Combinations of Reusable Abstract Domains
for a Multilingual Static Analysis

Antoine Miné Abdelraouf Ouadjaout Matthieu Journault

Raphaél Monat ~ Aymeric Fromherz

APR team
LIP6
Sorbonne Université
Paris, France

13/07/2019

Siwe ip @

Sound,
Goal: program verification by static analysis

int search(int* t, int n) {
int i;
for (i=0; i < n; i++) {

if (t[i]) break;

return t[i];

}

= work directly on the source code

Introduction

Sound, semantic, static analysis

Goal: program verification by static analysis

int search(int* t, int n) {
int i;
for (i=0; i < nj; i++) {
// 0<i<n
if (t[il) break;

}
// (0<i<n)V(n<DO0)
return t[i];

}

= work directly on the source code

= infer properties on program executions

= automatically (cost effective)

= by constructing dynamically a semantic abstraction of the program

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p.2/45

Introduction

Sound, semantic, static analysis

Goal: program verification by static analysis

int search(int* t, int n) {
int i;
for (i=0; i < nj; i++) {
// 0<i<n
if (t[il) break; v

}
// (0<i<n)V(n<DO0)
return t[i]; X

}

= work directly on the source code

= infer properties on program executions

= automatically (cost effective)

= by constructing dynamically a semantic abstraction of the program

= deduce program correctness or raise alarms
implicit specification: absence of RTE; or user-defined properties: contracts

= using approximate abstractions (efficient, but possible false alarms)
u soundly (no false positive)

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p.2/45

Introduction

Modular Open Platform for Static Analysis

Goal: build a static analysis platform (in 0Cami)
for research and education in abstract interpretation

= basic support for common abstractions and C analysis
= easy to extend to support novel abstractions and languages

= as few limitations as possible
(simple abstractions should be easy, complex ones should be possible)

= try new ideas on how to engineer an abstract interpreter

= reuse more, experiment more easily
In this talk :

= work in progress. . .

= more engineering than science. ..

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p.3/45

Introduction

Overview:

@ static analysis by Abstract Interpretation
@ MOPSA framework and desing choices

© application to C analysis

= analysis of run-time errors in C
= stub language to model C libraries

© application to Python analysis

= value analysis for Python
= type analysis for Python

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p.4 /45

Abstract interpretation primer

Abstract interpretation primer

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p.5/45

Abstract interpretation primer

Abstract interpretation

Abstract interpretation: theory of the approximation of program semantics

Principle: be tractable by reasoning at an abstract level
keep soundness by considering over-approximations

X

X

concrete executions D : {(0,3),(5.5,0),(12,7),...} (not practical)

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 6 /45

Abstract interpretation primer

Abstract interpretation

Abstract interpretation: theory of the approximation of program semantics

Principle: be tractable by reasoning at an abstract level
keep soundness by considering over-approximations

concrete executions D : {(0,3),(5.5,0),(12,7),...} (not practical)
box domain D,ﬁ) : X e€[0,12] A Y €0, 8] (linear cost)

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 6 /45

Abstract interpretation primer

Abstract interpretation

Abstract interpretation: theory of the approximation of program semantics

Principle: be tractable by reasoning at an abstract level
keep soundness by considering over-approximations

concrete executions D : {(0,3),(5.5,0),(12,7),...} (not practical)
box domain D : X e€[0,12] A Y €0, 8] (linear cost)
polyhedron domain D;‘, o 6X4+11Y >33A--- (exponential cost)

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 6 /45

Abstract interpretation primer

Abstract interpretation

Abstract interpretation: theory of the approximation of program semantics

Principle: be tractable by reasoning at an abstract level
keep soundness by considering over-approximations

concrete executions D : {(0,3),(5.5,0),(12,7),...} (not practical)
box domain Df : X e€[0,12] A Y €0, 8] (linear cost)
polyhedron domain Df, o 6X4+11Y >33A--- (exponential cost)

Each abstract element represents a concrete element, via 7 : Dt 5D

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 6 /45

Abstract interpretation primer

Abstract computations

Define an interpretation of atomic statements in the abstract domain.
For each S[s] : D — D, provide S*[s] : D¥ — D*.

Compose interpretations to analyze full programs.
Replace S[s1] o...08[s,] with S*[s;]o... 0S8 s,].

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p.7 /45

Abstract computations -

Define an interpretation of atomic statements in the abstract domain.
For each S[s] : D — D, provide S*[s] : Df — DF.

Compose interpretations to analyze full programs.
Replace S[s1] o...08[s,] with S*[s;]o... 0S8 s,].

Assignments
oX «+— X +1e P
translation

13/07/2019 Combinations of Reusable Abstract Domains _ p.7 /45

Abstract interpretation primer

Abstract computations

Define an interpretation of atomic statements in the abstract domain.
For each S[s] : D — D, provide S*[s] : Df — DF.

Compose interpretations to analyze full programs.
Replace S[s1] o...08[s,] with S*[s;]o... 0S8 s,].

Assignments

oX <~ X+ 1e - -~
translation

Branches: join

if ---then --.oclse ---ofie
convex hull

&

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p.7 /45

Abstract interpretation primer

Abstract computations

Define an interpretation of atomic statements in the abstract domain.
For each S[s] : D — D, provide S*[s] : Df — DF.

Compose interpretations to analyze full programs.
Replace S[s1] o...08[s,] with S*[s;]o... 0S8 s,].

Assignments

oX <~ X+ 1e - -~
translation

Branches: join

if ---then --.oclse ---ofie
convex hull

Loops: inductive invariants
while e --- do---done ‘ U = I7

iteration with widening v

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p.7 /45

Abstract interpretation primer

A more complex example

int main(int argc, char *argv[]) {
int i = 0;
for (char **p = argv; *p; p++) {
strlen(*p); // valid string
i++; // no overflow

¥
return 0;
}

Numeric: Memory:
argc € [1, maxint] argc: variable
size(argv) = argc + 1 argv: variable
size(Q) € [1, maxsize] p: variable
0 < offset(p) < size(argv) — 1 i: variable
offset(p) = i ©: summary block
Pointers: Strings:
argv[0...argec — 1] — {©} Jk €]0...size(@) —1]: @[k] =0
argv[argc] — {NULL}

p > {argv}

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p.8 /45

Abstract interpretation primer

A more complex example

int main(int argc, char *argv[]) {
int i = 0;
for (char **p = argv; *p; p++) {
strlen(*p); // valid string
i++; // no overflow

return 0;
v
Numeric: Memory:
argc € [1, maxint] argc: variable
size(ar argc + 1 argv: variable

i Combining domains

ol Combination of domains for different types (number, pointers, ...)
and different properties (relational domains for inductive invariants)
P that can be composed and can communicate.

ar,
argv[argc] — {NULL}
p > {argv}

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p.8 /45

Abstract interpretation primer

Classic analyzer design

. Front-end
A classic analyzer (Astrée, Frama-C) has: -
= one or several front-ends (one per language)
. e . Simplified abstract
= a simplified target analysis language syntax tree

low-level: C light, JVM, LLVM bitcode, Jimple, etc.

= an iterator

= a tree-structure combination of abstractions
with layered abstraction signatures

[]
heap / blocks / scalar values / numeric abstractions /
Pros and cons: Abstract *
domain
-+ fewer language constructs to abstract

+ easy to reuse domains across languages

Abstract Abstract
domain domain

static simplifications in the front-end
— cripple precision before the analysis

— restrictions to domain composition
— Nno reuse across abstraction layers

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p.9 /45

MOPSA Framework

MOPSA Framework

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 10 / 45

MOPSA Framework

MOPSA characteristics

MOPSA:

= unified AST for programs: high-level, extensible, multi-language

= lowering of complex statements dynamically, during analysis

= common signature for all abstract domains
= domain communications, access to preconditions, reductions

= domain organisation in DAGs, sharing abstract information

= more general environment abstractions, handling optional variables

Languages:
L toy—Ianguage “universal” (demonstration, factoring abstractions)
= full C language
= C function specification language (similar to ACSL / JML)
= large subset of Python 3
L] |anguage SUbSEtS (structfless, dereference-less, pointer-less, pure arithmetic, etc.)

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 11 /45

MOPSA Framework

C value analyzer configuration

C.stubs [U.intraproc) [U.Ioopsj
[C.compilerj [C.mopsaj w

C.Cells C.Strings
Sequence
© Universal

@ Reduced product
=S (O C specific
[C.MachineNum j [C.Pointers j
@ Cartesian product

(>)

()

=S
[U.Intervals] [U.LinearRel]

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné

p. 12 / 45

MOPSA Framework

Extensible AST: Universal loops

We use extensible types and distributed iterators.
E.g., universal is a toy-language with only simple while loops

= extend stmt_kind with AST fragments

Universal.Ast

type stmt_kind += S_while of expr * stmt

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 13 /45

MOPSA Framework

Extensible AST: Universal loops

We use extensible types and distributed iterators.
E.g., universal is a toy-language with only simple while loops

= extend stmt_kind with AST fragments
Universal.Ast

type stmt_kind += S_while of expr * stmt

= define an iterator exec for this fragment
= handles some AST fragments, defaults to None for others
= defined by induction on the AST
by calling recursively the overall iterator man
def

Sf[while (e) s]X* = S'[-e] (IfpAY* . X US [s] oS [e]Y?F)

Universal.Iterators.Loops

let exec stmt man flow =

match stmt_kind stmt with

| S_while (cond, body) ->
let i = 1fp (fun f -> Flow.join f (man.exec (S_assume cond) f |>

man.exec body)) flow

Some (man.exec (S_assume (E_not cond) i))

| ->
None (* pass-through *)

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 13 /45

MOPSA Framework

Extensible AST: C and Python loops

C AST

type stmt_kind += S_c_for of stmt * expr option * expr option * stmt
| S_c_do_while of stmt * expr

Python AST

type stmt_kind += S_py_for of expr * expr * stmt * stmt
| S_py_while of expr * stmt * stmt

= preserve the high-level AST of the source languages
= reuse universal AST when possible (no s_c_wnile)

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 14 / 45

MOPSA Framework

Extensible AST: C and Python loops

C AST

type stmt_kind += S_c_for of stmt * expr option * expr option * stmt
| S_c_do_while of stmt * expr

Python AST

type stmt_kind += S_py_for of expr * expr * stmt * stmt
| S_py_while of expr * stmt * stmt

= preserve the high-level AST of the source languages
= reuse universal AST when possible (no s_c_wnile)

C iterator

let exec stmt man flow = match stmt_kind stmt with
| S_c_for (cond, body) ->
let flow’, body’ = ... in Some (man.exec (S_while (cond, body’)) flow’)

= the iterator transforms the loops into a S_while universal loop
and calls the overall iterator recursively
— delegate the iteration strategy to universal (factor semantics)

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 14 / 45

MOPSA Framework

Extensible AST: C and Python loops

C AST

type stmt_kind += S_c_for of stmt * expr option * expr option * stmt
| S_c_do_while of stmt * expr

Python AST

type stmt_kind += S_py_for of expr * expr * stmt * stmt
| S_py_while of expr * stmt * stmt

= preserve the high-level AST of the source languages
= reuse universal AST when possible (no s_c_wnile)

C iterator

let exec stmt man flow = match stmt_kind stmt with
| S_c_for (cond, body) ->
let flow’, body’ = ... in Some (man.exec (S_while (cond, body’)) flow’)

= the iterator transforms the loops into a S_while universal loop
and calls the overall iterator recursively
— delegate the iteration strategy to universal (factor semantics)

The AST merges source languages and intermediate languages.)

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 14 / 45

Handling of statements by induction on the syntax:
def

s S's; X E S s] oS s] XF
= S'[if (e) s else t]X! £ (S'[s] oS/ [e]X?) U (S'[t] oS [—e]XH)

MOPSA Framework

Non-local control-flow

Handling of statements by induction on the syntax:
s Sis; Xt E Ss]oS s] Xt
= S'[if (e) s else t]X! £ (S'[s] oS/ [e]X?) U (S'[t] oS [—e]XH)
= adding gotos. ..

C AST

type stmt_kind += S_c_goto of string
| S_c_label of string

example
x = 12;
if (...) { x++; goto 11; }
x = 99;
11: return x;

How can we handle control flow that does not follow the AST structure?

—> post-conditions are flows, containing several continuations.

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 15 / 45

MOPSA Framework

Flows as post-conditions

» environments D? abstract D = P(memory state)

s flows F! & token — Dt

C goto flows

type token += T_cur | T_goto of string

example with flows

x = 12; [T_cur -+ 12]
if (...) { x++; [T_cur = 13] goto 11; [T_goto 11 = 13] }
[T_cur + 12, T_goto 11 = 13]
x = 99;
[T_cur + 99, T_goto 11 =+ 13]
11: [T_cur = [13,99]] return x;

= S'[goto 1]X* & Xt[cur — L, 1 — X*(cur) Ut X*(1)]

def

S*[1abel 1]X* = X*[cur — X*(cur) U X*(1), 1 — 1]

also useful for break, return, exceptions, long jumps, generators

= backward jumps require fixpoint computations

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné

p. 16 / 45

MOPSA Framework

From universal numeric expressions. . .

Universal language integer expressions over Z.
« D EPW 7))~ PzV)

= +, —, /, x with mathematical semantics
(no bit-size, no overflow, no wrap-around)

= natural setup for most numeric domains D
(polyhedra, etc.)

13/07/2019 Combinations of Reusable Abstract Domains

Antoine Miné

p. 17 / 45

MOPSA Framework

...to C numeric expressions

C has machine integers, with bit-size and signedness.
= rewrite C numeric expressions into universal expressions
= evaluate with intervals to check for overflows (check the error flow)
= if no overflow, +c = +universal
= if overflow, add an explicit wrap operator (optionally signal an alarm)
= propagate the transformed expression to other domains (polyhedra)

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 18 / 45

MOPSA Framework

...to C numeric expressions

C has machine integers, with bit-size and signedness.
= rewrite C numeric expressions into universal expressions
= evaluate with intervals to check for overflows (check the error flow)

= if no overflow, +c = +universal
= if overflow, add an explicit wrap operator (optionally signal an alarm)

= propagate the transformed expression to other domains (polyhedra)

evaluation zones

type zone += Z_u_num | Z_c_scalar

C assignments to universal assignments

eval: zone -> exp -> man -> flow -> exp

let exec stmt man flow = match stmt with
| S_assign(lval, rval) ->
let 1lval’ = man.eval “zone:(Z_c_scalar, Z_u_num) lval flow
and rval’ = man.eval “zone:(Z_c_scalar, Z_u_num) rval flow in
man.exec ~zone:Z_u_num (S_Assign (lval’,rval’)) flow

= support for different interpretation zones (7, machine integers, etc.)

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 18 / 45

MOPSA Framework

...to C numeric expressions

C has machine integers, with bit-size and signedness.
= rewrite C numeric expressions into universal expressions
= evaluate with intervals to check for overflows (check the error flow)

= if no overflow, +c = +universal
= if overflow, add an explicit wrap operator (optionally signal an alarm)

= propagate the transformed expression to other domains (polyhedra)

evaluation zones

type zone += Z_u_num | Z_c_scalar

C assignments to universal assignments

eval: zone -> exp -> man -> flow -> exp

let exec stmt man flow = match stmt with
| S_assign(lval, rval) ->
let 1lval’ = man.eval “zone:(Z_c_scalar, Z_u_num) lval flow
and rval’ = man.eval “zone:(Z_c_scalar, Z_u_num) rval flow in
man.exec ~zone:Z_u_num (S_Assign (lval’,rval’)) flow

= support for different interpretation zones (7, machine integers, etc.)

“evaluation” as dynamic rewriting into other expressions)

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 18 / 45

MOPSA Framework

C pointers

= pointer value: D = P(Vpr — (base (variable, block) X offset (integer)))

= pointer arithmetic: byte-level offset arithmetic

Pointer abstraction D! = (V,y, — P(V)) x Num?
= maintains internally the bases of each pointer

= create a numeric variable for each pointer to represent its offset

= “evaluate” pointer arithmetic into offset arithmetic

= delegate the offset abstraction to the numeric domains

char a[10] = "hello";
int i = mopsa_rand(0,9);
char *p = &(alil); // (p+— {a}, i €[0,9] A offset(p) = i)

= infer relations between pointer offsets and numeric variables

13/07/2019

Combinations of Reusable Abstract Domains Antoine Miné

p. 19 / 45

MOPSA Framework

Expression evaluations into DNF

When transforming expressions, a domain can perform a case analysis:
= return a disjunction of expressions

= associate a subset of environments to each disjunct
eval signature

eval: zone -> exp -> man -> flow -> (exp * flow) DNF.t

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 20 / 45

MOPSA Framework

Expression evaluations into DNF

When transforming expressions, a domain can perform a case analysis:

= return a disjunction of expressions

= associate a subset of environments to each disjunct
eval signature

eval: zone -> exp -> man -> flow -> (exp * flow) DNF.t

Example:
evaluate *(p+10) in X* where p € {NULL, &a, &b}

return the disjunction: (error, S*[assume base(p) = NULL | X*) v
(x(&a + 10), S*[assume base(p) = a]X*) v
(x(&b + 10), S*[assume base(p) = b XX*¥)

= |ocality: disjunctions are merged at the end of the statement
= low coupling with other domains (eval mechanism)

= conjunctions are also possible thanks to reductions
= use disjunctive normal forms

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné

p. 20 / 45

MOPSA Framework

Queries

Two scopes for data-types representing properties:
= abstract value: data-type private to each domain (locally available)

= queries: concrete data-type for communication (globally available)

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p.21 /45

MOPSA Framework

Queries

Two scopes for data-types representing properties:

= abstract value: data-type private to each domain (locally available)

queries: concrete data-type for communication (globally available)

type _ query += Q_interval :

interval query

expr -> IntItv.t with_bot query

ability to evaluate any expression into an interval

any domain can answer an interval query (intervals, polyhedra, etc.)

request a

n interval and interpret its result

concrete type with a lattice structure
(the framework combines the answers from all domains)

extensible, global data-type

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné

p.21 /45

MOPSA Framework

General domain reductions

Application of queries:

Reduce the interval domain
using interval information from other domains.

global interval reduction

let reduce stmt man pre post =
let vars = get_modified_vars stmt man pre in

List.fold_left (fun post var ->
let itv = man.get_value Itv.id var post in
let itv’ = man.ask (Q_interval (S_var var)) post in
if I.subset itv itv’ then post
else man.set_value Itv.id var itv’ post
) post vars

= applied after each statement
= focuses on the variables modified by the statement stmt

= independent from the domains, defined externally

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné

p. 22 / 45

MOPSA Framework

Heterogeneous environments

Instead of P(V — Val), abstract P(V — Val)

= partial functions: not all variables have a value in an environment

= collect environment with heterogeneous supports

caller 1 caller 2
callee
it o void g1() { void g20) {

C g;) int x; int y;

void f(int* p) { « (&x) ; £(&y);

if (p) Ap g+ 1; g(&x); Y
; // x==g+1 /'y =g+1

} }

Applications:

= merge stack contexts in inter-procedural analysis
L] dynamic memory allocation (path-dependent allocation)

= optional variables (None in Python)

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p.23 /45

MOPSA Framework

Heterogeneous environment abstraction

How to lift D, abstracting P(V — Val) to P(V—Val)?

(classic solution: partitioning wrt. support — costly)

Use a single abstract element (X*, L, U)
= L C UCYV, lower and upper bounds on variables
= X! € D, a single abstract element over U
= (X)) E {p lpequ(Xf), LCWC U}
Example:
(0<x<10Ay <x, {x},{x,y})
represents { [x — i] | i € [0,10] YU {[x — i,y —j] | i €]0,10],j < i}

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 24 /45

MOPSA Framework

Heterogeneous environment abstraction

How to lift D, abstracting P(V — Val) to P(V—Val)?

(classic solution: partitioning wrt. support — costly)

Use a single abstract element (X*, L, U)
= L C UCYV, lower and upper bounds on variables
= X! € D, a single abstract element over U
= (X)) E {p lpequ(Xf), LCWC U}
Example:
(0<x<10Ay <x, {x},{x,y})
represents { [x — i] | i € [0,10] YU {[x — i,y —j] | i €]0,10],j < i}
= any numeric domain D! can be lifted systematically
(precise join and sound inclusion tests can be tricky)
= ability to represent relations involving optional variables

= all domains in MOPSA have this heterogeneous semantics

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 24 /45

MOPSA Framework

Stacked domains: Issue

Powerful but complex interactions between reduction and evaluation.

afi] - 12

Smash

domain domain

af0]-12 v ‘ ‘a[*] 12
a[l]- 12

Numeric domains

= both domains have a different view of the same concrete variables

Expanded
A

= evaluation delegates the assignment independently for each domain

= the numeric domain collects both effects
S*levaleen(alil + 12)[X* A S*[evalsmasn(alil < 12)] X*

This is not sound !

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné

p. 25 / 45

MOPSA Framework

Stacked domains: Solution

Powerful but complex interactions between reduction and evaluation.

afi] - 12

Smash
domain

Expanded
domain A

a[0]-12 v \ ‘a[’] 12
a[l]-12

Solution: domains inform other domains of side-effects (log and replay)

SH[(al0] + 12V al1l 12);al*] ¢ T[X? A
Sf[al*] < 12;a[0] < T;al1] « T]X*

Other application : predicate domains, e.g.: Vi € [0,n] : *(p+ i) = x(q + 1)

= delegates the abstraction of n, p, g to other domains (evaluation)

= sound reduction with cell and smash domains

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 26 / 45

Application to C Analysis

Application to C Analysis

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 27 / 45

Application to C Analysis

C analysis

= Clang front-end (C — OCaml faithful, high-level AST)

= support for integers, floats, pointers, structs, unions
= dynamic memory allocation with recency abstraction
= check for run-time errors

= limited support for the standard library

= inter-procedural analysis by inlining
no recursivity

" NO concurrency

= forward analysis onIy (no backward analysis)

Goal: a platform to help prototype new analyses on C codes

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 28 / 45

Application to C Analysis

Memory abstractions: cell domain

Low-level memory abstraction

= handles structured types (arrays, struct, union)
= decompose the memory into scalar cells
cell = (variable, offset, scalar-type)

= “evaluate” general C expressions into scalar expressions
translate dereferences, structure and array accesses into cells

union { uint16 ax; struct { uint8 al; uint8 ah; } bytes; } regs;
regs.ax = 0xABCD; // regs[0: 2] = 43981
x = reg.bytes.al; // x = 205

= supports type punning and pointer arithmetic
L represented in expansion (one cell per offset) OF smashed (offset-insensitive cell)

= recency abstraction for dynamic allocation

distinguish the most recent allocation, with strong update
from a summary allocation, with weak update
at each allocation site

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p.29 /45

Application to C Analysis

Memory abstractions: C strings

Domain to analyze low-level C string manipulation [SAS'18]
string copy

char *p = dst, *q = src;
while (xq != 2\0?) { *p = *q; p++; g++; }
*p = ’\O’;

= for each buffer B, remember the allocated size : ag
= and the position of the first "\0" : /5
= delegate the abstraction of ag, /g by evaluation

= evaluation to DNF is very useful for case analysis
= infer relations between length, indices, offsets

= reduction with cell abstractions

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 30 / 45

Application to C Analysis

Memory abstractions: C strings

Domain to analyze low-level C string manipulation [SAS'18]
string copy

char *p = dst, *q = src;
while (xq != 2\0?) { *p = *q; p++; g++; }
*p = ’\O’;

= for each buffer B, remember the allocated size : ag
= and the position of the first "\0" : /5

delegate the abstraction of ag, /g by evaluation

= evaluation to DNF is very useful for case analysis
= infer relations between length, indices, offsets

= reduction with cell abstractions

Result: we can infer
= as loop invariant: off, = off g < lsye < agrc
= after the loop: off, = off g = lszc < agrc
= raise an alarm if lspc > asrc OF lsre > aast
= otherwise, we ensure that /isc = fsre.

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 30 / 45

open

/*$
* requires: exists int i in [0, size(__file) - 1]: __file[il
*
* case "success":
* local: void* fd = new FileDescriptor;
* ensures: return == (int)fd;
*
* case "failure":
* assigns: _errno;
* ensures: return == -1;
*/
int open (const char *__file, int __oflag, ...);

Application to C Analysis

Stub contract language

open
/*$

* requires: exists int i in [0, size(__file) - 1]: __file[i] == 0;
*

* case "success":

* local: void* fd = new FileDescriptor;

* ensures: return == (int)fd;

*

* case "failure":

* assigns: _errno;

* ensures: return == -1;

*/
int open (const char *__file, int __oflag, ...);

Specification language:

= inspired from ACSL (Frama-C)
= targets stub modeling (not functional verification)
= yet another Ianguage in MOPSA (extending and sharing AST and domains)

= interpret formulas in abstract domains
—> domains dedicated to quantified formulas (strings, arrays)

L] modeling of resources (memory, file descriptors, etc.)

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné

p.31/45

Application to C Analysis

C benchmarks

= extracted from Juliet Test Suite (v 1.3) for C/C++

= CWEA476 on null pointer dereferences.
= CWE369 on divisions by zero
= CWE190 on integer overflows

= each test has a bad version and a correct version

Category Loc Tests Time Alarms Coverage
CWE476 25K 522 2mn26s 0 100%
CWE369 109K 1368 7mn20s 372 53%
CWE190 440K 6840 34mn57s 0 73%

On-going work:

13/07/2019

Combinations of Reusable Abstract Domains

analyzing actual C programs from GNU CoreUtils.

Antoine Miné

p.32 /45

Application to Python Analysis

Application to Python Analysis

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p.33 /45

Application to Python Analysis

Python 3 language

Highly dynamic language:
= variables have no fixed type (only values have)
= everything is an object
L complex operator semantics (many cases, many ways to override)
= complex control-flow: exceptions, generators, lambdas
= rich built-in and standard libraries
= meta-programming (introspection, dynamic classes, eval)
= no formal semantics
= evolving language

—> static analysis is challenging, but rewarding

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 34 /45

Application to Python Analysis

Python 3 semantics

= formalize the concrete semantics

based on the Python manual and CPython implementation
= use a denotational-style semantics (easier to abstract)

= type-based cases (eval and DNF are useful)

— the abstract semantics has the same structure as the concrete one

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné

p. 35 / 45

Application to Python Analysis

Python 3 semantics

Eler + e](f,e,5) =
let (f,€e1,X1,vi) = E[e] (f,€,X) in
let (fz, €,27, Vz) =]E'Iez]] (ﬂ, €1, 21) in
if hasattr(vy, --add__, ¥») then
let (ﬁ, €3, 23, V3) =]E'I vl.,,add,,(vz)ﬂ (fg, €2, 22) in
if v3 = NotImpl A typeof (v1) # typeof(v,) then
if hasattr(vz, --radd__, ¥3) then
let (f3, €4,%4,va) = E[vo.__radd__(v1)] (f3, €3, X3) in
if v4 = NotImpl then TypeError(f, €4, X4) else (fa, €4, X4, va)
else TypeError(fs, €3, X3)
else if v3 = NotImpl then TypeError(fs, €3, X3) else (f5, €3, X3, v3)
else if hasattr(vo, -_radd__, ¥5) A typeof(v1) # typeof(v2) then
let (fj:,, €3, 23, V3) = lEII VQ.,Jadd,,(Vl)]] (fz, €2, 22) in
if v3 = NotImpl then TypeError(fs, €3, X3) else (f3, €3, X3, v3)
else TypeError(f, €2, X7)

—

= formalize the concrete semantics

based on the Python manual and CPython implementation
= use a denotational-style semantics (easier to abstract)

= type-based cases (eval and DNF are useful)

— the abstract semantics has the same structure as the concrete one

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné

p. 35 / 45

Application to Python Analysis

Python value analyzer configuration

[Pdesugarisationj [Fﬂexceptions}
[U.intraproc] [U.interproc]
P.contains P.datamodel

@ Universal

[P.values] (U.LinearRel) (OPython specific

= hand-written parser in Menhir

= resolves import at parsing time

= reuse universal domains: numeric, heap abstractions, loops, etc.

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné

p. 36 / 45

Application to Python Analysis

Concrete domains for Python semantics

Concrete collecting semantics in P(E x H):

= environments: £ £ V — Val
= values: Val £ Z U Addr U
{True,False,None, Undef, NotImplemented }

def

= heap: H = Addr — Obj
Obj £ String — Val

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 37 /45

Application to Python Analysis

Non-relational value analysis for Python

Follows the concrete semantics:

= environments: &8 £ Y — Va/t

« values: Val* = 7 x Bool* x P(Addr*) x
None* x Notlmp/ementedli x Undef*

(abstract disjoint unions as tuples)
g o g ot

= None*, NotImplemented®, Undef* = {1, T}, Bool* < { L, T,t,f}
= Z!: non-relational domain (e.g., intervals)

= Addr®: allocation site abstraction

= heap: H! = Addr® — Objti

Object abstraction: Obj* = (String — Val*) x P(String)

Attributes can be added to objects dynamically
= a set of objects can have heterogeneous sets of attributes
= String — Val* maps all possible attributes to their value

= P(String): attributes that are guaranteed to exist in all objects

necessary to prove that AttributeError cannot occur

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 38 /45

Application to Python Analysis

Built-ins in Python

Built-in data-structures:
= Strings: bounded sets of constant strings, or T
= Lists: one summary element, and a length

= Dictionaries: as objects, or with a summary element

Example: model a list access 1[i]
= (C1: isinsance(l,1list) A isinsance(i, int)
= C2: —len(1l) <1i < 1len(1)
= C3:1len(l)=1

case ‘ evaluation
-C1 TypeError
ClAn—=C2 IndexError

CINC2AC3 summary variable ¢
C1 A C2A~—C3 | weak copy of summary variable ¢

only partial support in MOPSA at the moment, to be improved

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné

p.39 /45

Application to Python Analysis

Python benchmarks

= regression tests from the official Python 3.6.3 distribution.
. analyze only 9 out of 500 tests (limited coverage of the standard library)

Regression test Lines Tests Time X * Coverage
test_augassign 273 7 645ms 4 2 1 85.71%
test_baseexception 141 10 20ms 6 0 4 60.00%
test_bool 294 26 47ms 12 0 14 46.15%
test_builtin 454 21 360ms 3 0 18 14.29%
test_contains 77 4 418ms 1 0 3 25.00%
test_int_literal 91 6 29ms 6 0 0 100.00%
test_int 218 8 88ms 3 0 5 37.50%
test_list 106 9 88ms 3 0 6 33.33%
test_unary 39 6 1lms 2 0 4 33.33%
= analyze performance benchmarks
= evaluate the impact of relational numeric domains

Performance benchmark Lines Interval Octagon Polyhedra

float 37 1.5s 4.8s 3.4s

fannkuch 37 0.8s X(3) 4.7s X(1) 3.3s

nbody 66 1.0s X(2) 10minls X(2) 00

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 40 / 45

Application to Python Analysis

Types as abstraction of values

dynamic typing
def fspath(p):
if isinstance(p, (str, bytes)):
return p
elif hasattr(p, "__fspath__"):
res = p.__fspath__()
if isinstance(res, (str, bytes)):
return res
else:
raise TypeError(...)
else:
raise TypeError(...)

Python mixes:
= nominal typing: isinstance

= duck typing: hasattr

Both can be resolved in the abstraction Val*:

= nominal typing: value of the attribute __class__

= duck typing: presence of a specific attribute in Obj

13/07/2019 Combinations of Reusable Abstract Domains

#

Antoine Miné

p. 41 / 45

Application to Python Analysis

Type analysis for Python

On-going work:

More scalable abstraction remembering only type information

= sets of the types of the values stored in each variable
V — P(types)

= top-down, flow-sensitive inference by propagation of abstract values
= more of an Abstract Interpretation technique than regular typing

= types for built-in objects: List [int]
= types for nominal and duck typing: Instance[class,attrs]

= bounded parametric polymorphism: List[a], a € {...}
= relational typing domain: V:List[a] A W:List[a]l A a= [

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 42 /45

Application to Python Analysis

Benchmarks for Python type analysis

= reuse MOPSA framework, change the abstract domains

= compare with

= Typpete: type inference via SMT-solve
= Fritz & Hafe: data-flow equations
= Pytype from Google

Program

Fritz & Hage

Pytype

Typpete

MOPSA

Analysis method

Dataflow analysis

Unclear

SMT-solver

=

class_attr_ok
class_pre_store
default_args_class
except_clause
fspath

magic

polyfib

poly_lists

vehicle

widening

ANANE IF I NE I NN

> NN X N X NN X

H Nk K Nk NN Nk

ANE SN 3 T NN N NN

13/07/2019

Combinations of Reusable Abstract Domains

Antoine Miné

p. 43 / 45

Conclusion

Conclusion

Conclusion

Features:
= compositional, flexible architecture to build static analyzers
= a few original choices

unified AST, iterators, partial environments, evaluation, DNF, stacked domains
= used in research projects on C and Python analysis
= reusable abstract domains, language support, semantic abstractions
= extensible, with loose coupling

® additional features: interactive debug, interpreter, web-based GUI

Future work:
= enhance coverage for C and Python built-in libraries
= test on larger, more realistic code bases
= release as open source with support

= mixing C and Python ?

13/07/2019 Combinations of Reusable Abstract Domains Antoine Miné p. 45 / 45

	Introduction
	Abstract interpretation primer
	MOPSA Framework
	Application to C Analysis
	Application to Python Analysis
	Conclusion

