Combinations of Reusable Abstract Domains for a Multilingual Static Analysis

Antoine Miné Abdelraouf Ouadjaout Matthieu Journault Raphaël Monat Aymeric Fromherz

APR team LIP6 Sorbonne Université Paris, France

13/07/2019

Sound, semantic, static analysis

Goal: program verification by static analysis

```
int search(int* t, int n) {
   int i;
   for (i=0; i < n; i++) {
      if (t[i]) break;
   }
   return t[i];
}</pre>
```

work directly on the source code

Sound, semantic, static analysis

Goal: program verification by static analysis

```
int search(int* t, int n) {
   int i;
   for (i=0; i < n; i++) {
      // 0 ≤ i < n
      if (t[i]) break;
   }
   // (0 ≤ i ≤ n) ∨ (n < 0)
   return t[i];
}</pre>
```

- work directly on the source code
- infer properties on program executions
- automatically (cost effective)
- by constructing dynamically a semantic abstraction of the program

Sound, semantic, static analysis

Goal: program verification by static analysis

```
int search(int* t, int n) {
   int i;
   for (i=0; i < n; i++) {
      // 0 \leq i < n
      if (t[i]) break;
   }
   // (0 \leq i \leq n) \lefta(n < 0)
   return t[i];
   }
}</pre>
```

- work directly on the source code
- infer properties on program executions
- automatically (cost effective)
- by constructing dynamically a semantic abstraction of the program
- deduce program correctness or raise alarms
 implicit specification: absence of RTE; or user-defined properties: contracts
- using approximate abstractions (efficient, but possible false alarms)
- soundly (no false positive)

Modular Open Platform for Static Analysis

<u>Goal:</u> build a static analysis platform (in OCaml) for research and education in abstract interpretation

- basic support for common abstractions and C analysis
- easy to extend to support novel abstractions and languages
- as few limitations as possible (simple abstractions should be easy, complex ones should be possible)
- try new ideas on how to engineer an abstract interpreter
- reuse more, experiment more easily

In this talk:

- work in progress...
- more engineering than science...

Overview:

- static analysis by Abstract Interpretation
- MOPSA framework and desing choices
- application to C analysis
 - analysis of run-time errors in C
 - stub language to model C libraries
- application to Python analysis
 - value analysis for Python
 - type analysis for Python

Abstract interpretation primer

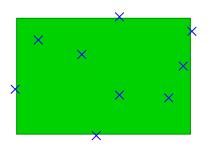
Abstract interpretation: theory of the approximation of program semantics

<u>Principle:</u> be tractable by reasoning at an <u>abstract level</u> keep soundness by considering <u>over-approximations</u>

concrete executions \mathcal{D} : $\{(0,3),(5.5,0),(12,7),\ldots\}$ (not practical)

Abstract interpretation: theory of the approximation of program semantics

be tractable by reasoning at an abstract level Principle: keep soundness by considering over-approximations



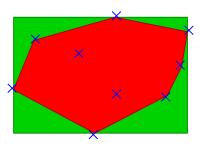
box domain \mathcal{D}_{h}^{\sharp} :

concrete executions
$$\mathcal{D}: \{(0,3),(5.5,0),(12,7),\ldots\}$$
 (not practice box domain $\mathcal{D}_b^{\sharp}: X \in [0,12] \land Y \in [0,8]$ (linear cost)

(not practical)

Abstract interpretation: theory of the approximation of program semantics

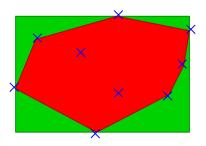
<u>Principle:</u> be tractable by reasoning at an <u>abstract level</u> keep soundness by considering <u>over-approximations</u>



concrete executions $\mathcal{D}: \{(0,3),(5.5,0),(12,7),\ldots\}$ (not practical) box domain $\mathcal{D}_b^{\sharp}: X \in [0,12] \land Y \in [0,8]$ (linear cost) polyhedron domain $\mathcal{D}_p^{\sharp}: 6X+11Y \geq 33 \land \cdots$ (exponential cost)

Abstract interpretation: theory of the approximation of program semantics

<u>Principle:</u> be tractable by reasoning at an <u>abstract level</u> keep soundness by considering <u>over-approximations</u>



```
\begin{array}{lll} \text{concrete executions } \mathcal{D}: & \{(0,3),(5.5,0),(12,7),\ldots\} & \text{(not practical)} \\ \text{box domain } \mathcal{D}_b^{\sharp}: & X \in [0,12] \land Y \in [0,8] & \text{(linear cost)} \\ \text{polyhedron domain } \mathcal{D}_p^{\sharp}: & 6X+11Y \geq 33 \land \cdots & \text{(exponential cost)} \\ \end{array}
```

Each abstract element represents a concrete element, via $\gamma: \mathcal{D}^{\sharp} \to \mathcal{D}$

Define an interpretation of atomic statements in the abstract domain.

For each $\mathbb{S}\llbracket s \rrbracket : \mathcal{D} \to \mathcal{D}$, provide $\mathbb{S}^{\sharp}\llbracket s \rrbracket : \mathcal{D}^{\sharp} \to \mathcal{D}^{\sharp}$.

Compose interpretations to analyze full programs.

Replace $S[s_1] \circ \ldots \circ S[s_n]$ with $S^{\sharp}[s_1] \circ \ldots \circ S^{\sharp}[s_n]$.

Define an interpretation of atomic statements in the abstract domain.

For each $\mathbb{S}[\![s]\!]:\mathcal{D}\to\mathcal{D}$, provide $\mathbb{S}^{\sharp}[\![s]\!]:\mathcal{D}^{\sharp}\to\mathcal{D}^{\sharp}$.

Compose interpretations to analyze full programs.

Replace $S[s_1] \circ \ldots \circ S[s_n]$ with $S^{\sharp}[s_1] \circ \ldots \circ S^{\sharp}[s_n]$.

Polyhedra operators

Assignments

translation

Antoine Miné

Define an interpretation of atomic statements in the abstract domain.

For each $\mathbb{S}[\![s]\!]:\mathcal{D}\to\mathcal{D}$, provide $\mathbb{S}^{\sharp}[\![s]\!]:\mathcal{D}^{\sharp}\to\mathcal{D}^{\sharp}$.

Compose interpretations to analyze full programs.

Replace $S[s_1] \circ \ldots \circ S[s_n]$ with $S^{\sharp}[s_1] \circ \ldots \circ S^{\sharp}[s_n]$.

Polyhedra operators

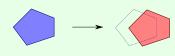
Assignments

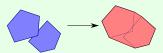
translation

Branches: join

if
$$\cdots$$
 then \cdots else \cdots of i \bullet

convex hull



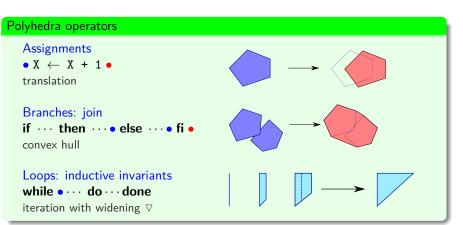


Define an interpretation of atomic statements in the abstract domain.

For each $\mathbb{S}[\![s]\!]:\mathcal{D}\to\mathcal{D}$, provide $\mathbb{S}^{\sharp}[\![s]\!]:\mathcal{D}^{\sharp}\to\mathcal{D}^{\sharp}$.

Compose interpretations to analyze full programs.

Replace $S[s_1] \circ \ldots \circ S[s_n]$ with $S^{\sharp}[s_1] \circ \ldots \circ S^{\sharp}[s_n]$.



A more complex example

```
int main( int argc, char *argv[]) {
  int i = 0;
  for (char **p = argv; *p; p++) {
    strlen(*p); // valid string
    i++; // no overflow
  }
  return 0;
}
```

Numeric:

```
\begin{aligned} & \text{argc} \in [1, \texttt{maxint}] \\ & \text{size}(\texttt{argv}) = \texttt{argc} + 1 \\ & \text{size}(\overset{\bullet}{0}) \in [1, \texttt{maxsize}] \\ & 0 \leq \mathsf{offset}(p) \leq \mathsf{size}(\texttt{argv}) - 1 \\ & \text{offset}(p) = i \end{aligned}
```

Pointers:

```
\begin{array}{l} \operatorname{argv}[0\ldots\operatorname{argc}-1]\mapsto \{ @ \} \\ \operatorname{argv}[\operatorname{argc}]\mapsto \{\operatorname{NULL}\} \\ \operatorname{p}\mapsto \{\operatorname{argv}\} \end{array}
```

Memory:

```
argc: variable
argv: variable
p: variable
i: variable
@: summary block
```

Strings:

```
\exists k \in [0 \ldots \mathtt{size}(\textcolor{red}{0}) - 1] : \textcolor{red}{0}[k] = 0
```

A more complex example

```
int main( int argc, char *argv[]) {
  int i = 0;
  for (char **p = argv; *p; p++) {
    strlen(*p); // valid string
    i++; // no overflow
  }
  return 0;
}
```

```
\begin{tabular}{lll} Numeric: & & & Memory: \\ argc \in [1, maxint] & & argc: variable \\ size(argv) = argc + 1 & & argv: variable \\ si & Combining domains \\ o' & Combination of domains for different types (number, pointers, ...) \\ & & and different properties (relational domains for inductive invariants) \\ \hline P & that can be composed and can communicate. \\ argv[argc] & $\cap \{ NULL \} \\ p & $\mapsto \{ argv \} $\end{tabular}
```

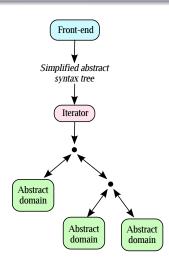
Classic analyzer design

A classic analyzer (Astrée, Frama-C) has:

- one or several front-ends (one per language)
- a simplified target analysis language low-level: C light, JVM, LLVM bitcode, Jimple, etc.
- an iterator
- a tree-structure combination of abstractions with layered abstraction signatures heap / blocks / scalar values / numeric abstractions

Pros and cons:

- + fewer language constructs to abstract
- + easy to reuse domains across languages
- static simplifications in the front-end
 → cripple precision before the analysis
- restrictions to domain composition
 → no reuse across abstraction layers



Antoine Miné

MOPSA Framework

MOPSA characteristics

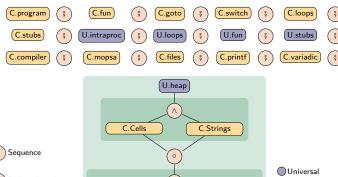
MOPSA:

- unified AST for programs: high-level, extensible, multi-language
- lowering of complex statements dynamically, during analysis
- common signature for all abstract domains
- domain communications, access to preconditions, reductions
- domain organisation in DAGs, sharing abstract information
- more general environment abstractions, handling optional variables

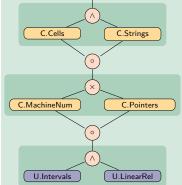
Languages:

- toy-language "universal" (demonstration, factoring abstractions)
- full C language
- C function specification language (similar to ACSL / JML)
- large subset of Python 3
- language subsets (struct-less, dereference-less, pointer-less, pure arithmetic, etc.)

C value analyzer configuration



- A Reduced product
- × Cartesian product



C specific

Extensible AST: Universal loops

We use extensible types and distributed iterators.

E.g., universal is a toy-language with only simple while loops

extend stmt_kind with AST fragments

```
Universal.Ast ______

type stmt_kind += S_while of expr * stmt
```

Extensible AST: Universal loops

We use extensible types and distributed iterators.

E.g., universal is a toy-language with only simple while loops

extend stmt_kind with AST fragments

```
Universal.Ast ______type stmt_kind += S_while of expr * stmt
```

- define an iterator exec for this fragment
 - handles some AST fragments, defaults to None for others
 - defined by induction on the AST by calling recursively the overall iterator man

```
\mathbb{S}^{\sharp} \llbracket \text{ while (e) s } \rrbracket X^{\sharp} \stackrel{\text{def}}{=} \mathbb{S}^{\sharp} \llbracket \neg e \rrbracket \left( ||fp \lambda Y^{\sharp}|, X^{\sharp} \cup \mathbb{S}^{\sharp} \llbracket s \rrbracket \circ \mathbb{S}^{\sharp} \llbracket e \rrbracket Y^{\sharp} \right)
```

Extensible AST: C and Python loops

```
C AST
```

Python AST

- preserve the high-level AST of the source languages
- reuse universal AST when possible (no S_c_while)

Extensible AST: C and Python loops

C AST

Python AST _

- preserve the high-level AST of the source languages
- reuse universal AST when possible (no S_c_while)

```
C iterator

let exec stmt man flow = match stmt_kind stmt with
| S_c_for (cond, body) ->
let flow', body' = ... in Some (man.exec (S_while (cond, body')) flow')
```

- the iterator transforms the loops into a S_while universal loop and calls the overall iterator recursively
 - ⇒ delegate the iteration strategy to universal (factor semantics)

Extensible AST: C and Python loops

C AST

Python AST _

- preserve the high-level AST of the source languages
- reuse universal AST when possible (no S_c_while)

```
c iterator
let exec stmt man flow = match stmt_kind stmt with
| S_c_for (cond, body) ->
let flow', body' = ... in Some (man.exec (S_while (cond, body')) flow')
```

- the iterator transforms the loops into a S_while universal loop and calls the overall iterator recursively
 - ⇒ delegate the iteration strategy to universal (factor semantics)

The AST merges source languages and intermediate languages.

Non-local control-flow

Handling of statements by induction on the syntax:

- \mathbb{S}^{\sharp} [if (e) s else t] $X^{\sharp} \stackrel{\text{def}}{=} (\mathbb{S}^{\sharp} [s] \circ \mathbb{S}^{\sharp} [e] X^{\sharp}) \cup^{\sharp} (\mathbb{S}^{\sharp} [t] \circ \mathbb{S}^{\sharp} [\neg e] X^{\sharp})$

Non-local control-flow

Handling of statements by induction on the syntax:

- adding gotos...

How can we handle control flow that does not follow the AST structure? post-conditions are flows, containing several continuations.

Flows as post-conditions

- environments \mathcal{D}^{\sharp} abstract $\mathcal{D} \stackrel{\text{def}}{=} \mathcal{P}(\text{memory state})$
- flows $\mathcal{F}^{\sharp} \stackrel{\text{\tiny def}}{=} \mathsf{token} \to \mathcal{D}^{\sharp}$

C goto flows ———

- \mathbb{S}^{\sharp} goto $\mathbb{1}$ $X^{\sharp} \stackrel{\text{def}}{=} X^{\sharp} [cur \mapsto \bot, 1 \mapsto X^{\sharp} (cur) \cup^{\sharp} X^{\sharp} (1)]$
- \mathbb{S}^{\sharp} [label 1] $X^{\sharp} \stackrel{\text{def}}{=} X^{\sharp} [cur \mapsto X^{\sharp} (cur) \cup X^{\sharp} (1), 1 \mapsto \bot]$
- also useful for break, return, exceptions, long jumps, generators
- backward jumps require fixpoint computations

From universal numeric expressions...

Universal language integer expressions over Z.

- $lacksymbol{ iny D} \stackrel{ ext{ iny def}}{=} \mathcal{P}(\mathcal{V}
 ightarrow \mathbb{Z}) \simeq \mathcal{P}(\mathbb{Z}^{|\mathcal{V}|})$
- +, -, /, × with mathematical semantics
 (no bit-size, no overflow, no wrap-around)
- natural setup for most numeric domains D[#] (polyhedra, etc.)

... to C numeric expressions

C has machine integers, with bit-size and signedness.

- rewrite C numeric expressions into universal expressions
- evaluate with intervals to check for overflows (check the error flow)
 - if no overflow, $+_c = +_{universal}$
 - if overflow, add an explicit wrap operator (optionally signal an alarm)
- propagate the transformed expression to other domains (polyhedra)

... to C numeric expressions

C has machine integers, with bit-size and signedness.

- rewrite C numeric expressions into universal expressions
- evaluate with intervals to check for overflows (check the error flow)
 - if no overflow, $+_c = +_{universal}$
 - if overflow, add an explicit wrap operator (optionally signal an alarm)
- propagate the transformed expression to other domains (polyhedra)

```
evaluation zones

type zone += Z_u_num | Z_c_scalar

C assignments to universal assignments

eval: zone -> exp -> man -> flow -> exp

let exec stmt man flow = match stmt with
| S_assign(lval, rval) ->
let lval' = man.eval ~zone:(Z_c_scalar, Z_u_num) lval flow
and rval' = man.eval ~zone:(Z_c_scalar, Z_u_num) rval flow in
man.exec ~zone:Z_u_num (S_Assign (lval',rval')) flow
```

■ support for different interpretation zones (ℤ, machine integers, etc.)

... to C numeric expressions

C has machine integers, with bit-size and signedness.

- rewrite C numeric expressions into universal expressions
- evaluate with intervals to check for overflows (check the error flow)
 - if no overflow, $+_c = +_{universal}$
 - if overflow, add an explicit wrap operator (optionally signal an alarm)
- propagate the transformed expression to other domains (polyhedra)

```
evaluation zones

type zone += Z_u_num | Z_c_scalar

C assignments to universal assignments

eval: zone -> exp -> man -> flow -> exp

let exec stmt man flow = match stmt with

| S_assign(lval, rval) ->
    let lval' = man.eval ~zone:(Z_c_scalar, Z_u_num) lval flow
    and rval' = man.eval ~zone:(Z_c_scalar, Z_u_num) rval flow in
    man.exec ~zone:Z_u_num (S_Assign (lval',rval')) flow
```

support for different interpretation zones (Z, machine integers, etc.)

"evaluation" as dynamic rewriting into other expressions

C pointers

- ullet pointer value: $\mathcal{D}=\mathcal{P}(\mathcal{V}_{ptr}
 ightarrowig($ base (variable, block) imes offset (integer)))
- pointer arithmetic: byte-level offset arithmetic

- maintains internally the bases of each pointer
- create a numeric variable for each pointer to represent its offset
- "evaluate" pointer arithmetic into offset arithmetic
- delegate the offset abstraction to the numeric domains

```
char a[10] = "hello"; int i = _mopsa_rand(0,9); char *p = &(a[i]); // \langle p \mapsto \{a\}, i \in [0,9] \land offset(p) = i \rangle
```

⇒ infer relations between pointer offsets and numeric variables

Expression evaluations into DNF

When transforming expressions, a domain can perform a case analysis:

- return a disjunction of expressions
- associate a subset of environments to each disjunct

```
eval: zone -> exp -> man -> flow -> (exp * flow) DNF.t
```

Expression evaluations into DNF

When transforming expressions, a domain can perform a case analysis:

- return a disjunction of expressions
- associate a subset of environments to each disjunct

```
eval: zone -> exp -> man -> flow -> (exp * flow) DNF.t
```

Example:

```
evaluate *(p+10) in X^{\sharp} where p \in \{\text{NULL}, \&a, \&b\} return the disjunction: (error, \mathbb{S}^{\sharp} \llbracket assume \ base(p) = \text{NULL} \rrbracket X^{\sharp}) \lor (*(\&a+10), \mathbb{S}^{\sharp} \llbracket assume \ base(p) = a \rrbracket X^{\sharp}) \lor (*(\&b+10), \mathbb{S}^{\sharp} \llbracket assume \ base(p) = b \rrbracket XX^{\sharp})
```

- locality: disjunctions are merged at the end of the statement
- low coupling with other domains (eval mechanism)
- conjunctions are also possible thanks to reductions
 use disjunctive normal forms

Queries

Two scopes for data-types representing properties:

- abstract value: data-type private to each domain (locally available)
- queries: concrete data-type for communication (globally available)

Queries

Two scopes for data-types representing properties:

- abstract value: data-type private to each domain (locally available)
- queries: concrete data-type for communication (globally available)

```
interval query

type _ query += Q_interval : expr -> IntItv.t with_bot query
```

- ability to evaluate any expression into an interval
- any domain can answer an interval query (intervals, polyhedra, etc.)
 request an interval and interpret its result
- concrete type with a lattice structure (the framework combines the answers from all domains)
- extensible, global data-type

General domain reductions

Application of queries:

Reduce the interval domain using interval information from other domains.

```
global interval reduction

let reduce stmt man pre post =
 let vars = get_modified_vars stmt man pre in

List.fold_left (fun post var ->
 let itv = man.get_value Itv.id var post in
 let itv' = man.ask (Q_interval (S_var var)) post in
 if I.subset itv itv' then post
 else man.set_value Itv.id var itv' post
) post vars
```

- applied after each statement
- focuses on the variables modified by the statement stmt
- independent from the domains, defined externally

Heterogeneous environments

Instead of $\mathcal{P}(\mathcal{V} \to Val)$, abstract $\mathcal{P}(\mathcal{V} \rightharpoonup Val)$

- partial functions: not all variables have a value in an environment
- collect environment with heterogeneous supports

```
int g;
void f(int* p) { *
   if (p) *p = g + 1;
}
```

```
caller 1
void g1() {
  int x;
  g(&x);
  // x == g + 1
}
```

```
caller 2

void g2() {
  int y;
  f(&y);
  // y == g + 1
}
```

Applications:

- merge stack contexts in inter-procedural analysis
- dynamic memory allocation (path-dependent allocation)
- optional variables (None in Python)

Heterogeneous environment abstraction

How to lift $\mathcal{D}_{\mathcal{V}}^{\sharp}$ abstracting $\mathcal{P}(\mathcal{V} \to \mathit{Val})$ to $\mathcal{P}(\mathcal{V} \rightharpoonup \mathit{Val})$?

(classic solution: partitioning wrt. support \rightarrow costly)

Use a single abstract element (X^{\sharp}, L, U)

- $L \subseteq U \subseteq \mathcal{V}$, lower and upper bounds on variables
- $X^{\sharp} \in \mathcal{D}_{U}^{\sharp}$ a single abstract element over U

Example:

$$(0 \le x \le 10 \land y \le x, \{x\}, \{x, y\})$$

represents
$$\{ [x \mapsto i] \mid i \in [0, 10] \} \cup \{ [x \mapsto i, y \mapsto j] \mid i \in [0, 10], j \le i \}$$

Heterogeneous environment abstraction

How to lift $\mathcal{D}_{\mathcal{V}}^{\sharp}$ abstracting $\mathcal{P}(\mathcal{V} \to \mathit{Val})$ to $\mathcal{P}(\mathcal{V} \rightharpoonup \mathit{Val})$?

(classic solution: partitioning wrt. support \rightarrow costly)

Use a single abstract element (X^{\sharp}, L, U)

- $L \subseteq U \subseteq \mathcal{V}$, lower and upper bounds on variables
- $X^{\sharp} \in \mathcal{D}_{U}^{\sharp}$ a single abstract element over U
- $\gamma(X^{\sharp}) \stackrel{\text{def}}{=} \{ \rho_{|_{\mathcal{W}}} \mid \rho \in \gamma_{U}(X^{\sharp}), L \subseteq \mathcal{W} \subseteq U \}$

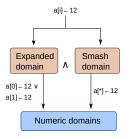
Example:

$$\overline{(0 \le x \le 10 \land y \le x, \{x\}, \{x, y\})}$$
represents $\{[x \mapsto i] \mid i \in [0, 10]\} \cup \{[x \mapsto i, y \mapsto j] \mid i \in [0, 10], j \le i\}$

- any numeric domain D[#] can be lifted systematically (precise join and sound inclusion tests can be tricky)
- ability to represent relations involving optional variables
- all domains in MOPSA have this heterogeneous semantics

Stacked domains: Issue

Powerful but complex interactions between reduction and evaluation.

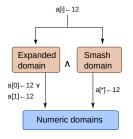


- both domains have a different view of the same concrete variables
- evaluation delegates the assignment independently for each domain
- the numeric domain collects both effects $\mathbb{S}^{\sharp} \llbracket eval_{cell}(\mathtt{a[i]} \leftarrow 12) \rrbracket X^{\sharp} \wedge \mathbb{S}^{\sharp} \llbracket eval_{smash}(\mathtt{a[i]} \leftarrow 12) \rrbracket X^{\sharp}$

This is not sound!

Stacked domains: Solution

Powerful but complex interactions between reduction and evaluation.



Solution: domains inform other domains of side-effects (log and replay)

$$\mathbb{S}^{\sharp}[(\mathbf{a}[0] \leftarrow 12 \vee \mathbf{a}[1] \leftarrow 12); \mathbf{a}[*] \leftarrow \top]X^{\sharp} \wedge \\ \mathbb{S}^{\sharp}[\mathbf{a}[*] \leftarrow 12; \mathbf{a}[0] \leftarrow \top; \mathbf{a}[1] \leftarrow \top]X^{\sharp}$$

Other application : predicate domains, e.g.: $\forall i \in [0, n] : *(p + i) = *(q + i)$

- delegates the abstraction of n, p, q to other domains (evaluation)
- sound reduction with cell and smash domains

Application to C Analysis

C analysis

- $\qquad \qquad \textbf{Clang front-end} \ \, (\texttt{C} \rightarrow \texttt{OCaml faithful, high-level AST}) \\$
- support for integers, floats, pointers, structs, unions
- dynamic memory allocation with recency abstraction
- check for run-time errors
- limited support for the standard library
- inter-procedural analysis by inlining no recursivity
- no concurrency
- forward analysis only (no backward analysis)

Goal: a platform to help prototype new analyses on C codes

Memory abstractions: cell domain

Low-level memory abstraction

- handles structured types (arrays, struct, union)
- decompose the memory into scalar cells
 cell = (variable, offset, scalar-type)
- "evaluate" general C expressions into scalar expressions translate dereferences, structure and array accesses into cells

```
union { uint16 ax; struct { uint8 a1; uint8 ah; } bytes; } regs;
regs.ax = 0xABCD; // regs[0:2] = 43981
x = reg.bytes.al; // x = 205
```

- supports type punning and pointer arithmetic
- represented in expansion (one cell per offset) or smashed (offset-insensitive cell)
- recency abstraction for dynamic allocation distinguish the most recent allocation, with strong update from a summary allocation, with weak update at each allocation site

Memory abstractions: C strings

Domain to analyze low-level C string manipulation [SAS'18]

```
string copy

char *p = dst, *q = src;
while (*q != '\0') { *p = *q; p++; q++; }
*p = '\0';
```

- for each buffer B, remember the allocated size : aB
- and the position of the first '\0': IB
- delegate the abstraction of a_B, l_B by evaluation
 - evaluation to DNF is very useful for case analysis
 - infer relations between length, indices, offsets
- reduction with cell abstractions

Memory abstractions: C strings

Domain to analyze low-level C string manipulation [SAS'18]

```
string copy

char *p = dst, *q = src;
while (*q != '\0') { *p = *q; p++; q++; }
*p = '\0';
```

- for each buffer B, remember the allocated size : aB
- and the position of the first '\0': IB
- delegate the abstraction of a_B, I_B by evaluation
 - evaluation to DNF is very useful for case analysis
 - infer relations between length, indices, offsets
- reduction with cell abstractions

Result: we can infer

- as loop invariant: $off_p = off_q \le l_{src} \le a_{src}$
- after the loop: $off_p = off_q = I_{src} \le a_{src}$
- raise an alarm if $l_{
 m src} \geq a_{
 m src}$ or $l_{
 m src} \geq a_{
 m dst}$
- otherwise, we ensure that $I_{dst} = I_{src}$.

Stub contract language

```
/*$
 * requires: exists int i in [0, size(__file) - 1]: __file[i] == 0;

* case "success":
 * local: void* fd = new FileDescriptor;
 * ensures: return == (int)fd;

* case "failure":
 * assigns: _errno;
 * ensures: return == -1;
 */
int open (const char *__file, int __oflag, ...);
```

Stub contract language

```
/*$
  * requires: exists int i in [0, size(__file) - 1]: __file[i] == 0;
  * case "success":
  * local: void* fd = new FileDescriptor;
  * ensures: return == (int)fd;
  *
  * case "failure":
  * assigns: _errno;
  * ensures: return == -1;
  */
int open (const char *__file, int __oflag, ...);
```

Specification language:

- inspired from ACSL (Frama-C)
- targets stub modeling (not functional verification)
- yet another language in MOPSA (extending and sharing AST and domains)
- interpret formulas in abstract domains
 ⇒ domains dedicated to quantified formulas (strings, arrays)
- modeling of resources (memory, file descriptors, etc.)

C benchmarks

- extracted from Juliet Test Suite (v 1.3) for C/C++
 - CWE476 on null pointer dereferences.
 - CWE369 on divisions by zero
 - CWE190 on integer overflows
- each test has a bad version and a correct version

Category	Loc	Tests	Time	Alarms	Coverage
CWE476	25K	522	2mn26s	0	100%
CWE369	109K	1368	7mn20s	372	53%
CWE190	440K	6840	34mn57s	0	73%

On-going work: analyzing actual C programs from GNU CoreUtils.

Application to Python Analysis

Python 3 language

Highly dynamic language:

- variables have no fixed type (only values have)
- everything is an object
- complex operator semantics (many cases, many ways to override)
- complex control-flow: exceptions, generators, lambdas
- rich built-in and standard libraries
- meta-programming (introspection, dynamic classes, eval)
- no formal semantics
- evolving language
- ⇒ static analysis is challenging, but rewarding

Python 3 semantics

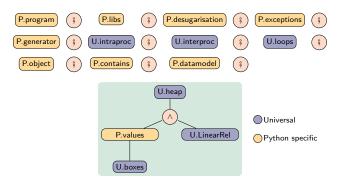
- formalize the concrete semantics
 based on the Python manual and CPython implementation
- use a denotational-style semantics (easier to abstract)
- type-based cases (eval and DNF are useful)
- ⇒ the abstract semantics has the same structure as the concrete one

Python 3 semantics

```
\begin{split} \mathbb{E} \llbracket e_1 + e_2 \rrbracket (f, \epsilon, \Sigma) &\stackrel{\text{def}}{=} \\ \text{let } (f_1, \epsilon_1, \Sigma_1, v_1) = \mathbb{E} \llbracket e_1 \rrbracket (f, \epsilon, \Sigma) \text{ in} \\ \text{let } (f_2, \epsilon_2, \Sigma_2, v_2) = \mathbb{E} \llbracket e_2 \rrbracket (f_1, \epsilon_1, \Sigma_1) \text{ in} \\ \text{if } hasattr(v_1, \_add\_, \Sigma_2) \text{ then} \\ \text{let } (f_3, \epsilon_3, \Sigma_3, v_3) = \mathbb{E} \llbracket v_1.\_add\_(v_2) \rrbracket (f_2, \epsilon_2, \Sigma_2) \text{ in} \\ \text{if } v_3 = \text{NotImpl} \land typeof(v_1) \neq typeof(v_2) \text{ then} \\ \text{if } hasattr(v_2, \_radd\_, \Sigma_3) \text{ then} \\ \text{let } (f_4, \epsilon_4, \Sigma_4, v_4) = \mathbb{E} \llbracket v_2.\_radd\_(v_1) \rrbracket (f_3, \epsilon_3, \Sigma_3) \text{ in} \\ \text{if } v_4 = \text{NotImpl then TypeError}(f_4, \epsilon_4, \Sigma_4) \text{ else } (f_4, \epsilon_4, \Sigma_4, v_4) \\ \text{else if } y_3 = \text{NotImpl then TypeError}(f_3, \epsilon_3, \Sigma_3) \text{ else if } hasattr(v_2, \_radd\_, \Sigma_2) \land typeof(v_1) \neq typeof(v_2) \text{ then} \\ \text{let } (f_3, \epsilon_3, \Sigma_3, v_3) = \mathbb{E} \llbracket v_2.\_radd\_(v_1) \rrbracket (f_2, \epsilon_2, \Sigma_2) \text{ in} \\ \text{if } v_3 = \text{NotImpl then TypeError}(f_3, \epsilon_3, \Sigma_3) \text{ else } (f_3, \epsilon_3, \Sigma_3, v_3) \\ \text{else TypeError}(f_2, \epsilon_2, \Sigma_2) \end{aligned}
```

- formalize the concrete semantics
 based on the Python manual and CPython implementation
- use a denotational-style semantics (easier to abstract)
- type-based cases (eval and DNF are useful)
- \Rightarrow the abstract semantics has the same structure as the concrete one

Python value analyzer configuration



- hand-written parser in Menhir
- resolves import at parsing time
- reuse universal domains: numeric, heap abstractions, loops, etc.

Concrete domains for Python semantics

Concrete collecting semantics in $\mathcal{P}(\mathcal{E} \times \mathcal{H})$:

```
• environments: \mathcal{E} \stackrel{\text{\tiny def}}{=} \mathcal{V} \rightarrow Val
```

```
• values: Val \stackrel{\text{def}}{=} \mathbb{Z} \cup Addr \cup \{ \texttt{True}, \texttt{False}, \texttt{None}, \texttt{Undef}, \texttt{NotImplemented} \}
```

```
• heap: \mathcal{H} \stackrel{\text{def}}{=} Addr \rightharpoonup Obj
Obj \stackrel{\text{def}}{=} String \rightharpoonup Val
```

Non-relational value analysis for Python

Follows the concrete semantics:

- environments: $\mathcal{E}^{\sharp} \stackrel{\text{\tiny def}}{=} \mathcal{V} \rightarrow \mathit{Val}^{\sharp}$
- values: $Val^{\sharp} \stackrel{\text{def}}{=} \mathbb{Z}^{\sharp} \times Bool^{\sharp} \times \mathcal{P}(Addr^{\sharp}) \times None^{\sharp} \times NotImplemented^{\sharp} \times Undef^{\sharp}$

(abstract disjoint unions as tuples)

- None $^{\sharp}$, NotImplemented $^{\sharp}$, Undef $^{\sharp} \stackrel{\text{def}}{=} \{\bot, \top\}$, Bool $^{\sharp} \stackrel{\text{def}}{=} \{\bot, \top, t, f\}$
- Z[‡]: non-relational domain (e.g., intervals)
- Addr[‡]: allocation site abstraction
- heap: $\mathcal{H}^{\sharp} \stackrel{\text{def}}{=} Addr^{\sharp} \rightarrow Obj^{\sharp}$

Object abstraction:
$$Obj^{\sharp} \stackrel{\text{def}}{=} (String \rightharpoonup Val^{\sharp}) \times \mathcal{P}(String)$$

Attributes can be added to objects dynamically

⇒ a set of objects can have heterogeneous sets of attributes

- String → Val[‡] maps all possible attributes to their value
- P(String): attributes that are guaranteed to exist in all objects necessary to prove that AttributeError cannot occur

Built-ins in Python

Built-in data-structures:

- Strings: bounded sets of constant strings, or \top
- Lists: one summary element, and a length
- Dictionaries: as objects, or with a summary element

Example: model a list access 1[i]

- C1: isinsance(1, list) ∧ isinsance(i, int)
- $C2: -len(1) \le i < len(1)$
- C3: len(1) = 1

case	evaluation
$\neg C1$	TypeError
$C1 \land \neg C2$	IndexError
$C1 \wedge C2 \wedge C3$	summary variable ℓ
$C1 \wedge C2 \wedge \neg C3$	weak copy of summary variable ℓ

only partial support in MOPSA at the moment, to be improved

Python benchmarks

- regression tests from the official Python 3.6.3 distribution.
- analyze only 9 out of 500 tests (limited coverage of the standard library)

Regression test	Lines	Tests	Time	✓	X	*	Coverage
test_augassign	273	7	645ms	4	2	1	85.71%
${\tt test_baseexception}$	141	10	20ms	6	0	4	60.00%
test_bool	294	26	47ms	12	0	14	46.15%
${\tt test_builtin}$	454	21	360ms	3	0	18	14.29%
$test_{-}contains$	77	4	418ms	1	0	3	25.00%
$test_int_literal$	91	6	29ms	6	0	0	100.00%
${\tt test_int}$	218	8	88ms	3	0	5	37.50%
${\sf test_list}$	106	9	88ms	3	0	6	33.33%
$test_unary$	39	6	11ms	2	0	4	33.33%

- analyze performance benchmarks
- evaluate the impact of relational numeric domains

Performance benchmark	Lines	s Interval		Octag	Octagon		Polyhedra	
float	37	1.5s	✓	4.8s	✓	3.4s	√	
fannkuch	37	0.8s	X (3)	4.7s	(1)	3.3s	✓	
nbody	66	1.0s	X (2)	10min1s	X (2)	0	×0	

Types as abstraction of values

```
dynamic typing

def fspath(p):
    if isinstance(p, (str, bytes)):
        return p
    elif hasattr(p, "__fspath__"):
        res = p.__fspath__()
        if isinstance(res, (str, bytes)):
            return res
        else:
            raise TypeError(...)
    else:
        raise TypeError(...)
```

Python mixes:

- nominal typing: isinstance
- duck typing: hasattr

Both can be resolved in the abstraction Val^{\sharp} :

- nominal typing: value of the attribute __class__
- duck typing: presence of a specific attribute in Obj[‡]

Type analysis for Python

On-going work:

More scalable abstraction remembering only type information

- sets of the types of the values stored in each variable $\mathcal{V} o \mathcal{P}(\textit{types})$
- top-down, flow-sensitive inference by propagation of abstract values
 more of an Abstract Interpretation technique than regular typing
- types for built-in objects: List[int]
- types for nominal and duck typing: Instance[class,attrs]
- bounded parametric polymorphism: List[α], α ∈ {...}
 ⇒ relational typing domain: V:List[α] ∧ W:List[α] ∧ α = β

Benchmarks for Python type analysis

- reuse MOPSA framework, change the abstract domains
- compare with
 - Typpete: type inference via SMT-solve
 - Fritz & Hafe: data-flow equations
 - Pytype from Google

Program	Fritz & Hage	Pytype	Typpete	MOPSA
Analysis method	Dataflow analysis	Unclear	SMT-solver	Al
class_attr_ok	✓	X	*	✓
class_pre_store	✓	✓	✓	/
default_args_class	✓	✓	✓	1
except_clause	X	*	✓	✓
fspath	X	X	*	/
magic	✓	✓	✓	*
polyfib	*	X	*	*
poly_lists	*	✓	*	✓
vehicle	✓	✓	✓	*
widening	✓	X	*	✓

Conclusion

Conclusion

Features:

- compositional, flexible architecture to build static analyzers
- a few original choices unified AST, iterators, partial environments, evaluation, DNF, stacked domains
- used in research projects on C and Python analysis
- reusable abstract domains, language support, semantic abstractions
- extensible, with loose coupling
- additional features: interactive debug, interpreter, web-based GUI

Future work:

- enhance coverage for C and Python built-in libraries
- test on larger, more realistic code bases
- release as open source with support
- mixing C and Python ?