C Q is the set of final states, and 0 € p(U,cnyFn X Q" x Q) is the set
of transitions. We define 8 : (U,en Fn X Q") — 9(Q) by: d(f, 7) = {d |
(f,d,q') €6}. When § is such that, Vn € N, f e Fn, ¢ €Q", 5(f,7) =1,
we say that the automaton is complete and deterministic (CDFTA). We then
abuse notations and denote by d(f, 7) the unique element in the set §(f, 7)

Definition 3 (Reachability). Given a FTA A = (Q,R,Qy,d) we define, a
reachability function REACH4 : T(R) — p(Q)

REACH 4(t) =let t4,...,t, = sons(t) in

U S(head(t), (q1, - - ,n))

(q1;-,qn) E(REACH 4 (t1),-- ,REACH A (£5))

If sons(t) is the empty tuple (which is the case when t is a constant a), the union
is made over a unique element (which is the empty tuple), which then boils down
to: 6(a, (). If sons(t) is not the empty tuple and for some i, REACH(t;) is
empty, then REACH4(t) is also empty

Ezample 3. Consider the ranked alphabet R = {f(2),a(0)}, and the automaton
A = ({u,v}, R, {v}, {a() = u, f(v,v) = v, f(u,u) = u, f(u,u) — v}). Then
REACH4(a) = {u}, REACHA(f(a,a)) = {u,v}, REACH4(f(f(a,a),a)) = {u,v}.

Definition 4 (Acceptance). Given a FTA A = (Q,R,Qy,d), a term t, we
say that t is accepted by the automaton if REACH4(t) N Qs # 0. L(A) denotes
the set of terms accepted by automaton A.

Ezample 4. With the definition of Ex. 3, £(.A) is the set of terms over R that
contain at least one f.

Definition 5 (Tree regular languages). A set of terms T over a ranked
alphabet R is called tree regular if there exists a FTA A over R such that
L(A) =T. The set of such languages is denoted TReg(R).

Remark 2. As for regular languages, for all A € FTA there exists A’ € CDFTA
such that £(A) = L(A’), moreover A’ is computable (see [4]).

Ezample 5. — As proved in Ex. 4 the set of all terms over {f(2),a(0)} that
contain at least one f is tree regular.

— Consider now the ranked alphabet {a(1),b(1),e(0)} and the set of terms
T = {e,a(b(e)),ala(b(b€)))),...}. We can prove (in a similar way as for
a™b™ in regular languages) that 7 is not tree regular.

— On every ranked alphabet R: every finite language, the empty language and
T(R) are tree regular.

Proposition 1. (TReg(R),C,N,U,.c,0,T(R)) is a complemented lattice with
infinite height, moreover it is not complete. C,N,U and complementation (.¢)
are computable operations on tree automata [4).

We denote by R™ the ranked alphabet R after adding the symbol O of arity
0 (we assume that [¢ R). Given a natural term ¢, we define t- to be the term
obtained by replacing every integer with the [J symbol.

Proposition 2. (p(T%(R)),C) < (TReg(R"),C) where v(A) = {t | t7 €
L(A)} is a representation. Moreover with such a v definition, U, N soundly
represent the union and the intersection.

Remark 3. We only have a representation and not a Galois connection as lan-
guage T of Ex. 5 does not have a best tree regular over approximation.

Ezample 6. Let R = {+(2)} and A = ({0,1},R", {0,1},{(D() — 0,+(0,0) —
1,+(0,1) — 1)}). Examples of terms recognized by A are shown on Fig. 3.
Natural terms from our running example U and V (defined in Ex. 2) are also
contained in v(.A). Moreover as we do not provide numerical constraints: 1 +
(34+4),23, 14+ (24 (3+4)) are also elements in v(.A).

Due to the infinite height of the lattice, a widening operator is required. In
the following, we assume given a constant w € N, this constant will be used
to stabilize increasing chains, the greater the constant, the more precise our
widening operator will be.

Definition 6. Let A = (Q,R,Qy,6) € FTA, and ~ be an equivalence relation
on Q, such that p~qgAp € Qf = q € Q5. We define A/ ~=(Q/ ~,R,Qf/ ~,
U(f’qhm’qmq)&;{(f, qy sy, q™)}) where ¢~ is the equivalence class of q in ~.

Proposition 3. For every A € FTA and every ~ equivalence relation on its

states, L(A) C L(A/] ~).

Therefore following the idea from [9] and in [11], we define a widening op-
eration by quotienting states of automata by an equivalence relation of finite
index. We define by induction a special sequence of equivalence relations on
states of tree automata: ~1= {Q, Q\ Q} and ~j 1 is ~ where we split equiv-
alence classes not satisfying the following condition: Vf € F,, Vp1,...,pn €

Q7 VQM s Qn € Q: (/\?:lpi ~k Qi) = 6(fap17 cee apn) ~k 6(f7Q1a s 7‘]71) and
Vg € Qf, ¢~* C Q. This sequence of equivalence relations is the Myhill-Nerode
sequence (see [4]). This sequence is of length at most the number of states of the
automaton (before stabilization). Let ¢(w) = max{i < |@Q| | index of ~;< w}
(given an integer w, ¢ yields the index of the most precise of the equivalence
relationships in the Myhill-Nerode sequence, that contains at most w equiva-
lence classes) and [A], = A/ ~g(w)- [A]w is therefore a FTA with at most w
states such that £(A) C L([A]y). As for regular languages, for every CDFTA a
equivalent minimal CDFTA (in the sense of the number of states, and unique
modulo state renaming) can be obtained by quotienting the automaton by ~/q).
Therefore we define a widening operator on CDFTAs, which is then lifted to tree
regular languages.

Definition 7 (Widening operator V). AvA' = [AU A'],,.
Proposition 4. This widening is sound and stabilizes infinite sequences.

Remark 4. Consider the two following complete and deterministic tree automata:
A= ({a,b,h},{+(2)},{a}, {00 — b,+(b,b) = a}) and B = ({a,b, ¢, h},{+(2)},
{a},{3() — b,+(b,b) — ¢, +(b,¢) — a}) (unmentioned transitions go to h). A
(resp. B) recognizes the tree +(0, 0) (resp. +(0, +(0,0))), it over-approximates
U (resp. V) from our running example. A U B is recognized by the follow-
ing complete and deterministic tree automaton: C = ({a, b, ¢, h}, {+(2)}, {a, c},
{80 — b,4+(b,b) = ¢, +(b,c) = a}). If we want to widen .A and B with parame-
ter 3, the following equivalence relation is computed: {{h}, {b}, {a,c}}. Merging
equivalent states produces ({a,b,h},{+(2)},{a},{00) — b,+(b,d) — a,+(b,
a) — a}), which contains a loop and over-approximates the union.

3.2 Environment abstraction

Now that we are given an abstraction for nat- O + + +

ural term sets, let us show how this is lifted /\ /\ '\

to a notion of abstract natural term envi- oouo /+\ O \
ronments mapping variables to natural terms. 00 T
Given a set of natural term variables 7, con- /\
sider §* = (T — TReg(R"))U{ L} and the set 00O

operators defined by the point-wise lifting of

operators on T Reg(RD). We also lift the con- Fig.3: Example of accepted
cretization function p(T%(R)) < TReg(RF) trees from Ex. 6

to § < . We assume given an abstract numerical environment E! and an ab-
stract evaluator E[e]. Abstract transformers [make_symbolic]f, [is_symbol]F,
[get_son(e)]?, [get_sym head]* and [get num head]* are simple tree automata
operations. For concision Fig. 4 only provides definitions of two of these opera-
tors. Please note that these definitions require all states of the automata to be
reachable. An example of use of the is_symbol operator can be found in Ex. 7.
Other abstract operators are similar.

Ezample 7. Consider the tree automaton A of Ex. 6, (Fig. 3), with F* = (z
A): [get_sym_head(z)]*(E*, F*) = {+} and [get_num head(x)]*(E*, F*) =T

E*[make_integer(e € copr)|(E*, F*) = ({a}, R, {a}, {0() — a})
E*[get_son(T, e € copr)|(E*, F*) =

U (@R {a€Q|3peQy, 3s(po,...pm—1) = pESApi = q},0)
(QR,Qy,8) B [T](EF, FH)
icEf[e](E®)N{0,...,m—1}
Fig. 4: Abstract operators

4 Numerical abstractions

As emphasized in the introductory example, we rely on numerical domains to
introduce constraints on numerical variables found in trees. In a classical numeric
abstraction (e.g. intervals [6], octagons [22], polyhedra [§8], ...), each abstract
element represents a set of maps ¥V — R for a fixed, finite set of variables
V. In contrast, our numeric variables are leaves of a possibly infinite set of
trees of unbounded size. Hence before starting the presentation of the numerical
abstraction for natural terms, we show how to extend in a generic way an abstract
element in two steps. Firstly we want to be able to represent a set of maps, where
each map is defined over a (possibly different) finite subset of an infinite set of
variables (this is done in Sec. 4.1). Secondly, we use summarization variables to
relax the finiteness constraint, so as to represent sets of maps over heterogenous
maps over infinitely many variables (done in Sec. 4.2).

4.1 Heterogeneous support

We define M = p(V -» R), the set of partial maps from V, to R. 9 is ordered
by the inclusion relation C. In the following def(f) denotes the definition set of

S
f. We assume defined a representation (p(S — R), C) «— (Ng, C§), for every
finite set S C V (such as octagons in |S| dimensions). Ns comes with the usual
abstract set operator M5, LS. Moreover if z € S, y ¢ S, &' is another finite set
and N* € Ns then N¥[z s y] € Nsugy\{«} is the abstract element obtained by
renaming z into y, IV, ILES’ € Ng is obtained by existentially quantifying dimensions
associated to elements in S and not in §" and adding unconstrained dimensions
for elements in 8’ and not in S. From now on we assume that this last operator
is exact (as for intervals, octagons, polyhedra over R). However results from this
section can be extended to numerical domains that are able, given N* € Ng,
N¥ € Ng/, to check if v§(N¥) C ~§’ (N*)s. The precision of the extension
defined in this subsection would then depend upon the precision of this test in
the underlying domain. Finally [.J$ (resp. []J5°) refers to the classical concrete
(resp. abstract) semantic of operators on sets of numerical maps (resp. abstract
elements). A classical method for the abstraction of heterogeneous maps is the
use of a partitioning of the concrete element according to the definition set of its
represented maps. However partitioning induces an increase in numerical oper-
ation cost (exponential in the number of variable) which we would like to avoid.

10

Therefore in order to abstract sets of maps with heterogeneous definition sets,
we start by abstracting the potential definition set. We choose a simple lower-
bound /upper-bound abstraction (I and u in the following definition). Moreover
we need to abstract the potential mappings given a definition set: this is done
using a classical numerical domain. Contrary to partitioning, we will use only
one numerical abstract element, defined on the upper-bound u, to represent all
environments (instead of one abstract element by definition set). We also add a
T element, used in the case where the upper bound wu is infinite.

Definition 8 (Numerical abstraction). Let us define the following set: I =
{UN* L) | Lu € (V)AL and u are finiteAl C uAN* € N,AN® # L8YU{T, L}.
An element of M is therefore: either T, L or a triple (N* 1,u) where | and u
are finite sets of variables such that N* is defined over u.

Definition 9 (Concretization function). Abstract elements from IM' are
mapped to M thanks to the following concretization function: v(L) =0, v(T) =
M and y((N¥, LLbu)) ={peS—Z|ICSCunpe 'yE,S(Nﬁ)w)}

Ezample 8. As an example consider y(({x = y,x < 3,z = 0}, {a}, {z,y,2})) =
{(x—a)]a<3}U{(zr—a,y—a)|a<3tU{(z—a,z—0)]|a<3}U{(z—
a,y — a,z+— 0) | a <3}. As intended, the resulting set of maps contains maps
with different definition sets.

Definition 10 (Order). On M we define the following comparison operator:
(N¥,Lbu) C(NY ' W) 1 Cl1CuC o ANCY Nﬁ:, this comparison 1s
trivially extended to T (resp. L) as being the biggest (resp. smallest) element in
M. In the following zm,'i denotes the subset of M where u = p extended with T
and L.

Proposition 5. v is monotonic for C.

Fig. 5 provides the definition of the concrete and abstract semantics of the
classical numerical statements, Assume and Assign (denoted z <— e). We denote
vars(e) the set of variables appearing in e. We recall that [Assume(c)]§(E €
(S = R)) = {f € E | true € E[c](f)} and [z + €]§(E € p(S — R)) =
{fle = €| feEne €E[e](f)}. In order to ease the lifting of these classi-
cal operators we define [stmt]o(M € M) = Us gnirecy [stmt]S (M N (S — R)),
for every statement stmt. Moreover we assume the existence of the following ab-
stract operators: [Assume(c)]5"(N*) and [z « e]§"“N* abstracting soundly their
respective concrete transformers. Note that the concrete semantic of Assume(c)
(resp. z < e) enforces that maps are defined at least on the variables appearing
in ¢ (resp. in e and on z). Abstract operators from Fig. 5 are sound with respect
to v and their concrete operators.

We now need to define LI that abstracts the classic set operator U. We can
not directly apply the corresponding abstract operator on the numerical compo-
nent of the abstractions as they might have different definition sets. A first naive
solution would be to extend their respective definition set and to perform the ab-

stract operation on the resulting elements: IV, |ﬁuuw I_ISU“/ N, ﬁ:uw' However consider

11

[Assume(c

(M) = [[Assume(Mo({f | f € M Avars(c) C def(f)})
[Assume(c)]* ((N*,1,u)) = ([Assume(c)]5"(N*), 1 U vars(c), u)
[z + e](M) = [[x —eJo{f | f € MAvars(e) U{z} Cdef(f)})

f

[z« e]*((N%,1,u)) = ([x « e]5™(N*), 1 U vars(e) U {z}, u)

c

Fig.5: Concrete and abstract semantic of usual numerical operators

Algorithm 1: strengthening operator

Input : X* C: a set of constraints, U¥ € N,: a soundness threshold on
environment u, Vi e Ny: a soundness threshold on environment v

Output: Z¥ an abstract element over-approximating U* on « and V* on v
ZF « X%
foreach c € C do

T* « [Assume(c)]5" " (ZF);

if U* CY Tf, AV?CE T, then

AR Tﬁ
end

N O A W N

return Z¥;

= <{x = y}(: Uu)v{xvy}v{xvyD and N = <{$ = Z}(: Vﬁ),{x,z},{x,z}%
where the underlying domain is the octagon domain where elements are repre-
sented as a set of linear constraints (e.g. {x = y}). We have U|ﬁ{x,y,z} ={zx =y}
and V{z e} = = {x = z}, hence U“i e} I_I{x vz} V{I 4.z} = |- Consider now the
abstract element in MM*: R = ({z = y,z = z}(= W¥), {2}, {x,,2}). The con-
cretization of R over-approximates the union of the concretization of M and N,
and its numerical component is more precise than T. We note that the numerical
constraints appearing in W# could be found in U* or V¥, therefore in order to
remove the aforementioned imprecision we define a refined abstract union oper-
ator, denoted as ¥, that uses constraints found in the inputs in order to refine
its result. This is done using the strenghtening operator of Algo. 1 which adds
constraints from C that do not make the projection of X* to u (resp. v) lower
than the threshold U* (resp. V*). We assume that, given an abstract element
Ut, we can extract a finite set of constraints satisfied by U¥, those are denoted
constraints(U*) (the more constraints can be extracted, the more precise the
result will be). For example if the numerical domain is the interval domain, con-
straints have the form +x > a. If the numerical domain is the octagon domain
the constraints operator yields all the linear relations among variables that
define the octagon.

Definition 11 (¥ operator). Let U* € N,, V* € N, be two numerical en-
vironments, let X% € Nyu,, let C be a sequence of numerical constraints over

12

uUw, let c =uNv we define:

UtV = let X* = (UL U5 V) e in

let C' = constraints(U¥) U constraints(V*) in
strengthening(X* C,U* V¥)

Remark 5. — The precision of ¥ depends upon the order of iteration over con-
straints ¢ € C' in Algo. 1. Our implementation currently iterates in the order
in which constraints are returned from the abstract domains. More clever
heuristics will be considered in future work.

— UtwV?* starts by performing the join over the domain ¢, the result is then
strengthened. Other strenghtening(X* U* € N, V# € N,)) operator could
be defined, however in order to ensure soundness of I, it must satisfy
the following constraints: U* C¥ strenghtening(X* U* V*#) and V¥ CJ
strenghtening(X* U* V*).

Ezample 9. Let us now consider the example introduced thereinbefore U? wWV# =

{r =y,y = 2} € Nizy,.). Indeed using the notations of Def. 11: Zt 2 Xt =

T € Nigy,-3» C = {2z = y,y = 2}, moreover [Assume(z = y) budv(Ty = {2 =

yHE T8, UF C {o = g} = 17, and VF O T = 7/ There-

fore constraint 2 = y is added to Z*. At the next loop iteration: [Assume(z =

A (o = y}) = {o = yx = E T, U Y {o =y} = 1], ,, and

v E({)x’z} {r==%}= Tﬁm .} Therefore constraint z = z is added to A

Proposition 6 (Soundness of ¥). let U* € N,, and V* € N,,, then v3(U*) C
(W (UF V), and Ag(VF) C (g2 (UF V),
Definition 12 (Union abstract operators). We define the following abstract

A

set operator: (N* [, u) U (N¥ ' «/) = (N*WN¥ I N1, uUu'). This operator
soundly abstracts the union. Moreover in order to ensure the stabilization of
infinitely increasing chains in MM we define the following widening operator:
(NﬁV}leﬁ;,l,u) when I C U Au' Cu
<NﬁvlaU>V<Nﬁlvl,7U/> = q (NPRNY I u) whenl CIAW Cu
T otherwise

Remark 6. This widening operator over-approximates to T whenever the upper-
bound on the definition set is growing. This yields a huge loss of information
however this numerical domain is designed as a tool domain used by a higher
level abstraction in charge of stabilizing the environment before applying the
widening, so that this case will not be used in practice.

Subsequent tree abstractions require the definition of the following operators:
A

— <Nﬂ,l,u>‘_1 = <N‘uu\{x},l \ {z},u\ {z}) and <Nﬁ,l,u>‘+w = <N|%¢u{x}’l U
{z},uw U {z}) which respectively removes (adds) a variable to the numerical
environment.

— (N 11, u>‘ s is computed by adding variables in § and not in v and removing
variables in u that are not in S.

13

4.2 Representation of maps over potentially unbounded sets

In this subsection we focus on the problem of defining abstract numerical envi-
ronments on potentially infinite environments. A classical method we use here is
variable summarization (see [13]). This is based on the folding of several concrete
objects (a potentially infinite number) to an abstract element which summarizes
all concrete objects. The folding is encoded in a function f mapping summa-
rized variables to the set of concrete variables they abstract. Given an abstract
numerical environment N and a mapping from summary variables: V' to sets of
concrete variables f € V' — p(V) where f(v1) N f(v2) # 0 = v1 = v2, we define
the collapsing of a partial map p € V -+ Z under a summarizing function f:

Li(p)={p eV »Z V' eV, (f(v)Ndef(p)=0Ap'(v) = undefined)
V(FveV, ve f(v')ndef(p) Ap' (V') = p(v))}

Ezample 10. Consider V' = {x,y, z,t} and V = {a, b, ¢, d, g, h}, the environment
p=(a—0,b— 1,¢c— 2 d+ 3) and finally the summarizing function f = (x —
{a},y > {b,c},z— {d},t — {g}). Collapsing environment p under f yields the
set of environments: (z — 0,y +— 1,2+ 3) and (z — 0,y — 2,z — 3).

Given a summarizing function f we can now define an extension of the con-
cretization function =y of the previous subsection in the following manner:

VUNH) ={peV »Z|ls (p) Cy(N")}

Ezample 11. Going back to Ex. 10 and considering the numerical abstract ele-
ment: N* = ({z <y}, {2}, {z,y}), we have: y(N¥) = {(z =) | a € Z} U{(z
a,y s B) | @ < B} We have: m € 1[f|(N%) 17 (m) C 1(N¥) = {a} C def(,
(m)) C {z,y}. Therefore if we assume m defined on d then f(z) Ndef(m) # 0
hence there would be an element in | (m) defined on z. Hence m is not defined
on d, similarly for g. Moreover {z} C def(]; (m)) implies that m is defined on
a. Finally: defining S ={(a— o) |a € Z}U{(a— a,b—) | a < S} U{(a —
a,c— fB) | a<BrUu{(a— ab— fc—) | a<BAa <y} We have:
AN = SUUeslf & (h o 0) | 6 € Z}).

The abstract domains we will define in the following sections will employ
this summarization framework. The manipulation of summarized variables re-
quires the definition of a fold(E,z,S) (resp. expand(FE, x,S)) operator yield-
ing a new environment where x is used as a summary variable for S (resp.
where a summary variable x is desummarized into a set of variables S). Let
S and 8§’ be two finite sets of elements such that S’ NS C {z}, we define:
expand(N% z,S8") = [Noes Nz v]|(s\{z})us» and foldy(N*, z,8") =
Uyesr N*v = a]j(s\s")u{z} (which generalize the one introduced in [13]). These
operations are lifted as operators on elements of 9:

expand((N*,1,u),z,8) = (expand,(N*, z,8),1\ {z}, (u\ {z}) US)
(I\S)Uu{z}ifSCl

fold((N*,1,u), z,S) 2 (foldo(N*, z,S), { i\ s) otherwise * (4 \S)U{z})

14

5 Natural term abstraction by numerical constraints

We are now able to represent sets of maps with heterogeneous supports and to
lift their concretization (modulo a summarization function) to sets of maps with
infinite and heterogeneous supports. Given a tree shape (in the sense of Sec. 3),
we can associate a numeric variable to each numeric leaf, and use a numeric
abstract element to represent the possible values of these leaves. We will name
the variable of each leaf as the path from the root to the leaf, i.e., V is a set of
words in {0, ...,n — 1} where n is the maximum arity of the considered ranked
alphabet. In order to avoid confusion such paths will be denoted (0, 1,1§ for the
word (0,1,1). A summarized variable then represents a set of such paths. We
will abstract such sets as regular expressions. Using the summarization extended
to heterogeneous supports presented in the previous section, it will be possible
to represent, using a single numeric abstract element, a set of contraints over
the numeric leaves of an infinite set of unbounded trees of arbitrary shape.

5.1 Hole positions and numerical constraints

The presentation of our computable abstraction able to represent numerical val-
ues in trees is broken down (for presentation purposes) into two consecutive
abstractions. The first one is not computable, as natural terms are abstracted as
partial environments over tree paths to numerical values. This abstraction looses
most of the tree shapes but focuses on their numerical environment. A second
abstraction will show how partial environments over paths are abstracted into
numerical abstract elements defined over a regular expression environment.

In the following, when R is a ranked alphabet of maximum arity n, we call
words sequences of integers, w = (w, ..., wp—1) € {0,..., (n—1)}” will be called
a word of length p (denoted |wl|), w; denotes the i-th integer of the sequence,
W = (w1, ..., wp—_1) is the tail of word w, W(R) = {0, ..., (n—1)}* is the set of
all words over {0,...,n — 1} of arbitrary size.

Definition 13 (Position in a term). Given a natural term t and a word w
we inductively define the subterm of t at position w (denoted t|,,) to be:

(two)|w when |w| > 0At = f(to,...,tp—1) with wy <p
tw =4t when |w| =0
undefined otherwise

Moreover we denote by numeric(t) = {w € N* | #),, € Z}.

Definition 14 (Positioning lattice with exact numerical constraints).
We define C(R) = p(W(R) - Z), an element of C(R) is therefore a set of
partial maps that are acceptable bindings of positions to integers.

Proposition 7 (Galois connection with natural terms). When t is a nat-

ural term, tz is the partial map: N\ numeric(t)W-tw. We have the following Galois

connection: (p(Tz(R)), Q) <ZC%—R))> (C(R),C), with:

Yery(I') ={t € Tz(R) |tz € I'} acr)(T) ={tz |t €T}

15

Ezample 12. Consider our running example (introduced in Ex. 2), V = {+(x,
+(z,9) | < yAz <y}, we have acr)(V) = {{0§ = o,{1,0§ — ~,{1,
1§— 8| a < B Ay < B}. The concretization of which is exactly V.

Ezample 13. Consider however the ranked alphabet {f(2),g(2),a(0)}, and the
tree a. Its abstraction contains only the empty map, the concretization of which
is the set of all terms that do not contain any numerical value. For example:
f(g(a,a),a),g(a,a),.... This emphasizes that we loose information on:
— the labels in the natural terms: we only have the path from the root of the
term to leaves with numerical labels, not the actual symbols along the path.
— the shape of the natural terms: we do not keep any information on subterms
that do not contain numerical values.

Now that we have abstracted away the shape of the terms, we are left with
numerical environments with potentially infinite dimensions (that are words over
the alphabet {0,...,n—1}) and different definition sets. Therefore following the
idea of Sec. 4 we want to define a summarization for sets of words over the
alphabet {0,...,n — 1}. A summarization of such a language can be expressed
as a partition into sub-languages. The set of regular languages over the alpha-
bet {0,...,n — 1} is a subset of the set of languages over this alphabet, that is
closed under common set operations. Hence given a set {ry,...,r;,} of regular
expressions (with respective recognized language {L1, ..., L,,}), we summarize
all words in L; inside a common variable r; and therefore 1 {r1,...,r,,} denotes
the summarization function: Ar;.L;. In the following, Reg, denotes the set of
regular expressions over the alphabet A, = {0,...,n — 1}. As for tree regular
expressions, (Reg,,C,N,U, .5 0, A%) is a (non complete) complemented lattice
of infinite height, upon which we can define a widening operator v (see [10]) in
a similar manner as for tree regular expressions (this widening is also parame-
terized by an integer constant). We recall moreover that operators C,N,U and
complementation (.¢) are computable, and that every finite set of words is regu-

ca, =Id
lar. Moreover we have the following representation: (A%, C) JRemm = (Reg,,, C).
Finally in order to disambiguate regular expressions from integers we will typeset
them within |.| in a bold font as in: [0 + 0.1* .

Ezample 1. Using notations from Sec. 4.2, V' = Reg,, and V = W(R). Con-
sider our running example (introduced in Ex. 2), natural terms from V =
{+(z,+(z,y)) | * < y Az < y} contain three paths to numerical values: {0,
(1,05 and {1,1§. Numerical constraints on {0§ and {1,0§ are similar, therefore
the two paths are summarized into one regular expression: |0 4+ 1.0], {1,1§ is
left alone in its regular expression: [1.1]. The two constraints z < y Az < y can
now be expressed as one: |0+ 1.0| < |1.1].

In Ex. 14, we saw that tree paths with similar numerical constraints can be
summarized in one regular expression. However, for precision purposes, we do
not want to summarize all tree paths into one regular expression. Hence, we will
keep several disjoint regular expressions, which we call a subpartitioning.

16

st s shared partitions
S’f partitions

unify_join S% support

NN
NN
NS

S% partitions

Qo

Sg support
h h

Fig. 6: Unification operator

Definition 15 (Subpartitioning). Given a reqular expression s, a subparti-
tioning of s is a set {s1,...,sn} of reqular expressions such that Vi # j, s;Ns; =
0 and \J]_, si C s. We note P(s) the set of all subpartitioning of s. Moreover if
S ={s1,...,8n} 15 a set of reqular expressions, [S]p =5\ {0}.

Remark 7. Contrary to a partitioning of s, we do not require that the set of
partitions covers s. Indeed when a set of tree paths is unconstrained we can
just remove it from the partitioning, therefore no dimension in the numerical
abstract environment will be allocated for this path.

Definition 16 (Positioning lattice with numerical abstraction). Given a
ranked alphabet R, where the mazimum arity of symbols is n, we define C*H(R) =
{(s,p, R*) | s € Reg,,p € P(s),RF € Dﬁg} Therefore C*(R) are triples contain-
ing:
— s: (called support) a regular expression coding for positions at which numer-
ical values can be located.
— p: a subpartitioning of s. Elements of the same partition are subject to the
same numerical constraints. Note that these partitions are reqular.
— R*: an abstract numeric element where a dimension is associated to each
partition, this dimension plays the role of a summary dimension.

Remark 8. In the following, numerical abstract elements described in the form
{c}, where c is a set of constraints, refer to (c, vars(c), vars(c)) € M.

Unification. The previous definition shows that two elements U* = (s,p, R?)
and V¥ = (s',p’, R¥) can have different subpartitionings (p and p’). However the
partitions in p and in p’ might overlap, thus giving constraints to similar tree
paths. Therefore in order to define the classical operators: C, LI and V, we need
to unify the two abstract elements (U* and V#) so that given a tree path and the
partition in which it is contained in U*, it is contained in the same partition in
V. This will enable us to rely on abstract operators on the numerical domain.
In order to perform unification, we rely on the expand and fold operators.
Indeed consider our running example, U* = (|0 + 1],{[0],[1]},{[0] < [1]})
and V¥ = (|0+1.(0+1),{|0+1.0],[1.1]},{[0+1.0] < [1.1]}). We see that

17

Algorithm 2: unify_join operator

Input : (s,{p1,...,pn}, R, (s',{p},..., P}, R¥) two abstract elements
Output: two unified abstract elements
(Cig)i<nj<m < Pi NP
Pi)i<n < pi N8’
)

Py)i<m = Py 0 s

o~ o~ —

@i)i<n < pi N8 N (Uj<mCi;)©
)

4})j<m P N8N (Uicniy)®s

R« R*;

RY « RY ;

for i =1 to n do

‘ R* « expand(R*, p;, [{ci,j }i<m U {pi} Uigi}lo);
for j =1 to m do

‘ RY + expand(R”’,p} [{cijticn U {&} v {ﬁ}h))’

return <S7 Uign,jgm[{ﬂ7 &a %H@?E% <Sl7 Uign,jgm[{qiv pf;W Qﬁv]}]@aiﬁ/%

© 0N O kW N -
—

A
= O

fun
N

constraints on tree path {0§ is given: in U* by partition |0] and in V* by partition
|0 + 1.0]. However we can split the partition |0 + 1.0 into two partitions: |0]
and |1.0], and expand variable |0+ 1.0] into the two variables |0] and |1.0] in
the numeric component: expand({|0+1.0| < |1.1]},]0+1.0],{|0],[1.0]}) =
{|0] < [1.1],[1.0] < [1.1]}. Once U* and V* are unified we can rely on the
numerical join to soundly abstract the union. Note that splitting partitions is
more precise than merging them. Indeed, consider the example where: in U* we
have |0] > 0 and |1] < 0 and in V* we have [0 + 1] = 0. Splitting partition
in V*# yields: [0] = 0,|1] = 0, after joining we get |0] > 0,|1] < 0. Whereas
merging partitions in U* yields |0 + 1| unconstrained, after joining we also get
that |0+1] is unconstrained. However unifying by splitting or merging partitions
in both abstract elements might result in an over-approximation of the initial
elements. This does not pose a threat to the soundness of the join operator, but
it does for the inclusion test. Unifying by splitting partitions induces an increase
in the number of partitions which we want to avoid when trying to stabilize
abstract elements in the widening. Hence, we define three unification operators:
— An operator unify_join that splits partitions from U* and V¥, this operator
might induce an over-approximation for both U# and V* and is used in the
join operation. This operator is presented in Algo. 2, and illustrated in Fig. 6.
— An operator unify_subset that does not modify V* (in order to avoid over-
approximated it), we only split and merge (using the fold operator) parti-
tions from U* as, if the over-approximated U* is smaller than V¥, then so is
the original U*.
— An operator unify_widen that unifies U* and V*# by only merging partitions
so that the number of partitions does not increase. This operator is used in
the widening definition.

Operators unify _subset and unify_widen are very similar to unify_join.

18

Definition 17 (Comparison Cc:(g)). Using unify subset we define a rela-
tion on C*(R): Cerry= {(U*, V?) | ({s,p,N*),(s',p’, N¥)) = unify_subset(U*,
VH = sCsAVbep, (bCscVIacyp bNs=a)AN C N¥¢|} where ¢ is
the renaming from p’ into p that renames b to a when such an a exists.

Ezample 15. Going back to our running example: U* = (|0 + 1],{|0], [1]},
{lo] < [1]}(= A%)) and V¥ = ([0+1.(0+ 1), {[0+1.0],[1.1]},{[0+1.0] <
|1.1]}). We have s ¢ s’ hence U* Z V% However if we now consider W¥:
(le+1).(0+1)),{l(e+1).0], [(e+1).1]},{[(e+1).0] < [(e +1).1|}(= BF)).
W¥ is already unified with U*, we have s C s’ and ¢ : ([(¢ + 1).0] ~ O,
|(e+1).1] ~ |1]). Moreover A* C Bf[¢] = {|0] < [1]}. Hence U* C W%,

Proposition 8. We have: (C(R),Cc(r)) L (CHR), Cei(r)), where: y1({s,p,
R%)) = {f | def(f) C Yreg, (s) A f € [t pl(R")}. By composition we get:
(p(TZ(R))v g) & (Cﬁ(R)7 EC”RL with Y2 = Yc(r) ©71-

Ezample 16. Going back to our running example: V# = (|0 +1.(0 + 1)/, {[0 +
1.0],|1.1]},{|0+1.0] < |1.1]}). We have: T p = (|0 + 1.0] — {{05,{1,0§},
[1] = {15). Hence, 71 (V¥) = {({0§ = a,{1§ = B) | @ < B} U{({1,0§ = a,
(5 = B) | a < B U{{0§ = o, (1,05 — 7, (1§ = B) | @ < A~y < B}. The
product with tree automata refines this result so that only the last set is left.

We now define the U operator that relies on the unify_join operator of
Algo. 2. Once elements are unified we can distinguish three kinds of partitions:
(1) Partitions found in both abstract elements (e.g. * in Fig. 6). (2) Partitions
found in only one of the two, which do not overlap over the support of the other
abstract element (denoted u°), these are outer-partitions. Information on such
partitions can be soundly kept when joining two abstract elements (e.g. partition
a in Fig. 6). (3) Partitions found in only one of the two, which overlap over the
support of the other abstract element, these are inner-partitions. Information on
such partitions can not be soundly kept when joining two abstract elements. (e.g.
partition b in Fig. 6). Therefore in the following definition of the join operator,
we compute (once elements are unified) the common partitions and both outer-
partitions and merge them to form the resulting subpartitioning.

Definition 18 (Union abstract operator). Given Ut V¥ € CH(R), if ({s,p,
RY), (s',p’, RY)) = unify_join(U*, V), let ¢ be pUY’, let u® (U* outer-partition)
be {e € p | e C sC}, let v° (VE outer-partition) be {e € p' | e C s°}, we then
define:

Ut Ut (r) Vi = (sUs' cUu’ U’ Rfcu“o U Rfc’Uv(,)

Proposition 9. We have: y1(U*) Uy1(V¥) C 31 (U? Lgr(r) VF).

Ezample 17. Consider the two following abstract elements (this is the partic-
ular case of our running example where all numerical values are equal): V¥ =
([0+1.(0+1)J(= 5), {|0+1.0] (= a), [1.1|(= b), {a = b}}), and U* = (|0+1](=

19

0] =0 [(€+1).0] =0 [(¢+1).0/=0 |1*.0] =0
PIIPIIIIIIIIII 777 - PIP77272772777272722727772772272272727277
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

1] =1 l(e+1)1] =1 [(e+1)1]=1 |17.1] =1

Fig. 7: Widening illustration

s'),{10](= ¢), [1](= d)}, {c = d}). Intuitively U* could encode the term (z +)
and V* the term (z 4 (2 + z)). The unification of those two elements is: V; =
(5,{c,b,|1.0|(= e)}, R*) where R* = ({c = b,e = b}, {b},{c,b,e}) and Uf =U*,
moreover the common environment (¢ in previous definition) is: {c}, V¥ outer-
partitioning is {e, f}, U* outer-partitioning is {d}. Hence: the numerical compo-
nent resulting of the join is: ({¢ = d}, {¢,d}, {¢,d})U{{c = b,e = b}, {b},{c, b, e})
which is: ({c =b,e =b,c =d},D,{c,d,e,b}). We see here that using a naive nu-
merical join operator, we would not have been able to get such a precise result
(the numerical join would have yielded T).

unify_widen C*(R) contains infinite increasing chains, therefore, we need to
provide a widening operator. As for the other operators, widening is computed
on unified abstract elements. A unify_widen operator is defined: it produces U*
and V¥, over-approximations of its inputs with the same number of partitions.
Moreover it ensures that each partition of U* intersects exactly one partition of
V. This can be obtained by iterative merging partitions that overlap in both
arguments until the abstract elements have the exact same partitions. Therefore
from the result of unify_widen we can extract a list of pairs (a,b) where a is a
partition from U*, b is a partition from V# and anb # 0. This defines a bijection
from partitions of U* onto partitions of V%.

compose. In order to ensure stabilization we first need to stabilize the supports
on which abstract elements are defined. This is easily done using the automaton
widening (s1 Vs, in Algo. 3). Fig. 7 illustrates the following simple example: U* is
an abstract element with support |0 + 1], two partitions v = |0] and «' = [1],
and numerical constraints v/ = 1 and u = 0. V* is an abstract element with
support | (e +1).(0 4+ 1), two partitions v = [(e+ 1).0] and v’ = [(e + 1).1]
with the numerical constraints that v = 0 and v' = 1. Supports are unstable,
therefore we start by widening them, which yields a new support: [1*.(0 + 1)].
The unification of U* and V*# leaves subpartitionings unchanged and yields the
bijection (u — v,u’ +— v'). Given this information we now need to provide
a new subpartitioning for the result of the widening. We see in this example
that we could soundly use the subpartitioning from V¥, this would produce the
abstract element Zl'i depicted in Fig. 7. However due to the widening of the
support, paths of the form {1,1,1,0§ are in the support of the result but are

20

Algorithm 3: widening operator

Input : Un, V¥ two abstract elements
((51,p1,Rn1), <52,p2,Rg>) — unify_widen(U¥, V#) ;
S < 51VSQ;
r < s\ (s1Us2);
foreach a € p; do
b < the unique element from ps such that bNa # 0;
p < compose(a, b, 1, $2,7);
p{ptup;
R« Ri"[a — pl;
R« RY*[b— pl;
r<«r\p;
if p = p; then
‘ return (s,p, R©*VRY);
else
‘ return (s, p, R™* U RY);

© 0 N O A W N

R R e e
B W N = O

left unconstrained as they are not in any of the partitions. Therefore we need
to use the opportunity of the extension of the support to place constraints on
the newly added paths. In order to do so we would like to force the extension
of the existing partitions from U* and V* into the new support. Therefore we
need to define a compose operator that produces a sound new partition, given:
(1) a pair a,b of partitions (such as the one produced by unify widen), (2) the
support s1 (resp s2) in which a (resp. b) lives and (3) a space to occupy r. The
following criteria must be verified by the resulting partition p in order to be
sound and to terminate: pN sy = a, pNsy =band p\ (s1 Usz) C r. A variety
of compose operators could be defined, we chose: compose(a,b, s1,82,7) =
aUJ(dN(s2\s1))U((av(aUb))Nr). The idea is the following: we keep a (as it is
always sound thanks to the definition of the unify widen operator), we keep the
part from b that satisfies the soundness condition, and we extend into the space
left to occupy according to the automata widening of a and aUb. In our example,
considering the pair (u,v), this would translate as: a = 0, b (s2 \ s1) = [1.0]
and (aV(aUb))Nr = [0]V[(e+1).0] N |[122(0+1)]| = [122.0]. We get the new
partition: |1*.0]. Doing the same with the pair (v,v’) yields [1*.1]. Finally we
get the abstract element Zg from Fig. 7, which is more precise than Zf.

Definition 19 (Widening). Algo. 3 provides the definition of a widening oper-
ator using the unify _widen operator and parameterized by a compose function.

Widening stabilization. Our abstraction contains three components: (1) a sup-
port that describes the set of paths (2) a subpartitioning of this support and (3)
a numerical component giving constraints on partitions in the subpartitioning.
We show how the widening operator stabilizes all three components.
— Regular expression widening is used on supports when widening is called.
Therefore ensuring support stabilization.

21

— Once supports are stable (this means so C s1), we have p = a for every pair
(a,b) of partitions. Meaning that once shapes stabilize, the only modifica-
tions allowed on the subpartitionings are those made by the unify_widen
operator. Each partition resulting from the operator is the union of input
partitions, hence the subpartitioning will stabilize.

— Once subpartitionings are stable (p; = p in Algo. 3) numerical widening is
applied on the numerical component in order to ensure stabilization.

Ezample 18 (Numerical example). Consider the simple example where: R =
{£(2)}, U = ([0+1],{[0), [1]},{[1] = [0]}) and V* = (l0+1],{[0], [1]},
{[1] > |0],|1] < |0]+1}). U* and V* have the same shape, therefore widening
will be performed on the numerical component of the abstraction, therefore:

UtvvE= ([0 +1].{[0], (1]}, {(1] = [0]})

Reducing dimensionality and improving precision. As emphasized by the pre-
vious examples, definitions and illustrations, the numerical component of an
abstract state is used as a container for constraints on regular expressions, every
node in a regular expression must then satisfy all numerical constraints on the
underlying regular expression. Therefore when two nodes of a tree satisfy the
same constraints, they should be stored in the same partition so as to reduce the
dimension of the numerical domain (thus improving efficiency). Moreover the
widening operator provided in Fig.3 relies (for precision) on the fact that parti-
tions are built by similarity of constraints, therefore partition merging, when it
does not result in an over-approximation, also leads to a precision gain. The uni-
fication operator defined in Fig. 2 tends to split partitions whereas the widening
operator defined in Algo. 3 tends to merge them. In order to reduce dimension-
ality, we would like to define a reduce : C*(R) — C#(R) operator, that folds
variables with similar constraints into one. Please note that VS NS C {z},
r € S and R* € Ng, we have that R* Cy, expand(fold(R* z,S"),z,5").
This means that when variables are folded into one, expanding them after-
wards would yield a bigger abstract element. For example, consider the oc-
tagon Rf = {x > 2,y > 2,2 = y} then fold(R!, 2, {z,y}) = {z > 2}(= RY)
and expand(RY,z, {z,y}) = {z > 2,y > 2}. However if we consider R* =
{x > 2,y > 2} then fold(expand(Rf, z, {z,y}), z, {z,y}) = R*. Therefore if
we assume given a score function score(Rf,z,S’) ranging in [0,1] such that
score(R!,z,5") = 1 & R' = expand(fold(R¥,z,S’),z,S’), we are able to de-
fine a generic reduce operator parameterized by a value «.. This reduce operator
merges partitions until no more set of partitions has a high enough score accord-
ing to the score function. Finding a good score function is a work in progress.
As a first approximation we used the following trivial one: scoreg(Rf,S) =
1 when expand(fold(Rf,z,S),z,S) = R* and 0 otherwise. This score, guar-
antees there is no loss of precision, but can miss opportunities for simplification.

Ezample 19. Consider the following example: U* = (|0 + 1],{|0], [1]},{[0] =
0,|1] = 0}). Relations on |0] and |1] can be expressed in one relation using
the summarizing variable |0 + 1]. This yields: reduce(U*) = (|0 + 1],{[0 +

22

1/}, {|0+ 1] = 0}). Note that expand({|0+ 1| = 0},|0+ 1],{[1],]0]}) =
{|0] =0, |1] = 0}. Therefore no information is lost.

Abstract semantic of operators. As for tree automata, abstract semantic of op-
erators defined in Sec. 2 can be defined as simple transformations on regular
automata. Indeed the make_symbolic(s € R) (resp. get_son) operator, amounts
to adding (resp. removing) an integer letter to: (1) the partitions in the subpar-
titioning and (2) the support. make_integer(e € expr) amounts to building an
abstract element with support |e| and a subpartitioning containing only {|€]},
on which we put the constraint that it is equal to e. is_symbol needs only split
the support and each partition, in the two language L = {e} and A} \ L. Indeed
in order to restrict to terms having only an integer as root, the support must
be reduced to €. The get_sym_head operator always yields the whole ranked
alphabet (as this was abstracted away and will be refined by the automaton
abstraction). Finally for get_num head: (1) if the empty path {§ is in the sup-
port we produce the set of integers satisfying the numerical constraints on the
partition containing €, and T in case no such partition could be found, and (2)
otherwise we know that no numerical value is produced.

5.2 Product of tree automata and numerical constraints

The abstraction by tree automata defined in Sec. 3 and the abstraction by nu-
merical constraints on tree paths defined in Sec. 5.1 provide non comparable
information on the set of terms they abstract. Indeed the former describes pre-
cisely the shape of the term but can not express numerical constraints whereas
the latter abstracts away most of the shape and focuses on numerical constraints.
To benefit from both kinds of information, we use a reduced product between
the two domains. Both abstractions in the product contain information on po-
tential integer positions. The position of the [symbol in the tree automaton
abstraction and the support in the numerical constraints abstractions both yield
this information. We remove the support component from the product as the
information can be retrieved from the tree abstraction. The definitions of the
abstract operators in Sec. 5.1 require the support to be a regular language. We
show in this subsection how to retrieve the support of a tree automaton with
holes and that it is regular.

Given a FTA(Q,R,Qy,d) over a ranked alphabet R with maximum arity
n. We assume that every node in @ is reachable. Consider the following system
over variables v, for p € @) with values in the set of languages over the alphabet
A, (. designates the classical concatenation operator lifted to languages) :

w= U wwo{{ i mea

otherwise
(5,(q15++,9m),q)€S|qi=p

Every language {i} for ¢ € N is regular and does not contain €, moreover
() and {e} are regular languages. By application of Arden’s rule (see [18]) and
Gauss elimination we can compute the unique solution of this system, moreover

23

every v, is regular. Variable v, is defined so that: w € v, if and only if there
exists a tree ¢ recognized by the automaton such that p € REACH(t,,). f 0 € R
we have that the regular language: U(g (),p)esvp represents exactly the potential
positions of integers in trees accepted by the tree automaton.

Height and size. The product is enriched with a simple height and size abstrac-
tion: numerical variables (encoding heights and sizes) are added to the numerical
component of the abstraction.

5.3 Environment abstraction

In the previous section, we designed abstractions for sets of trees. However in
order to be able to tackle the examples from the introductory section (Sec. 1) we
need to design an abstraction able to represent maps from a set of variables to
natural terms. In Sec. 3 we have shown how to lift abstractions on natural terms
to abstractions of environments over a given finite set of finite term variables
T. We apply the same mechanism here to lift the product presented in Sec. 5.2.
However lifting the product would result in abstract environments being maps
from natural term variables to abstractions containing a numerical environment.
In order to be able to express numerical relations between two sets of natural
terms or even between numerical program variables and numerical values of
natural terms we factor away the numerical environment so that it is shared
by all natural term abstractions in the term environment and by the program
variables in the numerical environment. Therefore the final abstraction is a pair
(m, R¥) where: (1) m is a map from 7 to an abstract element that is a product
of the automaton abstraction and the hole positioning abstraction. Moreover
as all the numerical constraints are stored in a common numerical environment
the product abstraction amounts to a pair (A,p) where A is an element of the
automaton abstraction and p is a partitioning of its support. (2) R* is an element
of M* binding in the same numerical element: numerical program variables and
all partitions found in the mapping m.

6 Implementation and example

6.1 Implementation

The analyzer was implemented in OCaml (~ 5000 loc) in the novel and still
in development MopsA framework (see [21]). MOPSA enables a modular devel-
opment of static analyzers defined by abstract interpretation. An analyzer is
built by choosing abstract domains, and combining them according to the user
specification. MOPSA comes with pre-existing iterators and domains (e.g. inter-
procedural analysis, loop iterators, numerical domains, ...), and new ones can
be added (e.g. tree abstract domain). A key feature of MOPSA is the ability
of an abstract domain to use the abstract knowledge it maintains to trans-
form dynamically expressions into other expressions that can be manipulated

24

more easily by further domains, providing a flexible way to combine relational
domains. For instance, assume that a domain abstracts arrays by associat-
ing a scalar variable ag, ai, ..., to each element a[0], a[l], ..., of an array a,
and delegating the abstraction of the array contents to a numeric domain for
scalars. It can then evaluate Ef[2 * a[i] + i](i — [0,1]) into the disjunction
(2%ag+1i,i—[0,0]) V(2xay +1i,i+— [1,1]), indicating that 2 * a[i] + i is equiv-
alent to 2 * ag + ¢ in the sub-environment where i = 0 and to 2 x a3 + 4 in the
sub-environment where ¢ = 1. Each term of the disjunction contains an array-free
expression that can be handled by the scalar domain in the corresponding sub-
environment. In the abstract, expressions can be evaluated by induction on the
syntax into symbolic expressions to retain the full power of relational domains
and disjunctive reasoning (see [21] for more details). We exploit this feature in
our implementation to combine our tree abstractions. We implemented (in the
MoprsaA framework) libraries for regular and tree regular languages that offer the
usual lattice interface enriched with a widening operator. These libraries can be
reused for the definition of other abstract domains. The overall complexity of
the analysis is driven by the complexity of the lattice operations in the regular
and tree regular libraries. These are exponential in the number of states of the
considered automata, which is bounded by the widening parameter.

6.2 Examples of analysis

Numerical variables of the form t.z, where t is a natural term variable, represent
a variable allocated for tree t. For example: t.r where r is a regular expression
is the variable allocated for partition r in tree t.

C introductory erxample. Let us consider the introductory example Prog. 4.
The loop invariant inferred with our analysis is the following abstract element:
Ut = (v = (A4,{[0.(0.0)*1](= r)}), RY), with A = ({a,b,c,d}, {x(1),+(2),
0(0), (p,0)}, {c}, {*(d) — ¢, +(c,a) = d,0() = a,p — c}), and R* satisfies the
constraints: {i > 0,i < n,y.r = 4}. This describes precisely the set of terms
of the form: p, *(p 4+ 4), *(x(p +4) +4), As mentioned in Sec. 6.1 evalu-
ations of tree expressions yield pairs containing an expression and an abstract
environment. Tree expressions are pairs (A, p), partitions in p are bound by the
adjoined environment. Let us now present the result of the evaluation of the
make_integer (4) expression in the abstract environment U*. Here we get the
expression (A’, {|€]}) (where A’ recognizes only OJ) in the environment: (y — (A,
{r}), R¥) where R¥ = R* U {|e] = 4}. This emphasizes how the environment is
used to give constraints on the adjoined expression. This transports numerical
relations from the leafs of the expression up to the assigned variable t.

OCaml introductory example. Let us now consider the introductory example
Prog. 5. The inferred loop invariant is the following (r = |(1.1)*.0] and ' =
[(1.1)*.1.0)): (t = (A, {r,7'}), R*) and R* satisfies the constraints: {t.r’ = x—1,
tor =t ' +2,4>0,i <n} and A = ({a,b,c,d}, {Cons(2),Ni1(0),(0)}, {a},
{Cons(c,a) — d,Cons(c,d) = a,Nil — a,0 — c}). Please note that at the end

25

of the while loops the two numerical environments that need to be joined are
not defined over the same set of variables (in the environments that have not
gone through the loop, variables t.r’ and t.r are not present). However thanks
to the B operator, we do not have to loose the numerical relations between these
variables and x. Hence we are able to prove that the assertion holds.

The analyzer was able to successfully analyze and infer the expected invari-
ants for both examples.

7 Related works

Previous works on sets of trees abstractions [20] were able to recognize larger
classes of tree languages than tree automata. However we focused here on the
abstraction of trees labeled with numerical values, therefore the work closest to
ours would be [12]. Indeed it defines tree automata where leaves can be elements
of a lattice (for example an interval). They are therefore able to represent sets
of natural terms, but can not express numerical relations between the leaves of
trees. Moreover they rely on a partitioning of the leaf lattice for tree automata
operations. In [1] (and [2]) tree automata and regular automata are used for
the model checking of programs manipulating C pointers and structures. Other
uses have been made of tree automata in verification: shape analysis of C pro-
grams as in [15], computation of an over-approximation of terms computable by
attackers of cryptographic protocols as in [24]. Widening regular languages by
the computation of an equivalence relation of bounded index is also done in [9]
and in [11]. As mentioned, variable summarization is often used to represent
unbounded memory locations as in [17] or [14]. Moreover numerical abstract do-
mains able to handle optional variables have been defined such as [19]. Finally
termination analyses have been proposed for the analysis of programs manipu-
lating tree structures (AVL, red-black trees) see [16].

8 Conclusion

In this article we presented a relational abstract environment for sets of trees over
a finite algebra, with numerically labeled leaves. We emphasized the potential
applications of being able to describe such trees: description of reachable memory
zones, tracking symbolic equalities between program variables, description of tree
like structures. In order to improve the precision of the analysis while not blowing
up its cost we defined a novel abstraction for sets of maps with heterogeneous
supports. This numeric abstraction is able to represent optional dimensions in
numerical domains without losing relations with optional variables. All domains
presented in the article were implemented as a library in the MOPSA framework.

References

1. Ahmed Bouajjani, Peter Habermehl, Adam Rogalewicz, and Tom&s Vojnar. Ab-
stract regular tree model checking of complex dynamic data structures. In Proc. of

26

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

SAS, volume 4134 of Lecture Notes in Computer Science, pages 52-70. Springer,
2006.

Ahmed Bouajjani, Peter Habermehl, and Tom&s Vojnar. Abstract regular model
checking. In Rajeev Alur and Doron A. Peled, editors, Proc. of CAV, volume 3114
of Lecture Notes in Computer Science, pages 372—-386. Springer, 2004.

Frangois Bourdoncle. Sémantiques des Langages Impératifs d’Ordre Supérieur et
Interprétation Abstraite. PhD thesis, Ecole polytechnique, 1992.

H. Comon, M. Dauchet, R. Gilleron, C. Léding, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications, 2007. release
October, 12th 2007.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
In Proc. of POPL, pages 238-252. ACM, 1977.

Patrick Cousot and Radhia Cousot. Static determination of dynamic properties of
generalized type unions. In Language Design for Reliable Software, pages 77-94,
1977.

Patrick Cousot and Radhia Cousot. Modular static program analysis. In Proc. of
CC ETAPS, volume 2304 of Lecture Notes in Computer Science, pages 159-178.
Springer, 2002.

Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Proc. of POPL, pages 84-96. ACM Press, 1978.
Jérome Feret. Abstract interpretation-based static analysis of mobile ambients. In
Proc. of SAS, number 2126 in LNCS. Springer-Verlag, 2001. (© Springer-Verlag.
Tristan Le Gall. Abstract lattices for the verification of systémes with stacks and
queues. PhD thesis, University of Rennes 1, France, 2008.

Tristan Le Gall, Bertrand Jeannet, and Thierry Jéron. Verification of communica-
tion protocols using abstract interpretation of FIFO queues. In Proc. of AMAST,
volume 4019 of Lecture Notes in Computer Science, pages 204-219. Springer, 2006.
Thomas Genet, Tristan Le Gall, Axel Legay, and Valérie Murat. Tree regular model
checking for lattice-based automata. CoRR, abs/1203.1495, 2012.

Denis Gopan, Frank DiMaio, Nurit Dor, Thomas W. Reps, and Shmuel Sagiv.
Numeric domains with summarized dimensions. In Proc. of TACAS, volume 2988
of Lecture Notes in Computer Science, pages 512-529. Springer, 2004.

Denis Gopan, Thomas W. Reps, and Shmuel Sagiv. A framework for numeric
analysis of array operations. In Proc. of POPL, pages 338-350. ACM, 2005.
Peter Habermehl, Lukéds Holik, Adam Rogalewicz, Jiri Simécek, and Tomds Vojnar.
Forest automata for verification of heap manipulation. In Ganesh Gopalakrishnan
and Shaz Qadeer, editors, Proc. of CAV, volume 6806 of Lecture Notes in Computer
Science, pages 424-440. Springer, 2011.

Peter Habermehl, Radu losif, Adam Rogalewicz, and Tomés Vojnar. Proving ter-
mination of tree manipulating programs. In Kedar S. Namjoshi, Tomohiro Yoneda,
Teruo Higashino, and Yoshio Okamura, editors, Proc. of ATVA, volume 4762 of
Lecture Notes in Computer Science, pages 145-161. Springer, 2007.

Nicolas Halbwachs and Mathias Péron. Discovering properties about arrays in
simple programs. In Proc. of PLDI, pages 339-348. ACM, 2008.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation (3rd Edition). Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2006.

Jiangchao Liu and Xavier Rival. Abstraction of optional numerical values. In
Proc. of APLAS, volume 9458 of Lecture Notes in Computer Science, pages 146—
166. Springer, 2015.

20.

21.

22.

23.

24.

25.

27

Laurent Mauborgne. Representation of Sets of Trees for Abstract Interpretation.
PhD thesis, Ecole polytechnique, 1999.

A. Miné, A. Ouadjaout, and M. Journault. Design of a Modular Platform for
Static Analysis. In Proc. of (TAPAS), Lecture Notes in Computer Science (LNCS),
page 4, 28 Aug. 2018.

Antoine Miné. The octagon abstract domain. In Proc. of WCRE, page 310. IEEE
Computer Society, 2001.

Antoine Miné. Symbolic methods to enhance the precision of numerical abstract
domains. In Proc. of VMCAI volume 3855 of Lecture Notes in Computer Science,
pages 348-363. Springer, 2006.

David Monniaux. Abstracting cryptographic protocols with tree automata. In
Proc. of SAS, number 1694 in Lecture Notes in Computer Science, pages 149-163.
Springer Verlag, 1999.

John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In Proc. of 17th IEEE (LICS 2002, pages 55—74. IEEE Computer Society, 2002.

	An abstract domain for trees with numeric relations

