
NSAD 2016

Static Analysis of Embedded Real-Time
Concurrent Software with Dynamic Priorities

Antoine Miné1,2

Sorbonne Universités, UPMC Univ. Paris 06, CNRS, LIP6, Paris, France

Abstract

In previous work, we developed a sound static analysis by abstract interpretation to check the absence
of run-time errors in concurrent programs, focusing on embedded C programs composed of a fixed set
of threads in a shared memory. The method is thread-modular: it considers each thread independently,
analyzing them with respect to an abstraction of the effect of the other threads, so-called interference, which
are also inferred automatically as part of analyzing the threads. The analysis thus proceeds in a series of
rounds that reanalyze all threads, gathering an increasing set of interference, until stabilization. We proved
that this method is sound and covers all possible thread interleavings. This analysis was integrated into the
Astrée industrial-scale static analyzer, deployed in avionics and automotive industries.
In this article, we consider the more specific case of programs running under a priority-based real-time
scheduler, as is often the case in embedded systems. In such programs, higher priority threads cannot be
preempted by lower priority ones (except when waiting explicitly for some resource). The programmer
exploits this property to reduce the reliance on locks when protecting critical sections. We show how our
analysis can be refined through partitioning in order to take into account the real-time hypothesis, remove
spurious interleavings, and gain precision on programs that rely on priorities. Our analysis supports in
particular dynamic priorities: we handle explicit modifications of the priorities by the program, as well as
implicit ones through the priority ceiling protocol.
We illustrate our construction formally on an idealized language. Following previous work, we first provide
a concrete semantics in thread-modular denotational form that is complete for safety properties, and then
show how to apply classic abstractions to obtain an effective static analyzer, able to detect all run-time
errors, data-races, as well as deadlocks. Finally, we briefly discuss our implementation inside the Astrée
analyzer and on-going experimentation, with results limited for now to small programs.

Keywords: static analysis, abstract interpretation, verification, safety, concurrency, run-time errors,
data-races, deadlocks, real-time scheduling, priority ceiling protocol

1 Introduction

Program verification is an important part of software development, and has a sig-

nificant cost in industry, hence the need to research more cost-effective methods.

It is particularly important to ensure that critical embedded software that control

planes or cars are free from errors. Testing, the main established method, is more

and more often supplemented with formal methods. Unlike testing, they can provide

strong mathematical guarantees about the behaviors of programs. Semantic-based

1 The work described in this article is supported in part by the project ANR-11-INSE-014 (AstréeA) from
the French Agence nationale de la recherche and in part by the ITEA 3 project 14014 (ASSUME).
2 Email: antoine.mine@lip6.fr

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:antoine.mine@lip6.fr

Miné

static analysis by abstract interpretation [12] is particularly attractive: it infers

statically properties of the dynamical behaviors of a program, reasons directly on

the original, unmodified source (or binary) code, it is fully automated, and it is

sound. Soundness is a key property: it states that no behavior of the program is

omitted by the analysis, so that any property derived by the analysis is true on

all possible executions. In the avionics field, for instance, certification authorities

require static analyses to be sound in order to be considered part of the certifica-

tion process [2]. To scale up, and to produce effective results on what is in general

an undecidable problem, abstract interpretation performs approximations which, to

maintain soundness, must be conservative and over-approximate the set of possible

behaviors. This may result in false alarms: situations where the approximation

considers spurious erroneous executions and fails to establish the correctness of a

correct program. Nevertheless, through a manual process of specialization of ab-

stractions targeting specific classes of programs and properties to prove, we can

hope to achieve a precise and efficient enough analysis, at least on the target pro-

grams. For instance, in previous work, we participated to the design of Astrée [6],

one such analyzer aiming to prove the absence of run-time errors (such as integer

or float overflows, invalid pointer accesses, etc.) on embedded critical sequential C

code, and specialized it for control-command avionics software. Specialization took

the form of developing new, sophisticated abstract domains, mainly for numeric

properties, and heuristic to choose wisely at each program point the desired cost

versus expressiveness among to abstractions available. Astrée is being used in an

industrial context, initially at Airbus [14] and, following its commercialization by

AbsInt [20], in other embedded critical industries, such as the automotive industry.

We consider here the static analysis of concurrent embedded software. On the

one hand, more and more software are concurrent, either to exploit the parallel exe-

cution offered by current multi-core processors, or simply for ease of programming.

This trend also affects critical software. For instance, Integrated Modular Avionics

[38] aims at replacing sets of processors, running sequential programs communicat-

ing through a bus, with a single processor, running a multi-threaded program in a

shared memory implementing the same set of functionalities. On the other hand,

concurrent program verification is challenging for traditional methods. Indeed, con-

current programs generally feature a large number of possible executions due to

highly non-deterministic control flows, causing test coverage to drop dramatically.

Full control and data coverage, i.e., soundness, is nevertheless very important as

effective errors often occur in rare but possible situations (e.g., scheduling corner

cases or specific interleavings). In such a setting, sound static analysis becomes

even more attractive. We have been working on an extension of Astrée to concur-

rent embedded C software [27]. We report here on a recent improvement concerning

the specific case of programs running under a priority-based real-time scheduler.

1.1 Concurrency and Scheduling Models

In the general sense, a program is concurrent if it is composed of several execution

units, that we will call threads, 3 each with its independent control flow. The overall

3 In the rest of the article, we denote execution units as threads, even though they might be named,
depending on the system studied, “processes” (ARINC 653 [4]), “tasks” (OSEK/AUTOSAR [1], TinyOS

2

Miné

void main() {
while (x < 10) {

y = x;

}
}

void ISR() {
x++;

}

Fig. 1. A simple program with an interrupt.

execution, that is, which thread executes at each time, is orchestrated by a sched-

uler. Some schedulers allow arbitrary preemption of any thread by another, others

limit thread switching to selected preemption points, and finally some schedulers

use priorities to determine which threads should run, as exemplified below. There

also exist several methods for threads to communicate. We consider here that all

the memory is shared, which provides an implicit way for threads to communicate.

This is the most general model, but puts the most strain on an analyzer, as it now

must determine which variables are effectively shared, and which values flow be-

tween threads. Additionnaly, threads can synchronize and enforce mutual exclusion

through the use of locks.

Interrupt-Driven Programs. At one extreme, we can see interrupts in sequential

programs as a simple form of concurrency. Figure 1 presents an example of a main

function that reads a variable x, modified concurrently by an interrupt ISR. Ignoring

the effect of the interrupt would not result in a sound analysis. The interrupt can

occur at any time, any number of times during the execution of main. However, once

it preempts the function main, ISR must finish before control is returned to main.

Interrupts can be seen as similar to function calls occurring non-deterministically,

and so, interrupt-driven programs can be modeled in terms of sequential programs.

Naturally, interrupts can occur during interrupts, and can be arbitrarily nested

(similarly, again, to function calls). Interrupt-driven programming can be found in

embedded systems running on “bare metal,” that is, without a proper operating

system nor any scheduler. Lightweight operating systems, such as TinyOS [21],

add a notion of non-preemptive tasks. Each task is a function, and the scheduler

maintains an ordered list of tasks to run. Still, while tasks can be preempted by

interrupts at any point, a task cannot interrupt another task: the task function has

to return to give the control back to the scheduler (so-called cooperative scheduling).

We are also in the situation of a near-sequential program.

Preemptive Scheduling. At another extreme lie fully preemptive systems. One

example is the common multi-threaded applications found in desktop computers.

In such programs, any thread can preempt a currently running thread, at any

point. The result is a program execution that is an arbitrary interleaving of thread

executions. The analogy with a sequential program with function calls breaks down.

Figure 2 gives an example program with two threads using a shared variable glob.

Depending on the position at which t2 interrupts t1, the print instruction in t1

[21]), “threads” (POSIX [17]), “interrupts,” etc.

3

Miné

void t1() {
while (1) {

glob = 100;

glob += 2;

print(glob);

}
}

void t2() {
while (1) {

glob = -100;

}
}

Fig. 2. Two threads interacting through a global variable glob.

void t1() {
while (1) {

lock(m);

glob = 100;

glob += 2;

print(glob);

unlock(m);

}
}

void t2() {
while (1) {

lock(m);

glob = -100;

unlock(m);

}
}

Fig. 3. Variant of Fig. 2 where the two threads ensure mutual exclusion through a mutual exclusion lock.

void high () {
while (1) {

glob = 100;

glob += 2;

print(glob);

yield();

}
}

void low () {
while (1) {

glob = -100;

}
}

Fig. 4. Variant of Fig. 2 where the two threads ensure mutual exclusion through priorities.

may print 102, -98, or -100. The program is thus highly non-deterministic.

Mutexes. It may be desirable to prevent t2 from accessing glob during the instruc-

tion sequence modifying and printing glob in t1. This effect can be achieved using

mutexes, i.e. mutual exclusion locks, that are objects that can be owned (locked)

by at most one thread at a time in the system. This is illustrated in Fig. 3: due

to protection by mutex locks, the print instruction will now always print 102, thus

reducing the non-determinism. In effect, when the currently executing thread tries

to lock a mutex already owned by another thread, the scheduler puts it into a wait

state until the mutex is available again. As such critical sections are usually short

and far apart, to avoid contention in the system, the program execution remains

highly non-deterministic. On the one hand, it is generally desirable that all ac-

cesses to shared variables are protected by locks: unprotected concurrent accesses,

also called data-races, are known to cause miscompilations [7], as well as unexpected

behaviors by exposing the lack of consistency of the memory at the hardware level

[3]. On the other hand, unchecked uses of lock operations can cause deadlocks, a

situation where a set of threads block each other by owning each a mutex required

by another one. A static analysis should be able report both deadlocks and data-

races, to ensure that fixing one kind of problems does not produce another kind of

problems.

4

Miné

void low () {
while (1) {

setPrio(999);

glob = 100;

glob += 2;

print(glob);

setPrio(0);

}
}

void high () {
while (1) {

glob = -100;

yield();

}
}

Fig. 5. Variant of Fig. 2 where the lower priority thread protects a critical section by raising temporarily
its priority.

void low () {
while (1) {

lock(m);

glob++;

if (glob > 10) glob = 0;

unlock(m);

}
}

void med () {
while (1) {

x = glob;

yield();

}
}

void high () {
while (1) {

lock(m);

...

unlock(m);

yield();

}
}

Fig. 6. Priority inversion, which can be avoided by using the priority ceiling protocol.

Real-Time Scheduling. Embedded critical systems generally employ so-called real-

time schedulers that provide low latency and help ensuring strong timing con-

straints. An important feature is the use of priorities for threads, that are strictly

enforced: each thread is given a numeric priority, and only the thread of highest

priority not blocked (e.g., not waiting to lock a mutex) can run. Figure 4 gives an

example program using priorities to ensure mutual exclusion. The thread of high-

est priority must explicitly relinquish the control to give lower priority threads the

opportunity to run. We model this using the yield instruction: it corresponds to a

non-deterministic wait and can also model a timer (as we abstract away the physical

time, the wait becomes non-deterministic) or waiting for an external event out of

our control (that can thus happen at any time). In the example, we are guaranteed

that the lower priority thread cannot preempt the higher priority one while it is

accessing glob. However, the higher priority thread can preempt the lower priority

one at any point of its execution (which explains why the lower priority thread does

not feature a yield instruction). More generally, in a system, we cannot assume

that a non-running thread is waiting at a lock or yield instruction (except the

thread of highest priority) as it may have been preempted non-deterministically

by a yielding higher priority thread. Despite the strict adherence to priorities, this

real-time, fully-preemptive scheduling generates a large space of possible executions.

Priorities can also be dynamic. Figure 5 illustrates a common pattern where

a low-priority thread temporarily elevates its priority to avoid being interrupted

during a critical section. Finally, a mutex lock can be associated to a raise in

priority. The goal is to avoid the case where a low-priority thread locks a mutex, then

is preempted by a medium-priority thread while, at the same time, a high priority

thread that wishes to lock the mutex is blocked until the medium-priority thread lets

the low-priority thread run again and release the mutex. This undesirable scenario,

called priority inversion, is illustrated in Fig. 6. It can be avoided by raising the

5

Miné

1

2

3

glob=100

glob+=2

a

b

glob=-100

1a

2a

3a

glob=100

glob+=2

1b

2b

3b

glob=100

glob+=2

glob=-100
glob=-100

glob=-100

× =

t1

t2

t1 || t2

Fig. 7. Product of control-flow graphs for the analysis of the program of Fig. 2.

void main() {
schedule ();

while (x < 10) {
schedule ();

y = x;

schedule ()

}
schedule (); }

void ISR() {
schedule ();

x++;

schedule ();

}

void schedule () {
int oldPrio = prio;

for (int i = 0; i < N; i++) {
if (i > prio && nondet()) {

prio = i;

ISR[i].entry ();

}
}
prio = oldPrio;

}

Fig. 8. Sequentialization of program Fig. 1, on [39].

priority of thread low while it holds mutex m, so that it cannot be preempted by

med. The so-called priority ceiling protocol, 4 implemented in operating systems

such as OSEK/AUTOSAR [1] or POSIX [17], automates this by associating to each

mutex a minimum priority: every thread is elevated to this priority upon locking

the mutex, and resumes its former priority when unlocking the mutex. When using

this technique in Fig. 6, there is no data-race as thread med cannot observe glob

while either low or high are modifying it.

To sum up, priorities can be employed in place of, or in addition to mutexes

to enforce mutual exclusion and remove data-races. Thus, it is important to take

priorities into account to achieve a sufficiently precise static analysis.

1.2 Analysis of Concurrent Software, Related Work

A variety of methods have been developed to analyze concurrent systems, and in

particular multi-threaded software in a shared memory. Some methods are not

sound, or not scalable, or only adapted to a specific scheduling model.

Sequentialization Methods. Given the large number of techniques and tools available

4 The technique is sometimes called immediate priority ceiling protocol, to distinguish it from a variant,
where a low-priority thread inherits the priority of any higher-priority thread it blocks. The former is more
common in safety critical software, hence our choice to include it here. Nevertheless, our framework can be
easily extended to handle both variants.

6

Miné

to analyze sequential programs, one attractive solution is to reduce the problem to

a sequential analysis. Qadeer and Wu [33] pioneered such transformations in their

KISS tool. Their idea is to weave calls to a synthesized scheduler function through-

out the program, and feed the resulting program to the SLAM model-checker. The

method is complete, as an error trace on the sequential program corresponds to a

trace on the concurrent one, but it is not sound and may miss errors.

In the special case of interrupt-driven programs, however, the sequentializa-

tion transformation itself can be made sound and complete. This technique has

been combined with an abstract interpreter to construct a sound (but incomplete)

static analysis of interrupt-driven programs [39], or of sequential programs (a USB

driver) interacting with complex environments (a USB controller) [29]. Figure 8

illustrates the transformation from [39], applied to the program from Fig. 1. For

large programs, if handled naively by inlining, the additional calls may threaten

the scalability of the analysis. To combat this, one natural solution is to employ

modular inter-procedural analysis techniques. For instance, [31] analyzes TinyOS

drivers using a context-insensitive abstraction of interrupt handlers.

Graph-Based Methods. A more classic and general method consists in reasoning on

the control-flow graph of the threads. On the one hand, the analysis of arbitrary

control-flow graphs can be achieved by model-checking or abstract interpretation [8].

On the other hand, a control-flow graph modeling all interleavings of threads can be

constructed as a product of the graphs of the individual threads. This is illustrated

in Fig. 7, for the example of Fig. 2. Even on such a simple example, a significant

drawback becomes apparent: the resulting graph can be very large. The analy-

sis seems only practical for small programs; it is implemented for instance in the

ConcurInterproc academic tool [18]. Partial order reduction methods, introduced

by Godefroid [16], attempt to address the problem by soundly removing redundant

computations during model checking, but may not be sufficient for large programs.

Context bounded model checking [32] has been advocated as a more practical solu-

tion; however, this method does not remain sound as it considers only small prefixes

of executions. Both regular (SPIN-based) and bounded model-checking have been

applied to the analysis of OSEK software, taking priorities into account [40].

Even when considering sequential programs, graph-based methods may not be

suitable for high-precision whole-program analysis of large software, because of the

difficulty to fit in the memory an invariant for each program point. The Astrée

analyzer [6], which is whole-program and employs relational, flow-sensitive, context-

sensitive, partially path-sensitive abstractions, opts for an iteration by induction on

the program syntax, which requires far less memory (intuitively, in the depth of

nested loops and conditionals after inlining, instead of in the program length).

Thread-Modular Methods. Prior work [24] and the work of Carré and Hymans [10]

proposed thread-modular static analyses, inspired from the seminal work of Jones

on rely–guarantee proof methods [19]. In these analyses, each thread is analyzed in

isolation, first ignoring the effect of other threads. During this analysis, the set of

interference, i.e., possible values stored in global variables, is gathered. The threads

are then reanalyzed, but injecting this time the possible interference gathered from

the other threads. Generally, this uncovers new possible behaviors, and so new

7

Miné

interference. Hence, the thread analyses are iterated until the increasing set of

interference stabilizes, at which point we are guaranteed to cover at least all possible

thread interleavings. On the example of Fig. 2, we get, in the first analysis round,

[glob 7→ {100, 102}] for t1 and [glob 7→ {−100}] for t2. In the second analysis

round, the assignment glob += 2 from t1 can now also store −98 into glob. In

the third round, interference are stable, and we indeed get that print(glob) can

print 102, -98, or -100, which is sound.

Integration within the Astrée analyzer and experimentation on large (2 Mloc)

embedded avionics software [24] demonstrated the scalability of the method. In

particular, few (around 6) rounds of reanalysis are necessary to stabilize interfer-

ence, i.e., the sound analysis of a concurrent software is less than one order of

magnitude more costly than that of a sequential program of similar size. Moreover,

the concurrent analysis is based on a simple modification of a sequential analysis

(for each thread), and so, can benefit from existing abstractions and implementa-

tions available for these (in our case, the Astrée analyzer). Additionnaly, mutual

exclusion can be handled in [24] through partitioning of interference with respect

to the mutex protecting them. On the example of Fig. 3, the analysis would gather

that only the interference [glob 7→ {102}] from t1 is visible to other threads that

access glob while holding mutex m (such as t2), but the analysis would also keep

[glob 7→ {100, 102}] and apply it to threads accessing glob while not owning m.

These works are limited to non-relational and flow-insensitive handling of in-

terference. This was addressed in [26], which first reformulated these methods as

an abstraction of a complete (but uncomputable) concrete semantics already in

thread-modular form, and then showed how possibly relational and flow-sensitive

abstractions could be derived. This approach was pioneered by Cousot and Cousot

for non-modular methods [13], and extended in [26] to thread-modular methods.

Deriving the static analysis as an abstraction of a complete concrete semantics is

very attractive from a theoretical point of view, as it means that, for any correct

program, an effective static analysis able to prove it correct can be constructed.

The idea of adapting thread-modular techniques to program analysis has also been

applied to model-checking [15], although it is often limited to non-relational ab-

stractions of interference [22].

Note that these methods handle priorities and real-time scheduling imprecisely

(if at all). They would not be able to infer and exploit mutual exclusion in the ex-

amples of Figs. 4–6, and would instead generate spurious interference. The Goblint

analyzer [37] is another sound static analyzer of concurrent C software. While it

focuses mainly on data-races and uses simple numeric abstractions, it is the only

prior sound analyzer we know of that supports the priority ceiling protocol [35].

1.3 Contribution

In this article, we propose a small improvement on the thread-modular static anal-

ysis implemented in Astrée to check the absence of run-time errors and data-races

[24,26]. Our goal is to improve the precision by taking into account the priorities of

threads, including dynamic priorities, assuming they are run by a real-time sched-

uler. For instance, the analysis of the examples from Figs. 4–5 using priorities will

provide, with our new analysis, the same level of precision than when using mu-

8

Miné

texes to ensure mutual exclusion (Fig. 3). Similarly to our previous work [24], the

improvement is implemented through a judicious use of interference partitioning.

However, following [26], we justify the correctness of the approach by expressing it

as an abstraction of a concrete, thread-modular semantics. Moreover, we extend

[26] from a state-based semantics to a trace-based semantics in order to develop the

history-sensitive abstractions necessary to justify our method. Our main targets

are software running under OSEK/AUTOSAR operating systems [1]. Thus, we

also support the priority ceiling protocol used in such software (Fig. 6). Our final

contribution is a simple sound deadlock analysis that exploits the precise results of

the analysis in terms of reachability to detect all possible deadlock cycles.

Limitations. As in [24], we are currently limited to non-relational interference ab-

stractions (although each thread analysis is fully relational). Combination with

relational interference abstractions from [26] remains future work. Additionnaly,

we largely ignore the effects of weak memory models, although this is somewhat

offset by the ability of the analysis to find all data-races, and so, warn the program-

mer about possible hazards related to memory inconsistency [3]. Finally, we focus

solely on mono-core applications. The reason is that current real-time systems and

applications, including all our target applications, are largely mono-core and ex-

ploit the fact that only one thread runs at a time. The analysis must also exploit it.

Previous work that ignored priorities [24,26] was sound for multi-core applications.

Although we have implemented our method within the Astrée analyzer, ex-

perimentation is still on-going. We can only report for now on the analysis of

small demonstration example OSEK software of a few hundred lines, and present

the small precision improvement we bring compared to the results to the former,

priority-unaware version of Astrée.

1.4 Overview

The remaining of the article is organized as follows: we presents our abstract lan-

guage and its concrete semantics; first, as a classic monolithic fixpoint interleaving

all the threads in Sec. 2, then, in a thread-modular form as a fixpoint of thread

semantics in Sec. 3; Sec. 4 then presents an abstraction of this semantics into an

effective static analyzer parameterized by an arbitrary domain for intra-thread anal-

ysis and a partitioned, non-relational domain for inter-thread interference analysis;

Sec. 5 presents our deadlock analysis; Sec. 6 discusses the implementation within

the Astrée analyzer and early experimental validation; Sec. 7 concludes.

2 Concrete Semantics

This section presents our language and its concrete semantics, that is, the most

precise mathematical definition of program behaviors. We will progressively add

features until we achieve a concrete semantics that is thread-modular, takes thread

priorities and real-time scheduling into account, and is complete for safety properties

(such as invariants, data-race freedom, and deadlock freedom). The final concrete

semantics will be uncomputable, but amenable to abstractions, as shown in Sec. 4.

9

Miné

prog ::= thread1 || thread2 || · · · || threadn (program)

thread ::= [`] stat [`′] (thread)

[`] stat [`′] ::= [`]V ← expr [`′] (assignment)

| [`] stat ;[`1] stat [`′] (sequence)

| [`]if expr then [`1] stat endif [`′] (conditional)

| [`]while [`1] expr do [`2] stat done[`′] (loop)

| [`]lock(M)[`′] (mutex lock)

| [`]unlock(M)[`′] (mutex unlock)

| [`]yield[`′] (non-deterministic wait)

| [`]setpriority(N)[`′] (change priority)

Fig. 9. Language syntax.

2.1 Language

For the sake of presentation, and in order to offer a full formal treatment, we consider

a simple, abstract language, with a minimum number of constructions, focusing

notably on those relevant to concurrency and real-time scheduling. Nevertheless,

the method has been applied to a real language, C, as reported in Sec. 6.

Syntax. The grammar of the language is presented in Fig. 9. A program prog is

composed of a finite set of threads thread t numbered from t = 1 to t = n. We will

write as T def
= {1, 2, . . . , n} the set of thread numbers. A thread is a single statement

stat . Statements in the sequential fragment include classic assignments, sequences,

if-then conditionals, and loops. We denote as V the (finite, fixed) set of variables.

We use expressions expr , but do not specify what they are: their precise syntax is

irrelevant to our analysis; they contain at least boolean values tt and ff, but could

also contain integer arithmetic, floats, pointers, etc. The concurrency-specific state-

ments include locking (lock) and unlocking (unlock) a mutex, non-deterministic

wait (yield), and changing the priority of the current thread to some integer value

(setpriority). We denote as M the (finite, fixed) set of mutexes. Finally, all the

statements in our program are decorated with labels `. Every statement has a label

before it, a label after it, and possibly labels in-between; these will facilitate the

definition of the transition system semantics in the following sections. We denote

as L the (finite) set of labels in the program.

Limitations. The main limitations of our language are as follows. Firstly, the sets

V of variables, M of mutexes, and T of threads are fixed, i.e., there is no dynamic

allocation of resources. Secondly, there are not procedures. These limitations are

actually guided by our application domain and also apply to our C analyzer (Sec. 6):

as we are analyzing embedded software, the threads, mutexes and variables are

statically allocated (or allocated through a sequential initialization phase that we

analyze beforehand). Moreover, the C analyzer performs an interprocedural analysis

10

Miné

sensitive to the full call stack, through semantic inlining of all functions calls; this

prevents us from supporting unbounded recursive calls, but these are forbidden in

embedded software. As a consequence, the set of local variables is unambiguously

determined at every point of the analysis by the call stack currently analyzed.

2.2 Interleaving Semantics

We present a concrete semantics for our language. At first, we consider that an

execution of the program is an arbitrary interleaving of thread executions, up to

mutual exclusion enforced by locks. We thus ignore for now the effect of priorities

and real-time scheduling, which will be accounted for in the next section.

Transition System. At the most concrete level, the semantics of the program is

described as a discrete labelled transition system (Σ,A, τ), composed of: a set Σ

of states, a set A of actions, and a transition relation τ ⊆ Σ × A × Σ modeling

the effect of individual program statements as discrete transitions from one state to

another state following some action. This model is quite standard [11] as it allows

deriving a variety of semantics expressing important program properties, such as

reachability, safety, and liveness, and then abstract them into static analyzers for

such properties.

States. Our program states are composed of several parts, collecting information

about the memory, the control location, and the scheduler state. A memory state

ρ ∈ E def
= V → V assigns a value in V to each variable in V. A control state

c ∈ C def
= T → L assigns a control location in L to each thread in T . In addition,

we must track mutex locking. As a mutex can only be locked by a single thread at

a time, we store this information as an ownership map o ∈ O def
= M→ T⊥, where

T⊥ is T ∪ {⊥}, indicating which thread o(m) ∈ T owns (i.e., has locked) a mutex

m, while o(m) = ⊥ indicates that m is not locked by any thread. Finally, as thread

priorities can be changed dynamically, we keep a map π ∈ Π
def
= T → N denoting

the current priority of each thread. To sum up, the program states live in:

Σ
def
= C × E × O ×Π . (1)

Transitions. We use actions, in A, on transitions to remember which thread gener-

ates each transition as well as the nature of the instruction executed, i.e.:

A def
= T × atomic , where

atomic
def
= {V ← e, e?, yield, lock(m), unlock(m), setpriority(p) }

(2)

where (t, a) ∈ A denotes that t performs some atomic action a (assignment, guard,

locking, etc.). The transitions live in Σ×A×Σ. The transition system can be derived

statically from the program, by induction on the syntax, as shown in Fig. 10. We

denote as τt[
[`] stat [`′]] the set of transitions generated by a statement stat from

thread t between control locations ` and `′. The transitions τ [prog] generated by

the whole program prog
def
= thread1 || · · · || threadn is the union of the transitions

11

Miné

τ [prog] ⊆ Σ×A× Σ

τ [prog]
def
= ∪t∈T τt[

[`t] stat t
[`′t]]

where prog = thread1 || · · · || threadn and ∀t ∈ T : thread t = [`t] stat t
[`′t]

τt[
[`1]V ← e[`2]]

def
=

{ (c, ρ, o, π)
t:V←e−−−−→ (c[t 7→ `2], ρ[V 7→ v], o, π) | c(t) = `1 ∧ v ∈ EJ e Kρ }

τt[
[`1]s;[`2]s′[`3]]

def
= τt[

[`1]s[`2]] ∪ τt[[`2]s′[`3]]

τt[
[`1]e?[`2]]

def
= { (c, ρ, o, π)

t:e?−−→ (c[t 7→ `2], ρ, o, π) | c(t) = `1 ∧ tt ∈ EJ e Kρ }

τt[
[`1]if e then [`2] s endif [`3]]

def
= τt[

[`1]e?[`2]] ∪ τt[[`2]s[`3]] ∪ τt[[`1]¬e?[`3]]

τt[
[`1]while [`2] e do [`3] s done[`4]]

def
=

τt[
[`1]tt?[`2]] ∪ τt[[`2]e?[`3]] ∪ τt[[`3]s[`2]] ∪ τt[[`2]¬e?[`4]]

τt[
[`1]lock(m)[`2]]

def
=

{ (c, ρ, o, π)
t:lock(m)−−−−−−→ (c[t 7→ `2], ρ, o[m 7→ t], π) | c(t) = `1 ∧ o(m) = ⊥}

τt[
[`1]unlock(m)[`2]]

def
=

{ (c, ρ, o, π)
t:unlock(m)−−−−−−−−→ (c[t 7→ `2], ρ, o[m 7→ ⊥], π) | c(t) = `1 ∧ o(m) = t }

τt[
[`1]yield[`2]]

def
= { (c, ρ, o, π)

t:yield−−−−→ (c[t 7→ `2], ρ, o, π) | c(t) = `1 }

τt[
[`1]setpriority(p)[`2]]

def
=

{ (c, ρ, o, π)
t:setpriority(p)−−−−−−−−−−→ (c[t 7→ `2], ρ, o, π[t 7→ p]) | c(t) = `1 }

Fig. 10. Transition system for a concurrent program.

generated by the statement [`i] stat i
[`′i] of each thread thread i. We use the notation

σ
t:i−→ σ′ as a shortcut for the fact that the transition (σ, (t, i), σ′) exists in τ [prog].

All the transitions update the control part c(t) of the thread t they belong to,

while leaving the control part of the other threads intact. The semantics of classic

sequential constructs is standard: the assignment updates the memory state, while

the semantics of conditionals, sequences, and loops is by induction. We introduced a

synthetic guard statement e? which is useful to simplify the definition of conditionals

and loops (note that tt? denotes an unconditional jump). As we did not specify the

syntax of expressions, we do not make any hypothesis on the set V of program values

either, and also leave this set unspecified (except for the presence of boolean values

tt and ff). We assume the existence of a function EJ expr K : E → P(V) able to

return the set of possible values an expression can evaluate to in a given memory

state ρ ∈ E . For the sake of generality, the semantics of expressions returns a set:

we can thus easily model non-deterministic expressions (that return several possible

values, all of which must be considered by the analysis) and errors (i.e., returning

12

Miné

no value at all, blocking program execution).

The transitions generated from concurrent statements are straightforward: in

addition to updating c(t), they update the mutex ownership map o (lock, unlock),

or the priority map π (setpriority). For now, yield is a “no-op” in the transition

system. It will be given a special significance for real-time schedulers in Sec. 2.3, as

it allows other threads to run even if they have a lower priority.

Initial State. We denote as E
def
= {(c0, ρ0, o0, π0)} the set of initial states, reduced

here to a single state where c0 maps each thread control location to its initial control

point, ρ0 maps every variable to 0, o0 maps every mutex to ⊥, and π0 maps threads

to their initial priority.

Interleaving Semantics. A transition system provides a very static view of a program

semantics. Information about the dynamic semantics, i.e., the possible executions

of the program, can be derived classically [11] using fixpoints. A possible execution

is modeled as a so-called trace, i.e., a sequence of states interspersed with actions.

A trace is noted as σ0
a0
� σ1

a1
� · · ·σn, with ∀i : σi ∈ Σ, ai ∈ A, while we denote

as ΣA∗ the set of all traces. We are in particular interested in observable program

traces, i.e., traces starting in an initial state and where consecutive states are related

by the transition relation. Note that, to avoid any confusion, we use a different kind

of arrows for traces
a
� and for the transition relation

a−→. The trace semantics F ,

which collects all program traces, can be classically expressed as a fixpoint [11]:

F def
= lfpλT .E ∪ {σ0

a0
� σ1 · · ·σn+1 | σ0

a0
� σ1 · · ·σn ∈ T ∧ σn

an−→ σn+1 } .

It corresponds to modeling program executions as arbitrary interleavings of thread

executions. Note that this semantics ignores, for now, thread priorities but respects

the mutual exclusion property enforced by mutexes, by definition of the set of

transitions generated by a lock instruction.

Most analyses are not based on a trace semantics, but rather on a state seman-

tics, which is simpler and can nevertheless express important correction properties,

such as the absence of run-time errors. The set R of reachable states can be ex-

pressed, similarly to F , as a fixpoint:

R def
= lfpλS.E ∪ {σ′ | ∃σ ∈ S, a ∈ A : σ

a−→ σ′ } .

The reachability semantics R can be seen as an abstraction, through αR, of the

trace semantics F , which collects the last reachable state of each trace:

R = αR(F), where αR(T)
def
= {σ | ∃σ0

a0
� σ1 · · ·σn ∈ T : σ = σn } . (3)

Even when we are ultimately interested in state properties, it is worthwhile to

derive our static analysis from a trace semantics, instead of a state semantics, as it

facilitates the design of precise and efficient computable abstractions by exposing

information about the history of computations. For instance, trace partitioning [23]

is a popular such abstraction: it uses (parsimoniously) trace information in order

to turn a flow-sensitive analysis into a path-sensitive one.

13

Miné

Granularity and Memory Models. Our semantics considers that an assignment V ←
e evaluates the expression e and updates V in a single, atomic step, i.e., thread

preemption cannot occur in the middle of this operation. This may not be realistic:

in a real language, two threads executing concurrently V ← V + 1 may actually

increase V by one instead of two, assuming preemption occurs after the first thread

evaluates V + 1 and before it updates V . One solution would be to further split

expression evaluation, using temporaries, to match the granularity of the language

(e.g., tmp ← V + 1;V ← tmp). Reynolds advocates instead the use of a “grainless”

semantics [34], where such thread interactions are considered as errors. Our static

analyzer will also be consistent with this semantics as it reports them as data-races.

This problem is also tied to the issue of weak memory models [5] where, due

to compiler and hardware optimization interacting with thread preemption, the

program exhibits more behaviors than the interleavings of threads. While modeling

directly popular weak memory models in a static analyzer is possible [36], we do not

discuss it here and only focus on sequentially consistent memories. Note, however,

that current high-level models tend towards the “data-race freedom” guarantee, i.e.,

if there are no data-races in any sequentially consistent execution, then there are no

other possible executions than the sequentially consistent ones. As our analyzer will

report all data-races, it becomes possible to check a posteriori whether all behaviors

have been taken into account by the analysis or not.

2.3 Real-Time Concurrent Semantics

Compared to the interleaving semantics of Sec. 2.2, a real-time scheduler obeys

thread priorities strictly, and uses them to restrict the set of allowed transitions.

Priorities. To model the (immediate) priority ceiling protocol, a program assigns

a priority ceiling to each mutex, denoted here as mprio : M → N, indicating the

value that the priority of a thread will be raised to upon locking the mutex. This

is a static information, provided as part of the program but not the program state.

Thread priorities are, however, dynamic. We define the actual priority tprio(t)(σ)

of a thread t in a specific state σ
def
= (c, ρ, o, π), taking into account the current

priority map π as well as the static priority mprio of the mutexes it currently owns:

tprio(t)(c, ρ, o, π)
def
= max ({π(t) } ∪ {mprio(m) | m ∈M, o(m) = t }) . (4)

Scheduling. In a real-time mono-core scheduler, only the runnable thread of highest

priority can run. By runnable, we mean that it is neither waiting at a lock statement

for a lock to become available, nor finished, nor waiting at a yield statement for

some external event. In order to develop thread-modular analyses, it is useful to

define the scheduler by stating, for a given thread t in a given program state σ,

whether it can run or not, i.e., whether it is not necessarily blocked by a higher

priority thread. We thus define the “enabled” predicate enbl(t, σ) as:

enbl(t, σ)
def⇐⇒ ∀t′ 6= t ∈ T : tprio(t′)(σ) ≤ tprio(t)(σ)

∨ ∃σ′ : σ t′:yield−−−−−→ σ′ ∨ 6 ∃i, σ′ : σ t′:i−−→ σ′

(5)

14

Miné

This rule explicitly prevents a yielding or blocked thread from blocking lower priority

threads. In case there are yielding threads, there may be several simultaneously

enabled threads (e.g., the yielding thread, and a lower priority thread), leading

to a non-deterministic behavior. If several threads are waiting for a mutex to be

unlocked, then, upon unlocking, our semantics states naturally that the thread of

highest priority waiting for the mutex will run immediately and acquire it, blocking

lower priority threads. The trace semantics F then becomes:

F def
= lfpλT .E ∪ {σ0

a0
� σ1 · · ·σn

t:i
� σn+1 |

σ0
a0
� σ1 · · ·σn ∈ T ∧ enbl(t, σn) ∧ σn

t:i−→ σn+1 }

(6)

and the reachable states are:

R def
= lfpλS.E ∪ {σ′ | ∃σ ∈ S, i ∈ atomic : σ

t:i−→ σ′ ∧ enbl(t, σ) } . (7)

We also have R = αR(F), using the same reachability abstraction αR as for the

interleaving semantics (3).

Limitations. In our semantics, if two threads have the exact same priority, they

can preempt each other arbitrarily (none blocks the other). In practice, however,

in order for a system to behave in a more deterministic way, real-time programs

often opt instead for a scheduler where a thread can only be preempted by a thread

with strictly greater priority. Modeling this would require tracking additionally,

in the program state, the thread which performed the last step, and ensuring it

keeps running in case of priority tie. This is not conceptually difficult, but we avoid

presenting this complication here as it would obscure the semantics. Our semantics

allows more behaviors, and so, is nevertheless sound with respect this alternate,

more strict kind of schedulers.

The interleaving semantics of Sec. 2.2 actually models multi-core systems but,

here, when taking priorities into account, we assumed a mono-core system, where

at most one thread runs at a time. There exist several ways to extend mono-core

real-time schedulers to the n-core case, such as scheduling the n highest priority

threads, or pinning thread to cores and scheduling on each core the highest priority

thread in the set associated to the core. We believe that our framework could handle

these cases painlessly through an adaptation of the enbl function (5), but we do not

discuss this further and leave the handling of multi-core as future work.

3 Thread-Modular Concrete Semantics

The concrete semantics we proposed in the previous section is still monolithic: it

is expressed as a fixpoint interleaving actions from all the threads in an arbitrary

order. We now propose a thread-modular version, which is based on previous work

for the interleaving semantics [25] implemented inside Astrée [6], but adapted here

to a priority-aware real-time trace-based semantics.

15

Miné

3.1 Nested Fixpoint Semantics

Our modular semantics is based on the rely-guarantee principle [19]: each thread is

analyzed separately, assuming some information about the effect of the environment,

i.e., the other threads. Given a thread t ∈ T , we give an expression of the program

execution traces, denoted now as FM (t, I) (standing for “modular semantics”), that

only explores the transition system generated by thread t. It also takes as parameter

a set I ∈ P(I) of transitions from the environment, so-called “interference,” where

I def
= Σ×A×Σ here. From the point of view of thread t, an execution step consists

in either applying some interference from the environment or, when reaching a state

enabled for t, a step from thread t, i.e.:

FM (t, I)
def
= lfpλT .E ∪ {σ0

a0
� σ1 · · ·σn

t′:i
� σn+1 | σ0

a0
� σ1 · · ·σn ∈ T ∧

((t = t′ ∧ enbl(t, σn) ∧ σn
t:i−→ σn+1) ∨

(t 6= t′ ∧ 〈σn, (t′, i), σn+1〉 ∈ I)) }

(8)

A natural way to recover exactly the program semantics F (6) from FM is to provide,

as interference I, the transitions effectively appearing in F , i.e., α�(F), where the

abstraction α�(T) gathers the transitions in the set of traces T :

α�(T)
def
= { 〈σk, ak, σk+1〉 | σ0

a0
� σ1 · · ·σn ∈ T ∧ k < n } . (9)

Note that α�(F) is a subset of the transition relation τ [prog] of the full program,

but can be much smaller as it takes real-time scheduling into account (enbl) and

discards transitions that are unreachable from the initial environment.

Intuitively, ∀t ∈ T : F = FM (t, α�(F)), i.e., we have expressed F as a solution

of a system of fixpoint equations. This is formalized more precisely in the following

theorem:

Theorem 3.1 F = lfp λT . ∪t∈T FM (t, α�(T)) .

Proof. In Appendix A.1. 2

As FM is itself defined as a fixpoint, we have expressed F as a nested fixpoint.

Using Kleene’s theorem [11], we can provide an alternate expression for F , as the

limit of a sequence of iteration ∪i∈N Ti, where: T0
def
= ∅

Ti+1
def
= ∪t∈T FM (t, α�(Ti)) .

(10)

As FM (t, I) only uses the part of the transition relation −→ corresponding to thread

t, it is similar to a sequential analysis of t, up to the application of interference

from I (this aspect will become more obvious when switching to a denotational-

style semantics of threads, in Sec. 3.2). We have expressed that F can be computed

by iterating sequential analyses of individual threads, i.e., our expression is indeed

thread-modular. This fixpoint formulation also expresses that, unlike classic rely-

guarantee [19], the environment is inferred and not provided by the user.

16

Miné

SJ [`1] stat [`2] K : T → D → D

SJ [`1]s;[`2]s′[`3] K(t) def
= SJ [`2]s′[`3] K (t) ◦ SJ [`1]s[`2] K(t)

SJ [`1]if e then [`2] s endif [`3] K(t)(D)
def
=

SJ [`2]s[`3] K(t)(SJ [`1]e?[`2] K(t)(D)) ∪̇ SJ [`1]¬e?[`3] K(t)(D)

SJ [`1]while [`2] e do [`3] s done[`4] K(t)(D)
def
=

SJ [`2]¬e?[`4] K(t)(lfpλ(D′. D ∪̇ SJ [`3]s[`2] K(t)(SJ [`2]e?[`3] K(t)(D′))

SJ [`1]s[`2] K(t)(T, I)
def
=

let T ′ = apply(T, t, I) in

let T ′′ = {σ0
a0
� σ1 · · ·σn

t:s
� σn+1 |

σ0
a0
� σ1 · · ·σn ∈ T ′ ∧ enbl(t, σn) ∧ σn

t:s−→ σn+1 }

in

(T ′′, I ∪ T ′′)

when s ∈ atomic (2)

apply(T, t, I)
def
=

lfpλX. T ∪ {σ0
a0
� σ1 · · ·σn

t′:s
� σn+1 |

σ0
a0
� σ1 · · ·σn ∈ X ∧ t′ 6= t ∧ 〈σn, (t′, s), σn+1〉 ∈ α�(I) }

Fig. 11. Concrete thread-modular denotational semantics.

Comparison with Previous Work. The nested fixpoint formulation is similar to [25]

with two main differences. Firstly, [25] models the interleaving semantics, while we

model a priority-aware real-time semantics, thanks to the use of the enbl function.

Secondly, we express a trace semantics, while [25] presents a state semantics. As

stated before, traces allow history-sensitive abstractions. We could, for instance,

apply trace partitioning [23] on the analysis of each individual thread to achieve

path-sensitivity. Although our implementation (Sec. 6) does employ trace parti-

tioning, we will present a more classic flow-sensitive but path-insensitive thread

analysis in Sec. 4. In this article, our motivation for keeping traces is rather to

allow history-sensitive abstractions of interference. For instance, we will be able to

distinguish, within critical sections, the last update of a variable from the previous

updates, as only the last one can be actually seen by other threads.

3.2 Denotational Form

Equations (8)–(10) present a very generic formulation of a thread-modular semantics

independent from the programming language, based on a transition relation τ and a

scheduler enabling functions enbl . We now specialize the semantics to our language,

using the transition relation defined in Fig. 10. The resulting semantics is presented

in Fig. 11. We use a denotational form, well-suited to a definition by induction on

the syntax: it mimics the way the transition system was defined (Fig. 10). This form

17

Miné

is also well-suited to derive, by abstraction, static analyzers defined by induction

on the program syntax (such as Astrée [6]) as we will see in the next section.

Our semantics is a function SJ [`1] stat [`2] K(t)(T, I) that, given a statement stat

in a thread t and a set T of traces ending at control point `1, returns a set of traces

ending at control point `2. Moreover, the function takes as argument an interference

set I and returns this set enriched with the interference generated specifically by

the statement. To facilitate further abstractions, an interference is also modeled as

a full trace, and not simply a transition: this will allow the use of history-sensitive

abstractions of interference. The domain of SJ · K(t), for each thread t, is thus

D → D, where D def
= P(ΣA∗) × P(ΣA∗). We denote as ∪̇ the natural join in D,

which joins sets pairwise. For compound constructs, such as the sequences, loops,

and tests, the semantics is given by induction on the syntax, in a standard way.

For all other statements: assignments, guards, lock, unlock, yield, setpriority,

which are atomic (2), we reuse the transition relation −→ from Fig. 10 to simplify the

presentation. The semantics of an atomic statement starts by applying an arbitrary

number of transitions from the interference I (apply), then it selects the traces

ending in a state where the thread is not blocked (enbl), and finally it perform a

transition according to the transition relation associated with the statement. This

formulation is very close to a classic denotational semantics of sequential programs,

up to the gathering and application of interference. In the concrete, the interference

simply appears as an accumulating version of the trace semantics, i.e., we add traces

to I, while we replace traces from T with longer traces T ′′ performing an additional

step of thread t. Given a thread thread t = [`t] stat t
[`′t] and an interference I, its

denotational semantics is:

T(t, I)
def
= SJ [`t] stat t

[`′t] K (t)(E, I) .

The semantics of the whole program is then the limit of the following iteration

which computes, at each step, and for each thread t, a set of traces Tn(t) and a set

of interference In(t) from the denotational semantics of t:

∀t ∈ T : (T0(t), I0(t))
def
= (∅, ∅)

∀t ∈ T : (Tn+1(t), In+1(t))
def
= T (t,∪t′∈T In(t′)) .

(11)

Although it has a different expression, it computes a similar trace semantics as the

iteration from (10) and, thus, as F (6). More precisely, ∪n∈N Tn(t) gives the set of

program traces, but restricted to the traces where thread t reaches its final control

state with the last transition of the trace:

Theorem 3.2 ∪n∈N Tn(t) = {σ0
t0:a0
� · · ·

tn−1:an−1

� σn ∈ F | tn−1 = t ∧ cn(t) = `′t }
where σn = (cn, ρn, on, πn) and thread t is [`t] stat t

[`′t].

Proof. We only provide a simple proof sketch. A first step would be to note

that, for every thread t and every iteration of (11), T(t, I) returns the traces of

FM (t, α�(I)) restricted to traces that end with the termination of thread t. This

is done by induction on the syntax of threads, and by observing that the inductive

18

Miné

definition of SJ · K (Fig. 11) has the same structure as the inductive definition of

the transition system τ [prog] (Fig. 10). Then, Thm. 3.1 concludes. 2

This is our final concrete semantics, as it is both thread-modular and defined by

induction on the syntax of threads. It is complete for safety properties, as it takes

all program traces into account, but remains uncomputable.

4 Abstract Semantics

We now show how we can abstract the thread-modular concrete denotational seman-

tics from the last section into a static analyzer. The concrete semantics manipulates

information about state and about interference, and we will be able to choose dif-

ferent abstractions for each kind of information. This allows us, in particular, to

perform intra-thread analyses using precise, flow-sensitive, relational abstractions,

focusing on the thread’s local view of the program state at the current control

location, as we would do for a sequential program analysis, while abstracting inter-

thread interference more aggressively, as we must maintain information summarizing

the whole execution of the program. In our method, interference are abstracted in

a non-relational and mostly flow-insensitive way, only keeping some relations be-

tween variable values and the scheduler state (such as which mutexes are locked)

and maintaining a small amount of history (such as which interference occurs last

in a critical section).

In this section, we first discuss state and interference abstractions, and then pro-

vide the abstract transfer functions of the analysis, parameterized by value abstract

domains. The key difference with a sequential analysis is the process to extract

interference from an analysis and inject it into transfer functions.

4.1 State Abstraction

Recall that a program state (c, ρ, o, π) ∈ Σ contains a control part c ∈ C def
= T → L,

a memory part ρ ∈ E def
= V → V, and scheduler specific information about mutex

ownership o ∈ O def
= M → T⊥ and thread priority π ∈ Π

def
= T → N. When

designing a state abstraction to use to analyze one thread, our goal is threefold:

firstly, leverage existing domains (such as numeric domains, pointer abstractions,

etc.) for the memory state; secondly, keep precise information about control and

scheduling for the analyzed thread; finally, abstract away information about other

threads that we cannot hope to infer by looking only at the current thread. This

is achieved by partitioning memory states with respect to an abstraction of the

control and scheduler information, and using some existing value abstract domain

to abstract sets of memory states in each partition. More formally, the partitioning

domain, PS , and the corresponding abstraction, βS , are defined as:

PS
def
= P(M)× N

βS : T → Σ→ PS

βS(t)(c, ρ, o, π)
def
= ({m ∈M | o(m) = t }, π(t)) .

(12)

19

Miné

The abstraction remembers the set of locks the current thread owns, in P(M),

as well as its current priority, in N. We remember just enough information to

handle precisely lock, unlock, and setpriority instructions. The actual priority

tprio(t)(σ) of thread t in state σ is completely specified given βS(t)(σ), hence, we

silently overload tprio (4) to a function in PS → N.

Let us denote as E] a value abstract domain (e.g., intervals, polyhedra, etc.), with

concretization: γE : E] → P(E) and featuring the classic abstract transfer functions

S]
EJ · K for assignments and guards, a join ∪]E , and widening. The partitioned state

domain Σ] and concretization γS are then defined as:

Σ] def
= PS → E]

γS : Σ] → P(Σ)

γS(S])
def
= { (c, ρ, o, π) | ρ ∈ γE(S](βS(c, ρ, o, π))) } .

(13)

Note that our domain does not retain any control information. One benefit of

employing a denotational-style semantics (e.g., Fig. 11) is that the control location

c(t) of the current thread is implicit. We deliberately abstract away the control

location of the other threads to avoid the state explosion problem related to large

control spaces in concurrent programs. Moreover, we do not keep information about

the history of computation, keeping only the current program state, i.e., we abstract

traces into states using αR (3).

4.2 Interference Abstraction

The abstract interference should collect all the effects of the current thread that

can be seen by other threads. As a first approximation, we can simply collect every

value written into every variable, and inject them into the other threads, whatever

the program point and scheduler state. However, more precision can be obtained

by removing spurious interference that cannot occur due to priority and mutual

exclusion. This is achieved by partitioning interference abstractions, and applying

to each abstract state partition only interference from compatible partitions. This

leads to an abstraction of the form PI → P(V), for some partitioning domain PI . To

achieve a computable analysis, interference are further abstracted as I] def
= PI → V],

where V] is an abstract domain representing sets of values, with concretization

γV : V] → P(V) (e.g., intervals for numeric variables). In our case, we define PI as:

PI
def
= T × PS × V × {weak , yield , lock(m) | m ∈M} . (14)

Informally, we distinguish a variable write according to the thread that performs

it, the abstract scheduler state (in PS) the thread is in, the modified variable,

and some partition information in {weak , yield , lock(m) | m ∈ M} that helps

distinguishing the point in other threads where the interference is visible. We will

illustrate the meaning of each partition in the following. An abstract interference

I] ∈ I] corresponds to a set of concrete interference, i.e., a set of traces, through

a concretization function γI , defined in Fig. 12. Each partition in PI is associated

to an abstract value in V] indicating the set of allowed written values for the traces

20

Miné

γI : I] → P(ΣA∗)

γI(I])
def
= ∩ { δI(p, γV(I](p))) | p ∈ PI }

δI : PI × P(V)→ P(ΣA∗)

δI((t, p, V,weak), R)
def
=

{σ0
t0:a0
� · · ·σn | ∀i < n :

(βS(t)(σi) = p ∧ ti = t ∧ ai = (V ← e))⇒ ρi+1(V) ∈ R }

δI((t, p, V, yield), R)
def
=

{σ0
t0:a0
� · · ·σn | ∀i < n :

(βS(t)(σi) = p ∧ ti = t ∧ ai = (V ← e) ∧

∃j > i : tj = t ∧ aj ∈ release ∧

∀k ∈ [i, j − 1] : tk 6= t ∨ (ak /∈ release ∧ak 6= (V ← e′)))⇒ ρi+1(V) ∈ R }

δI((t, p, V, lock(m)), R)
def
=

{σ0
t0:a0
� · · ·σn | ∀i < n :

(βS(t)(σi) = p ∧ ti = t ∧ ai = (V ← e) ∧

∃j > i : tj = t, aj = unlock(m) ∧

∀k ∈ [i, j − 1] : tk 6= t ∨ (ak 6= unlock(m) ∧ ak 6= (V ← e′)))⇒ ρi+1(V) ∈ R }

where σi+1 = (ci+1, ρi+1, oi+1, πi+1)

release
def
= {yield, lock(m), unlock(m), setpriority(p) | m ∈M, p ∈ N }

Fig. 12. Concretization for the interference abstraction.

z ← x

lock(m) unlock(m)
x ← 1 x ← 2

t2

t1

lock(m)
(x,2)

y ← x

(x,[1,2])

Fig. 13. Interference propagation based on locks.

in the partition. Hence, γI is defined as the conjunction over all partitions of the

auxiliary function δI , that gives the semantics of a single partition. This function

is also defined formally in Fig. 12 and informally below.

Locks. In order to handle mutual exclusion enforced by locks, we reuse the parti-

tioning technique from [24], but recast it as a history-sensitive abstract partitioning

of our trace-based concrete semantics (Sec. 3.2).

Consider the example in Fig. 13, where thread t1 stores 1 and then 2 into x

21

Miné

while holding mutex m. In the example, the control flows freely between t1 and t2

(as shown by the vertical arrows) and is only restricted by the fact that t1 and t2

cannot both hold m at the same time. When thread t2 performs the assignment

z ← x while holding m, only the second value, 2 is visible, as the value 1 has

been necessarily overwritten with 2 by t1 before releasing the lock. More generally,

only the last write into each variable while holding a lock is visible to other threads

protecting the access to the variable with the same lock. However, when t2 executes

y ← x while not holding m, it can read all the values written by t1 even when t1

holds the mutex: 1 or 2. 5

We distinguish these two kinds of interference in PI by storing them into two

different partitions, namely weak and lock(m):

(i) an abstract value [1, 2] associated with (t1, p, V,weak) ∈ PI corresponds to

traces where thread t1 can only store 1 or 2 into variable V ∈ V while in state

p ∈ PS ;

(ii) an abstract value {2} associated with (t1, p, V, lock(m)) ∈ PI corresponds to

traces where thread t1 can only store 2 into variable V ∈ V while in state p ∈ PI
and holding m ∈M, when the trace contains an unlock(m) instruction and t1

performs no further modification of V before the next unlock(m) instruction

(although another thread might modify V).

These partitions are formalized through the function δI in Fig. 12. In first approxi-

mation, any interference in the weak partition from t should be visible at any point

of another thread t′ where t and t′ have not both locked the same mutex. Addi-

tionally, any interference on V in the lock(m) partition from t should be imported

at the first reads from V following a lock(m) instruction in t′ before t′ overrides

V . For convenience, in the second case, it is easier to consider a flow of information

from the unlock(m) instruction in t to the lock(m) instruction in t′. The interfer-

ence generated by the weak and lock(m) partitions are materialized, respectively,

by filled red and hollow blue arrows in Fig. 13.

The flow-sensitivity is local to each mutex-protected critical section: it is limited

to determining which interference occurs last inside each critical section, but it does

not keep any information on the respective order of the critical sections within

the program traces (e.g., in Fig. 13, the abstraction does not specify whether the

assignment x← 2 in t1 occurs before or after the assignment z ← x in t2).

Priorities and Rescheduling. We now refine the effect of the weak partition by

taking priorities into account. Consider first the simpler case where the priorities

are fixed. In this case, a thread can only run when all higher priority threads are

executing a yield. Figure 14 shows, from the point of view of the current thread,

the effect of threads of higher and lower priority. In these examples, the control of

the program switches from higher priority threads to lower priority ones at yield

instructions, and back to the higher priority threads at a non-deterministic time.

As shown in Fig. 14.(a), the current thread current can only see the values

{0, 2} written into x by a higher priority thread high: these are the last values

5 For convenience, Fig. 13 shows the writes into x by t1 after the instruction y ← x by t2, but the writes
could occur earlier in a slightly different interleaving. Our abstraction is mostly flow-insensitive and will
not distinguish the two cases, hence, we state that t2 can read the values 1 and 2.

22

Miné

(a)

x ← 1
yield yieldyield

current

high
x ← 2x ← 0

yield

(x,{0,2})

y ← x

(b)

yield yieldyield

current

low

yield
y ← 0 y ← 1

(y,[0,1])

yield

Fig. 14. Interference propagation based on priorities.

written before the thread issues a yield instruction; other values, such as 1, that

are overwritten by another write performed before a yield are invisible, as current

cannot preempt high between two yield. However, the effect of writing {0, 2} can

be seen at any point in current , as high can resume its execution and perform this

effect at any point.

On the other hand, as shown in Fig. 14.(b), the current thread current can

interrupt a lower priority thread low at any point, and so, observe any value written

into y, but this effect can only occur when current performs a yield operation, not

in-between yield.

Although this example focuses on the yield instruction, the effect would be the

same for any instruction that may cause a thread to give control to a lower priority

thread. This includes yield, but also lock(m), unlock(m), and setpriority(p).

We call these instructions release points. We thus refine the partitioning as follows:

(i) the weak partition keeps gathering all the writes to all the variables at any

point in the trace, but they now only affect higher-priority threads when they

reach a release point (e.g., [0, 1] for y in Fig. 14.(b));

(ii) a new yield partition gathers only the last write to each variable before the

thread reaches a release point; this interference can affect a lower priority

thread at any point of its execution (e.g., {0, 2} in Fig. 14.(a)).

The precise concretization of the yield partitions is shown formally in Fig. 12. Note

that considering spurious release points is sound, as it can only enlarge the inter-

ference sets associated to the yield partitions.

Dynamic Priorities. The priority of a thread t can change as a result of executing

a setpriority(p) instruction or as a result of a lock(m) or unlock(m) instruction,

through the priority ceiling protocol. The semantics we described above is fully

compatible with dynamic priorities, thanks to two principles:

• We partition both the state and the interference with respect to the scheduler

abstraction PS . Hence, each abstract interference and each abstract state

23

Miné

can be associated with a precise priority in N, and we can determine which

interference influences which state with a simple numeric comparison.

• A change of priority is seen as a release point. This gives the analysis the op-

portunity to import the interference from the weak partition of all the threads

that now have a lower priority than the new priority of the current thread.

4.3 Static Analysis

Now that we are given an abstract domain for states Σ] and for interference I],
we are ready to state our computable abstract semantics in denotational form:

S]J stat K. It is described in Figs. 15–16 and explained below.

Abstract Domain. Naturally, the semantics operates in an abstract domain D] that

has a component in Σ] and a component in I]. However, we need to compute

abstract interference in a flow-sensitive way for the yield partitions, as we must

only take into account the last assignment before each release point. Hence, we

keep two abstract interference copies in D]:

• one copy J] ∈ I] contains the last update performed on each variable;

• another copy I] ∈ I] collects the join over all release points of the last update

before that release point.

Any new interference overwrites the current interference in J] with a strong update

while, at release points, the current value of J] is accumulated, using a join, into

I] while J] is reset to ⊥V] . Hence, J] is only used locally and, at the end of the

analysis, the interference information we seek can be found in I]. The situation is

similar for lock(m) partitions, which are also handled in a flow-sensitive way. The

weak partitions, however, are flow-insensitive, so, any new interference is directly

accumulated, with a join, into I]. We thus use the following abstract domain:

D] def
= Σ] × (I] × I]) .

Composed Instructions. The abstract semantics of loops, sequences, and tests in

Fig. 15 is classic, by induction on the syntax. The only significant difference with

the concrete semantics is the use of a widening O [12] to approximate in finite time

the fixpoint defining the semantics of loops. In the formula, ∪] and O denote the

element-wise versions of the join and widening available on abstract memory states

E] and abstract values V] (i.e., they are applied independently on each partition).

Assignments and Guards. The abstract semantics of assignments and guards, in

Fig. 15, is more involved. For the abstract memory component S] ∈ Σ], in both

cases, we reduce the transfer function S]J · K to the corresponding assignment or

guard S]
EJ · K applied in the memory abstract domain E] point-wise on each partition

in PS . However, in order to take into account the interference from the yield

partitions, which can occur at any point in the trace, we modify the expression using

the auxiliary function import . This function physically modifies the expression e

in the assignment or guard by changing every occurrence of every variable V with

a non-deterministic choice between V and the abstract interference gathered from

24

Miné

S]J [`1] stat [`2] K : T → D] → D]

S]J [`1]s;[`2]s′[`3] K(t) def
= S]J [`2]s′[`3] K (t) ◦ S]J [`1]s[`2] K(t)

S]J [`1]if e then [`2] s endif [`3] K(t)(D])
def
=

S]J [`2]s[`3] K(t)(S]J [`1]e?[`2] K(t)(D])) ∪] S]J [`1]¬e?[`3] K(t)(D])

S]J [`1]while [`2] e do [`3] s done[`4] K(t)(D])
def
=

let F](D]′) = D]′ O (D] ∪] S]J [`3]s[`2] K(t)(S]J [`2]e?[`3] K(t)(D]′))) in

S]J [`2]¬e?[`4] K(t)(limF])

S]J [`2]e?[`3] K(t)(S], (I], J]))
def
=

(λp ∈ PS . S]
EJ import(I], t, p, e)? K (S](p))),

(I], J])

S]J [`2]V ← e[`3] K(t)(S], (I], J]))
def
=

(λp ∈ PS . S]
EJV ← import(I], t, p, e) K (S](p))),

(λ(t′, p, V ′, q) ∈ PI .

I](t, p, V, q) ∪]V E]

EJ e K(S](p)) if t = t′ ∧ V = V ′ ∧
S](p) 6= ⊥]

E ∧ q = weak

I](t′, p, V ′, q) otherwise,

λ(t′, p, V ′, q) ∈ PI .

E]
EJ e K(S](p)) if t = t′ ∧ V = V ′ ∧ S](p) 6= ⊥]

E ∧
(q = yield ∨ (q = lock(m) ∧m ∈ O))

where p = (O, π)

J](t′, p, V ′, q) otherwise)

import(I], t, p, e)
def
=

let i] = λV ∈ V. ∪]V { I](t′, p′, V, yield) | itf (t, t′, p, p′) } in

e[∀V ∈ V : V 7→ V ∪ i](V)]

itf (t, t′, p, p′)
def⇐⇒ (t 6= t′) ∧ (O ∩O′ = ∅) ∧ (tprio(t)(p) ≤ tprio(t′)(p′))

where (O, π) = p, (O′, π′) = p′

Fig. 15. Abstract thread-modular denotational semantics.

the yield partitions from I] for V . As discussed in Sec. 4.2 and illustrated in

Fig. 14.(a), we select from the yield partitions only the interference generated by

threads of greater priority that do not share a common mutex with the current

state. This condition is expressed as the itf predicate in Fig. 15.

The assignment also updates the interference abstraction. We assume the ex-

istence of an abstract evaluation function E]
EJ expr K : E] → V] able to compute a

sound abstract representation in V] of the set of values an expression can evaluate

to in an abstract memory state in E] (such a function is generally available in ab-

stract domain implementations). Any write is accumulated directly into the weak

25

Miné

S]J [`1]yield[`2] K(t)(S], (I], J]))
def
=

apply(S], t, I], {yield}),

shift(I], J], t, {yield})

S]J [`1]lock(m)[`2] K(t)(S], (I], J]))
def
=

let S]′ = apply(S], t, I], {yield , lock(m)}) in

map(S]′, λ(M,π) ∈ PS . (M ∪ {m}, π)),

shift(I], J], t, {yield})

S]J [`1]unlock(m)[`2] K(t)(S], (I], J]))
def
=

let S]′ = map(S]′, λ(M,π) ∈ PS . (M \ {m}, π)) in

apply(S]′, t, I], {yield}),

shift(I], J], t, {yield , lock(m)})

S]J [`1]setpriority(p)[`2] K(t)(S], (I], J]))
def
=

let S]′ = map(S]′, λ(M,π) ∈ PS . (M,p)) in

apply(S], t, I], {yield}),

shift(I], J], t, {yield})

map(S], f)
def
= λq. ∪]E {S](q′) | f(q′) = q }

shift(I], J], t, Q)
def
= I]′, J]′

where ∀t′, p, V, q : I]′(t′, p, V, q), J]′(t′, p, V, q) ={
I](t′, p, V, q) ∪]E J](t′, p, V, q), ⊥V] if t = t′ ∧ q ∈ Q
I](t′, p, V, q), J](t′, p, V, q) otherwise

apply(S], t, I], Q)
def
=

λp ∈ PS . ∪]E {S](p), S]
EJV ← I](t′, p′, V, q) KS](p) | V ∈ V ∧ q ∈ Q ∧ t 6= t′

∧ O ∩O′ = ∅ ∧ (q = yield ⇒ tprio(t)(p) ≥ tprio(t′)(p′)) }

where (O, π) = p, (O′, π′) = p′

Fig. 16. Abstract thread-modular denotational semantics (cont.).

partitions of I] with a weak update. It is also stored with a strong update into the

yield partitions of J] and all the lock(m) partitions where m is currently locked.

Note that we only consider the partitions that are live in the current state, i.e.,

p ∈ PS such that S](p) 6= ⊥]
E .

Concurrency Instructions. Figure 16 presents the semantics of the concurrency-

specific instructions. This semantics also employs a number of auxiliary functions.

26

Miné

Firstly, as these instructions correspond to release points, we must apply to

the abstract state the interference from the weak partitions of threads with lower

priority, as discussed in Sec. 4.2 and illustrated Fig. 14.(b). This is performed by the

apply function in Fig. 16, by converting the interference to assignment instructions in

the memory abstract domain E]. Similarly to the import function, the apply function

takes care to only apply weak interference from threads of lower priority, and which

do not hold a common mutex with the current thread. Similarly, the apply function

is used to import interference from a lock(m) partition when encountering a lock(m)

instruction, but this time disregarding the priorities.

Secondly, as a result of the instruction, our abstraction of the scheduler, i.e., our

current priority and the set of mutexes owned, can change. As a consequence, the

set of partitions in S] might also change: some partitions may become empty (e.g.,

after a lock(m), there no partition (O, p) ∈ PS where m /∈ O) and some partitions

may be merged (e.g., after a setpriority(p), the partition (O, p) contains the join

of all previous partitions of the form (O, p′)). This partition update is performed

by the map function in Fig. 16, where the argument f : PS → PS indicates how

partitions change.

Finally, as stated before, some interference that have been accumulated in the

J] map in a flow-sensitive way must be shifted into the corresponding I] partition.

This is performed by the shift function in Fig. 16.

Program Analysis. Figures 15–16 present an abstract semantics for each thread

that takes interference as argument and output interference. Following the concrete

denotational semantics (11), in order to achieve a sound analysis of the concurrent

program, we must iterate the analysis of the threads until the interference stabilize.

We perform such an iteration and use the widening over V] point-wise to stabilize

interference in finite time:

I]0
def
= ⊥]

I

I]n+1
def
=

let ∀t ∈ T : S](t), (I](t), J](t)) = S]J [`t] stat t
[`′t] K (t)(E], (I]n,⊥]

I)) in

I]n O (∪]I { I](t) | t ∈ T })

(15)

Each new analysis restarts at an abstraction E] of the initial concrete states E. It

also starts with the interference set I]n found at the last iteration, and outputs as

I]n+1 the join of the new interference I] : T → I] found by the analysis of each

thread. As J] is only used internally in the analysis, it is initialized to ⊥]
I and its

output value is ignored.

Soundness. The analysis is sound in that, after stabilization, γI(I]n) over approxi-

mates the interference computed by the concrete fixpoint (11). Moreover, for any

thread t ∈ T , γS(S](t)), as computed in the last, stable iteration of (15), over-

approximates the set of memory states t can be in when reaching its last program

point `′t. More importantly, we know that, when computing S]J [`t] stat t
[`′t] K(t) with

a stable interference, we explore all the possible behaviors of the thread in the pro-

gram. Returning to the introductory examples from Figs. 3–5, when parameterized

27

Miné

t1 t2

1 : lock(a)

2 : lock(c)

3 : unlock(c)

4 : lock(b)

5 : unlock(b)

6 : unlock(a)

lock(a)

lock(b)

unlock(a)

lock(a)

unlock(a)

unlock(b)

Fig. 17. Example of deadlocking program.

lock(b) blocks

lock(a) blocks

lock(a) blocks

t1

t1

a

t1

a,b

t2

t2

b

t2

b,a

a

ab

t2

 a a

b

t1

a,c c

Fig. 18. Blocking graph for the program of Fig. 17 showing a deadlock cycle.

with a simple interval abstraction for E] and V], our analysis is able to find the

precise values of the variable glob as printed by the program. If the semantics is

further instrumented to detect run-time errors (e.g., checking arithmetic overflows,

division by zero, etc.), then the analysis will soundly report all possible run-time

errors. Additionnaly, for more complex programs, more precision can be achieved

by using a relational domain for E] (such as octagons), as done in Astrée (Sec. 6).

Data-Race Detection. A data-race can be defined as the possibility for two threads

to access the same variable, one access at least being a write, and the accesses

are not protected by a common mutex. As the set of writes from all threads is

computed and the writes are associated with an information in PS indicating the

set of locked mutexes when the write occurs, it is straightforward to instrument

the semantics to check, at every assignment or guard, whether another thread can

write into the same variable. We can thus easily report all data-races. Moreover, as

the interference analysis discards interference that are impossible due to real-time

scheduling, our analysis is more precise and reports less spurious data-races than

an analysis that would ignore priorities. For instance, we do not report spurious

data-races in the introductory examples of Figs. 4–5, nor Fig. 6 (with or without

using the priority ceiling protocol).

5 Deadlock Detection

Data-races in concurrent programs can be avoided by protecting shared data ac-

cesses with mutexes. However, introducing lock instructions has the potential to

28

Miné

also introduce deadlocks, highly undesirable situations where two or more threads

mutually block each other forever, as each one is waiting for a mutex owned by

another one and none can advance. Because of the severity of deadlocks, the data-

races reported by a static analyzer may remain uncorrected for fear of introducing

deadlocks. The solution is to use the analyzer to soundly report both data-races

and deadlocks. As the presence of deadlocks is a reachability property, it can be

inferred, conservatively, using the information already gathered by our analysis.

Example. Figure 17 gives a simple example program with two threads t1 and t2,

and three mutexes a, b, and c. This program can deadlock when t1, having acquired

a, waits at point 4 for b, while t2, having acquired b (but not a) at point 4 is waiting

for a. Neither thread can continue their execution, and the system is blocked.

Deadlock Analysis. The first step of our deadlock detection consists in collecting,

during the analysis, for each thread t ∈ T and each mutex m ∈ M, the lock(m)

instructions, while remembering their context in the form of the set O ⊆ M of

mutexes that t already owns when executing the instruction. More precisely, we

construct the configuration graph, a labelled directed graph (N,A) ∈ N × A with

nodes N in N def
= T × P(M), and arcs A in A def

= N ×M×N . Arcs are labelled

with a mutex. A node (t, O) ∈ N represents a reachable configuration, and arcs

have the form ((t, O),m, (t, O ∪ {m})) ∈ A to indicate that thread t attempts to

lock m in configuration O, and changes to configuration O ∪ {m} upon success.

After the program analysis terminates, when all the reachable configurations and

lock instructions have been collected into (N,A), a second step creates a blocking

graph (A,C) ∈ A×C that materializes that a thread can prevent another thread to

lock a mutex. The nodes of the blocking graph are the collected lock instructions A

from the first step, while arcs are in C def
= A×A. An arc in (l, l′) ∈ C ⊆ C indicates

that the lock instruction l = ((t, O),m, (t, O ∪ {m})) is executed in a configuration

that prevents l′ = ((t′, O′),m′, (t′, O′ ∪ {m′})) from succeeding. More precisely:

C
def
= { (((t, O),m, (t, O ∪ {m})), ((t′, O′),m′, (t′, O′ ∪ {m′}))) ∈ C | m′ ∈ O } .

A deadlock corresponds to a cycle in the blocking graph, i.e., a sequence of threads

that are waiting trying to lock a mutex, and each thread is prevented from effectively

locking it by the next thread in the sequence. Not all cycles correspond to dead-

locks. We can in particular rule out cycles where the configurations involved are not

compatible, i.e., cannot possibly refer to the same program state. More precisely, a

cycle l1
def
= ((t1, O1),m1, (t1, O1 ∪ {m1})), . . . , ln

def
= ((tn, On),mn, (tn, On ∪ {mn}))

is acceptable only if it satisfies:

∀i 6= j ∈ [1, n] : ti 6= tj ∧Oi ∩Oj = ∅

i.e., the threads attempting the locks are distinct and no mutex is already locked

by two threads.

Theorem 5.1 The deadlock analysis is sound: every deadlock corresponds to an

acceptable cycle found by the analysis.

Proof. In Appendix A.2. 2

29

Miné

Example Revisited. Figure 18 shows the configuration and blocking graph for the

example of Fig. 17, using circles as configurations, filled arrows labelled with a mutex

between configurations to denote lock instructions, and triple-lined arrows between

lock instructions to denote blocks. The deadlock is visible as the cycle between the

lock ((t1, {a}), b, (t1, {a, b})) and the lock ((t2, {b}), a, (t2, {a, b})). Although our

example is limited to two threads, the analysis can naturally detect deadlock cycles

involving more threads (unlike, for instance, [30]).

Our blocking graph is similar to the lock graph of [9] except that our graph is

constructed from the output of a static analysis, and not extracted from an execution

trace, hence, it reports all deadlocks.

Limitations. Our deadlock analysis is conservative and can report spurious dead-

locks. This is expected as the reachability analysis it builds upon in conservative.

However, an important limitation is that thread priorities are not fully exploited

in the analysis to discard certain sequences of locks that would cause a deadlock

but cannot actually occur. In particular, the priority ceiling protocol, which is

commonly employed to avoid deadlocks, is not handled precisely in our analysis.

Consider again the example of Fig. 17, but assuming now that the priority ceiling

protocol is used to raise threads to a high priority upon locking either a or b. Thus,

whichever thread locks a first at line 1 is guaranteed to finish its execution at line 6

without the other thread preempting it and causing a deadlock. The configuration

graph of Fig. 18 cannot express that it is not possible to reach both configurations

(t1, {a}) and (t2, {b}) simultaneously due to the real-time scheduling, and thus, it

will report a spurious deadlock.

6 Preliminary Experiments

The methods presented in this article have been implemented in the Astrée/AstréeA

analyzer.

Sequential Astrée. Astrée [6] is a static analyzer to check for run-time errors in

embedded critical sequential C software. It handles a faithful, low-level C seman-

tics, including machine integers with wrap-around, floating-point arithmetic with

rounding, pointers and pointer arithmetic, structures, arrays, union types, goto

statements, etc. However, as it targets embedded software, it does not support

recursion and has limited support for dynamic memory allocation. The alarms it

reports include behaviors undefined according to the C semantics such as arithmetic

and memory overflow, invalid operations, assertion violations, etc. One particular

aspect of Astrée is its design by specialization: starting from a simple, interval-based

analyzer, and a target application domain, avionics control-command safety-critical

synchronous C software, Astrée was enriched with new abstract domains, combined

together through a reduced product, until the analysis reported no false alarm on

programs from the application domain. Astrée was then shown to be usable in

avionics industrial context [14] and subsequently commercialized by AbsInt [20].

Concurrent Astrée. Subsequently, the AstréeA project aimed at extending Astrée

to analyze concurrent embedded C software. It first focused on ARINC 653 ap-

30

Miné

no priorities priorities

name lines time memory alarms time memory alarms

FreeOSEK-COM 210 1s 12MB 1 1s 12MB 0

HiTechnic 65 0.44s 11MB 0 0.42s 11MB 0

NXT GT 190 1.23s 17MB 12 1.33s 17MB 11

NXTway-GS 341 4.21s 20MB 8 10.47s 20MB 7

NXT Cesar 4429 7mn 380MB 182 14mn 500MB 182

Fig. 19. Blocking graph for the program of Fig. 17 showing a deadlock cycle.

plications [4], and was later extended to a fragment of Real-Time POSIX [17] and

OSEK/AUTOSAR [1]. As Astrée, AstréeA has undergone a specialization process

in an academic context (not quite achieving the zero false alarm mark, but raising

the selectivity 6 up to 99.94%), and has been evaluated in an industrial context

during research projects [27]. It was then integrated into the commercial version of

Astrée [28]. Astrée for concurrent programs is based on the principles described in

this article. It performs a thread-modular analysis, where threads are reanalyzed

until an abstraction of their interference stabilizes, and each thread analysis is per-

formed using a fully flow- and context-sensitive abstract interpreted by induction

on the syntax over a reduced product of abstract state domains. Previous versions

Astrée did not handle priorities precisely and did not report deadlocks. We report

here on the improvements brought by the novel partitioning-based improvement to

priority handling described in Sec. 4.

Experiments. In our experiments, we focused on OSEK/AUTOSAR [1] applications.

Astrée is able to analyze large sequential and concurrent industrial programs of

several million lines [6,27]. However, in this preliminary evaluation, we were only

able to evaluate open-source demonstration programs, which are rather small. These

include demonstration programs for FreeOSEK, and programs for Lego Mindstorm

NXT robots under the nxtOSEK system. Figure 19 provides, for each example,

its size (in lines), the analysis time, and the number of alarms (taking into account

run-time errors, data-races and deadlocks), with and without our new priority-aware

analysis. The experiments show a small improvement in precision. More precisely,

some data-races were removed using the priority-aware analysis, and the programs

are proved free of deadlock. Additionnaly, our prototype implementation has been

tested through a series of 62 unit tests similar to Figures 2–6, which demonstrated

the ability of our analysis to remove spurious data-races by exploiting priorities.

These experiments are very preliminary. In future work, we will consider larger

applications, such as the industrial AUTOSAR applications currently evaluated

with the priority-unaware version of Astrée in [27].

7 Conclusion

In this article, we have reviewed the thread-modular abstract interpretation based

static analysis of concurrent embedded C software performed by Astrée, and we

showed how to modify it to take into account thread priorities and the specific char-

acteristics of real-time schedulers. The method employs partitioning techniques in

6 The selectivity denotes the percentage of program lines without any alarm.

31

Miné

order to classify more finely the set of effects a thread can have on other threads

depending on their respective priority and set of owned mutexes, so as to remove

spurious interference. The resulting analysis targets software running on systems

such as ARINC [4], OSEK/AUTOSAR [1], or real-time POSIX [17], where the

thread priority can be modified dynamically. It also supports the popular priority

ceiling protocol. We have shown, by experimentation with Astrée on some simple

examples and OSEK demonstration programs, that this technique allows removing

alarms with respect to a semantics that disregards priorities and allows all inter-

leavings of threads.

Future Works. There are many avenues for future work. Firstly, experimental eval-

uation should be conducted on large, real-life applications, such as the ARINC and

POSIX avionics applications from [27] and the AUTOSAR automotive applications

from [28], to determine whether the increase in precision is significant and whether

the analysis retains its scalability. Otherwise, new abstractions should be devised to

take priority only partially into account and achieve a cost versus precision tradeoff.

It would also be interesting to compare our analysis with those based on sequential-

ization [39] on interrupt-driven programs: our priority-aware analysis may bridge

the gap between efficient but coarse priority-unaware thread-modular methods and

precise, but less efficient, sequentialization-based techniques.

Secondly, in this work, we only considered non-relational abstractions for inter-

ference. In previous works [26], we considered relational abstractions for interference

(such as, for instance, lock invariants), but restricted to the case of arbitrary pre-

emption. While these two works are based on the same flavor of thread-modular

concrete semantics [25], effectively merging the abstractions to achieve interference

abstraction that is both priority-aware and relational remains future work.

Thirdly, we should improve the deadlock analysis in order to take priorities

into account. One goal would be to prove that the correct use of the priority ceiling

protocol can indeed prevent deadlocks. Additionnaly, the deadlock analysis could be

extended to an analysis of priority inversions, undesirable situations where a lower

priority thread hoarding a mutex prevents a higher priority thread to execute. This

situation can also be addressed through the priority ceiling protocol.

A fourth avenue of future work is the development of history-sensitive abstrac-

tions for thread interference. Currently, we are able, through locks or priorities, to

discover that two parts of two threads cannot interact, but we have no information

about the ordering of threads. It would be useful to be able to infer that one section

of a thread necessarily executes before one section of another thread. Applications

include a precise analysis of any initialization process, where the initializing thread

is guaranteed to execute before any thread that use the initialized data.

A fifth avenue would be to extend and generalize the real-time scheduling model.

One interesting direction would be the addition of new synchronization primitives

beside locks, such as events and barriers. Another direction would be the support

for various flavors of multi-core real-time schedulers.

A last avenue for future work would be to study more closely the validity of our

abstract semantics in the presence of weak memory models.

32

Miné

References

[1] AUTOSAR (AUTomotive Open System ARchitecture). http://www.autosar.org.

[2] DO-178C: Software considerations in airborne systems and equipment certification, 2011.

[3] S. V. Adve and M. D. Hill. Weak ordering – A new definition. In Proc. of the 17th ACM SIGARCH
Symp. on Comp. Arch. (ISCA’90), volume 18, pages 2–14. ACM, June 1990.

[4] Aeronautical Radio Inc. ARINC 653. http://www.arinc.com.

[5] M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. On the verification problem for weak
memory models. In POPL’10, pages 7–18. ACM, Jan. 2010.

[6] J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival. Static analysis and
verification of aerospace software by abstract interpretation. In AIAA Infotech@Aerospace, number
2010-3385 in AIAA, pages 1–38. AIAA (American Institute of Aeronautics and Astronautics), Apr.
2010.

[7] H.-J. Boehm. How to miscompile programs with ”benign” data races. In Proceedings of the 3rd
USENIX Conference on Hot Topic in Parallelism, HotPar’11, pages 3–3. USENIX Association, 2011.

[8] F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In Proc. of the Int. Conf. on
Formal Methods in Programming and their Applications (FMPA’93), volume 735 of LNCS, pages 128–
141. Springer, June 1993.

[9] Y. Cai and W.K. Chan. Magiclock: Scalable detection of potential deadlocks in large-scale
multithreaded programs. IEEE Trans. Softw. Eng., (40):266–281, 2014.

[10] J.-L. Carré and C. Hymans. From single-thread to multithreaded: An efficient static analysis algorithm.
Technical Report arXiv:0910.5833v1, EADS, Oct. 2009.

[11] P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract
interpretation. Theoretical Computer Science, 277(1–2):47–103, 2002.

[12] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In POPL’77, pages 238–252. ACM, Jan. 1977.

[13] P. Cousot and R. Cousot. Invariance proof methods and analysis techniques for parallel programs. In
Automatic Program Construction Techniques, chapter 12, pages 243–271. Macmillan, New York, NY,
USA, 1984.

[14] D. Delmas and J. Souyris. Astrée: from research to industry. In SAS’07, volume 4634 of LNCS, pages
437–451. Springer, Aug. 2007.

[15] C. Flanagan and S. Qadeer. Thread-modular model checking. In SPIN’03, volume 2648 of LNCS,
pages 213–224. Springer, 2003.

[16] P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems – An Approach to
the State-Explosion Problem. PhD thesis, University of Liege, Computer Science Department, 1994.

[17] IEEE Computer Society and The Open Group. Portable operating system interface (POSIX) –
Application program interface (API) amendment 2: Threads extension (C language). Technical report,
ANSI/IEEE Std. 1003.1c-1995, 1995.

[18] B. Jeannet. Relational interprocedural verification of concurrent programs. Software & Systems
Modeling, 12(2):285–306, 2013.

[19] C. B. Jones. Development Methods for Computer Programs including a Notion of Interference. PhD
thesis, Oxford University, Jun. 1981.

[20] D. Kästner, S. Wilhelm, S. Nenova, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X.
Rival. Astrée: Proving the absence of runtime errors. In Proc. of Embedded Real Time Software and
Systems (ERTS2 2010), page 9, May 2010.

[21] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh,
E. Brewer, and D. Culler. TinyOS: An Operating System for Sensor Networks, pages 115–148. Springer
Berlin Heidelberg, 2005.

[22] A. Malkis, A. Podelski, and A. Rybalchenko. Thread-modular verification is Cartesian abstract
interpretation. In ICTAC’06, volume 4281 of LNCS, pages 183–197, 2006.

[23] L. Mauborgne and X. Rival. Trace partitioning in abstract interpretation based static analyzer. In
ESOP’05, volume 3444 of LNCS, pages 5–20. Springer, 2005.

[24] A. Miné. Static analysis of run-time errors in embedded critical parallel C programs. In Proc. of the
20th European Symp. on Programming (ESOP’11), volume 6602 of LNCS, pages 398–418. Springer,
Mar. 2011.

33

http://www.autosar.org
http://www.arinc.com

Miné

[25] A. Miné. Static analysis by abstract interpretation of sequential and multi-thread programs. In
MOVEP’12, pages 35–48, Dec. 2012.

[26] A. Miné. Relational thread-modular static value analysis by abstract interpretation. In Proc. of the 15th
International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI’14),
volume 8318 of LNCS, pages 39–58. Springer, 2014.

[27] A. Miné and D. Delmas. Towards an industrial use of sound static analysis for the verification of
concurrent embedded avionics software. In Proc. of the 15th International Conference on Embedded
Software (EMSOFT’15), pages 65–74. IEEE CS Press, Oct. 2015.

[28] A. Miné, L. Mauborgne, X. Rival, J. Feret, P. Cousot, D. Kästner, S. Wilhelm, and C. Ferdinand.
Taking static analysis to the next level: Proving the absence of run-time errors and data races with
Astrée. In Proc. of Embedded Real Time Software and Systems (ERTS2 2016), pages 570–579, Jan
2016.

[29] D. Monniaux. Verification of device drivers and intelligent controllers: a case study. In Proc. of the
7th ACM & IEEE International conference on Embedded software (EMSOFT’07), pages 30–36. ACM,
Oct. 2007.

[30] M. Naik, C.-S. Park, K. Sen, and D. Gay. Effective static deadlock detection. In Proceedings of the 31st
International Conference on Software Engineering, ICSE ’09, pages 386–396. IEEE Computer Society,
2009.

[31] A. Ouadjaout, A. Miné, N. Lasla, and N. Badache. Static analysis by abstract interpretation of
functional properties of device drivers in TinyOS. Journal of Systems and Software (JSS), 120:114–132,
2016.

[32] S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In Proc. of the
11th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’05),
volume 3440 of LNCS, pages 93–107. Springer, 2005.

[33] S. Qadeer and D. Wu. KISS: Keep it simple and sequential. In Proc. of the ACM SIGPLAN Conf. on
Programming Languages Design and Implementation (PLDI’04), pages 14–24. ACM, June 2004.

[34] J. C. Reynolds. Toward a grainless semantics for shared-variable concurrency. In Proc. of the Annual
Conf. on Foundations of Software Technology and Theoretical Computer Science (FSTTCS’04), volume
3328 of LNCS, pages 35–48. Springer, Dec. 2004.

[35] M. D. Schwarz, H. Seidl, V. Vojdani, P. Lammich, and M. Müller-Olm. Static analysis of interrupt-
driven programs synchronized via the priority ceiling protocol. SIGPLAN Not., 46(1):93–104, January
2011.

[36] T. Suzanne and A. Miné. From array domains to abstract interpretation under store-buffer-based
memory models. In Proc. of the 23st International Static Analysis Symposium (SAS’16), volume 9837
of LNCS, pages 469–488. Springer, Sep. 2016.

[37] V. Vojdani and V. Vene. Goblint: Path-sensitive data race analysis. Annales Univ. Sci. Budapest,
Sect. Comp., 30, 2009.

[38] C. B. Watkins and R. Walter. Transitioning from federated avionics architectures to integrated modular
avionics. In DASC’07, volume 2.A.1, pages 1–10. IEEE, Oct. 2007.

[39] W. Wu, L. Chen, A. Miné, D. Dong, and J. Wang. Numerical static analysis of interrupt-driven
programs via sequentialization. ACM Transactions on Embedded Computing Systems (TECS),
15(70):26, Aug. 2016.

[40] H. Zhang, T. Aoki, and Y. Chiba. A Spin-based approach for checking OSEK/VDX applications. In
Formal Techniques for Safety-Critical Systems: Third International Workshop, FTSCS 2014, pages
239–255. Springer, 2015.

A Proof of Theorems

A.1 Proof of Thm. 3.1

Proof. Recall that F is defined in (6) as F def
= lfpF where

F (T)
def
= E ∪ {σ0

a0
� σ1 · · ·σn

t:i
� σn+1 |

σ0
a0
� σ1 · · ·σn ∈ T ∧ enbl(t, σn) ∧ σn

t:i−→ σn+1 }

34

Miné

We wish to prove that F = lfpG where:

G(T)
def
= ∪t∈T FM (t, α�(T))

and FM (t, I) is defined in (8) as lfpH(t, I) where

H(t, I)(T)
def
= E ∪ {σ0

a0
� σ1 · · ·σn

t′:i
� σn+1 | σ0

a0
� σ1 · · ·σn ∈ T ∧

((t = t′ ∧ enbl(t, σn) ∧ σn
t:i−→ σn+1) ∨

(t 6= t′ ∧ 〈σn, (t′, i), σn+1〉 ∈ I)) }

We first note that α�(F) is a subset of the transition relation σ
t:i−→ σ′. As a

consequence, ∀t, T : H(t, α�(F))(T) ⊆ F (T). As both functions H(t, α�(F))

and F a monotonic in complete powerset lattices, they have a least fixpoint. As

H(t, α�(F)) is smaller than F , any fixpoint of F is a post-fixpoint of H(t, α�(F)),

and we have ∀t : lfpH(t, α�(F)) ⊆ lfpF = F . Hence, ∀t : FM (t, α�(F)) ⊆ F ,

and G(F) ⊆ F , i.e., F is a post-fixpoint of G. As G is also monotonic, it has a least

fixpoint, which satisfies lfpG ⊆ F .

To prove the converse inclusion, consider a trace t
def
= σ0

t0:i0
� · · ·σn−1 ∈ F .

We prove by recurrence on n that t ∈ Gn(∅). Indeed, if n = 1, then t = σ0 ∈
E, and E ⊆ G1(∅). Assume that the property is true at rank n and consider

t
def
= σ0

t0:i0
� · · ·σn ∈ F . By induction hypothesis, σ0

t0:i0
� · · ·σn−1 ∈ Gn(∅). We

can see that t ∈ FM (tn, α�(Gn(∅)) as t contains only transitions that are either in

α�(Gn(∅)), or generated by thread tn. Hence, t ∈ Gn+1(∅). By Kleene’s theorem,

lfp G = ∪n∈N Gn(∅), so that t ∈ lfp G, which proves that F ⊆ lfp G. 2

A.2 Proof of Thm. 5.1

Proof. Consider a concrete reachable state σ = (c, ρ, o, π) ∈ Σ that corresponds to

a deadlock. We prove that we can exhibit an acceptable cycle in the blocking graph

computed by the analysis.

By the definition of deadlocks, there exists a set of threads T = {t1, . . . , tn}
such that every thread ti ∈ T is blocked on a lock instruction lock(mi) while mi is

owned by another thread o(mi) ∈ T . As T is finite, the graph (T, { (o(mi), ti) | ti ∈
T }) contains a cycle. Without loss of generality, we can restrict ourselves to the

case where the graph is a simple cycle: t1 = o(m2), . . . , tn−1 = o(mn), tn =

o(m1). Finally, let us note Oi
def
= {m | o(m) = ti }. Then, as σ is reachable,

and the reachability analysis enumerating configurations is sound, for every i, the

configuration (ti, Oi) is reachable: it can be seen as an abstraction of σ. The

configuration graph thus contains the arcs li
def
= ((ti, Oi),mi, (ti, Oi ∪ {mi})). As

ti = o(mi+1), we get that mi+1 ∈ Oi, so that (li, li+1) ∈ C. Thus, l1, . . . , ln forms a

cycle in the blocking graph. As all the ti are distinct, and the Oi (being the images

of the ti by o−1) are pairwise disjoint, the cycle is acceptable. 2

35

	Introduction
	Concurrency and Scheduling Models
	Analysis of Concurrent Software, Related Work
	Contribution
	Overview

	Concrete Semantics
	Language
	Interleaving Semantics
	Real-Time Concurrent Semantics

	Thread-Modular Concrete Semantics
	Nested Fixpoint Semantics
	Denotational Form

	Abstract Semantics
	State Abstraction
	Interference Abstraction
	Static Analysis

	Deadlock Detection
	Preliminary Experiments
	Conclusion
	References
	Proof of Theorems
	Proof of Thm. 3.1
	Proof of Thm. 5.1

