
Design of a Modular Platform for Static Analysis
Antoine Miné

antoine.mine@lip6.fr
Laboratoire d’Informatique de Paris 6

Sorbonne Université, CNRS

Paris, France

Abdelraouf Ouadjaout

abdelraouf.ouadjaout@lip6.fr
Laboratoire d’Informatique de Paris 6

Sorbonne Université, CNRS

Paris, France

Matthieu Journault

matthieu.journault@lip6.fr
Laboratoire d’Informatique de Paris 6

Sorbonne Université, CNRS

Paris, France

Abstract
We present the design and implementation of Mopsa, a plat-

form that simplifies the construction of semantic static an-

alyzers by abstract interpretation.Mopsa computes sound

program invariants and reports run-time errors, undefined

behaviors, and uncaught exceptions. Mopsa differs from ex-

isting platforms by its highly modular and extensible design:

semantic abstractions of numeric values, pointers, objects,

control, as well as syntax-driven iterators, are defined in

small, reusable domains with loose coupling, that can be

combined and reused to a greater extent than in previous

work.Moreover,Mopsa aims at supporting several languages

(currently, subsets of both C and Python) while sharing ab-

straction components as much as possible. Mopsa is a work

in progress, and not yet capable of analyzing full programs;

nevertheless, we report early experimental results on verifi-

cation benchmarks.

Keywords Static analysis, Abstract interpretation, Tool

Acknowledgments
This work is partially supported by the European Research

Council under Consolidator Grant Agreement 681393 –Mopsa.

1 Introduction
Abstract interpretation [5], a theory of the approximation of

semantics, allows designing sound static analyzers that infer

automatically program properties. It has enjoyed a growing

success, as witnessed by commercial tools used in the indus-

try: Polyspace Verifier, Astrée [12], Sparrow [15], Julia [16],

etc. Open-source industrial-strength frameworks to design

analyzers by abstract interpretation have also been proposed:

Frama-C [8], IKOS [3], Infer [4], etc. Most tools focus on an-

alyzing families of C-like or Java-like languages, and do not

target dynamic languages (e.g., Python, JavaScript) and a
forciori cannot handle both kinds of languages. Moreover,

while all tools are based on a modular combination of ab-

stractions, as advocated by abstract interpretation [6], these

are often restricted to specific abstractions: e.g., Astrée [7]

achieves a reduced product of numeric abstractions but has a

monolithic memory abstraction; Frama-C’s abstractions can

be composed either through coarse-grain plug-ins, or as non-

relational value abstractions [2]. To try and address these

TAPAS’18, August 28, 2018, Freiburg im Breisgau, Germany
2018.

issues, and push abstract interpretation frameworks further,

we have started the design of a Modular Open Platform for
Static Analysis (Mopsa) in OCaml. It is based on a standard

interpreter by induction on the syntax and a collection of

abstractions (see, e.g., [1]) but with unique features:

− all domains share a common extensible Abstract Syntax

Tree datatype; it can express both high-level syntax close

to the source languages, and simpler intermediate ones

used internally by abstractions (e.g., numeric fragments);

− we eschew static simplifications common to frameworks

(e.g., LLVM [13]); transformations are performed dynami-

cally during interpretation and benefit from inferred facts;

− all domains share a common interface and are easy to

compose; notably, iterators are viewed as domains, and

domains are responsible for statement simplification;

− domains need only handle a fragment of the AST; they

can be reused after extending the AST to new languages.

Mopsa is a work in progress: its architectural foundations

are implemented, but it is not ready to analyze realistic pro-

grams. As a proof of concept, we have implemented analyses

for both a fragment of C and Python, showing it can support

legacy abstractions (e.g., numeric domains, low-level C mem-

ory models [14]) and is a great help developing novel ones

(e.g., modular C analysis [11], Python analysis [9]). Sections 2

and 3 present the domain signature and domain composition;

Sect. 4 reports on early experiments (analyzing part of Juliet

for C and Python’s regression tests); Sect. 5 concludes.

2 Unified Domains Signature
Abstract domains are OCaml modules implementing the

DOMAIN signature in Fig. 1. In the following, we describe the

main types and functions, and state the core design goals.

Lattice. Each domain defines a type t characterizing its ab-
stract state, as well as corresponding lattice operators (join,
widening, etc.). In Mopsa, the internal abstract state of a

domain is private: other domains have no direct access. This
separation ensures a low coupling between domains.

Managers. During the analysis of one statement, a domain

may require computing the post-condition of statements

handled by other domains. To allow inter-domain communi-

cation without sacrificing modularity, each domain transfer

function is not defined over its private type t, but on the

product of types from all domains. To ensure that each do-

main can be programmed independently from the others, the

1



TAPAS’18, August 28, 2018, Freiburg im Breisgau, Germany Miné et al.

module type DOMAIN = sig
(* Lattice definition *)
type t
val bottom : t
val top : t
val leq : t -> t -> bool
val join : t -> t -> t
val meet : t -> t -> t
val widening : t -> t -> t
(* Transfer functions *)
val exec : stmt -> (’a, t) man -> ’a flow -> ’a post option
val eval : expr -> (’a, t) man -> ’a flow -> ’a evals option
val ask : ’r query -> (’a, t) man -> ’a flow -> ’r option
(* Interface *)
val exec_interface : zone interface
val eval_interface : (zone * zone) interface

end

Figure 1. Unified signature for abstract domains.

product is a type parameter ’a, and we use an encoding of

polymorphic records in OCaml: the manager (’a, t) man is
a record providing lattice operators on ’a, transfer functions
over all domains in ’a, and accessor functions get: ’a ->
t and set: t -> ’a -> ’a to allow a domain to access and

update its private abstraction within the global abstraction.

Flows. Mopsa operates by induction on the syntax of the

program. To handle non-local control flows, we use contin-

uations (similarly to Astrée [1]): we collect not only envi-

ronments reaching the current program location, but also

those at previously encountered jump locations. Suspended

flows are merged back into the current flow when reaching

the corresponding jump target. Expressing flows as contin-

uations makes it possible to abstract very complex non-local

control, such as generators in Python [9]. Flow continua-

tions are implemented as maps from flow tokens into the

global abstraction ’a. Tokens belong to an extensible type,

thus allowing a domain to add new control flow abstractions

independently from the remaining domains.

Example 2.1. We give in Fig. 2 an example of a transfer

function for handling forward goto statements in C. Flows

are enriched with a new token T_goto annotated with the

target label. When reaching a statement goto label, the
current environments are moved to token T_goto label,
before being reset to ⊥ because the next control location

becomes unreachable. Encountering label: stmt merges

environments associated to T_goto label into current en-

vironments, and returns a post-condition of stmt via the

manager. The default case returns None, indicating that other
domains should handle the other constructions. Such a pure

iterator domain does not maintain any abstract state by itself,

hence t = unit. Despite its brevity, the code in Fig. 2 is the

complete transfer function of a domain that adds C-style

type token += T_goto of Ast.label

let exec stmt man flow =
match stmt with
| S_c_goto(label) -> (* Case of S♯J goto label K *)

let cur_env = Flow.find T_cur man flow in
let flow’ = Flow.add (T_goto label) cur_env man flow in
let flow’’ = Flow.set T_cur man.bottom man flow’ in
Post.return flow’’

| S_c_label(label, stmt) -> (* Case of S♯J label: stmt K *)
let goto_env = Flow.find (T_goto label) man flow in
let flow’ = Flow.add T_cur goto_env man flow in
let flow’’ = man.exec stmt flow’ in
Post.return flow’’

| _ -> None

Figure 2. Transfer function for forward goto statements.

forward goto to an analysis. It is completely decoupled from

other domains, and thus highly reusable.

Evaluations. Domains inMopsa can implement dynamic

rewriting rules to simplify expressions by exploiting the

available abstract information. A classic use is transforming

modular arithmetic from C expressions into mathematical

arithmetic, easier to handle in relational numeric domains,

after ensuring the absence of overflows in the current state.

After a statement or expression is transformed by one

domain, it is executed again via the manager on all existing

domains. We must take care to avoid infinite rewriting loops.

Mopsa introduces the notion of zones to avoid this problem.

Zones define (possibly overlapping) AST fragments, such as

expressions with modular arithmetic or purely mathematical

expressions. When adding a new language, the extensible

type Zone.t of zones can be enriched along with the exten-

sible type of statements and expressions. Calls to transfer

functions and rewriting tag input and output AST with zone

information, and the manager routes the calls accordingly

to relevant domains. It is then easy to ensure that abstract

computations and rewriting progress until completion.

Another contribution of Mopsa is the ability to handle na-

tively disjunctive evaluations. Domains can return different

results for different parts of the input abstract environment.

Consider the following example from Python analysis:

Example 2.2. Fig. 3 shows the evaluation of an index ac-

cess on Python lists. We assume that lists are abstracted

with summary and length variables over-approximating the

contents and the number of elements, as done in [9]. When

analyzing a read access, the function getitem_cases is used
to partition the pre-condition w.r.t. the length. The first flow

flow1 represents the case when index i is outside the size of
self. The associated evaluation is an empty expression since

an exception is raised. The second flow flow2 is obtained

by filtering the pre-condition verifying that the list contains

exactly one element. In this case, the summary variable is

2



Design of a Modular Platform for Static Analysis TAPAS’18, August 28, 2018, Freiburg im Breisgau, Germany

(* Case of E♯J list.__getitem__(self, i) K *)
let flow1, flow2, flow3 = getitem_cases self i man flow in
let evl1 =

let flow’ = man.exec (mk_raise "IndexError") flow1 in
Eval.empty flow’

in
let evl2 = Eval.singleton (summary self) flow2 in
let evl3 =

let tmp = mk_tmp () in
let flow’ = man.exec (expand tmp (summary self)) flow3 in
Eval.singleton tmp flow’ ~cleaner:[remove_var tmp]

in
Eval.or_list [evl1; evl2; evl3]

Figure 3. Evaluation of index access on lists in Python.

returned as a sound simplification of index access. Finally,

when the list contains at least two elements, a temporary

variable is created as a copy of the summary variable using

the expand function, similarly to the case of summarized

arrays [10]. With the expression, a cleaning function is re-

turned that will be called to remove the temporary variable

once all rewritings are done.

Queries. When a domain needs specific information main-

tained by another domain, it can fetch them via queries, sim-

ilarly to Astrée [7]. The type _ query is an extensible public

GADT type that can be enriched by domains. For example,

an interval query can be defined by:

type _ query += Q_interval: expr -> Itv.t query

Numeric domains handle requests to Q_interval in the trans-
fer function ask, and client domains retrieve this information

via their manager by calling man.ask (Q_interval e) flow.
GADT typing ensures that the returned value has type Itv.t.

3 Domain Composition
The global abstraction of an analysis instance is constructed

at run-time by composing domains according to a user-given

configuration file. An illustrative example is depicted in Fig. 4

representing a simplified version of an analysis of C. Three

types of generic composers are used to connect leaf domains:

Iterators. This composer iterates sequentially over a set of

domains, which is materialized with in Fig. 4. Lattice

operators are defined pointwise, and transfer functions are

called in sequence until one succeeds: domain i is invoked
only if previous domains j < i returned None. This composi-

tion is useful to combine a set of iterators defining transfer

functions for disjoint parts of the AST, such as loops, func-

tion calls, etc. In addition, it allows plugging new iteration

schemes easily, e.g., replacing the induction-based iterators

with CFG-based ones.

Reduced products. The classic method employed in most

static analyzers (e.g., [1]) for creating reduced products is via

cascading binary functors.Mopsa provides instead a generic

n-ary reduced product composer that enables better propa-

gation of reduction channels. Lattice operators are defined

pointwise and transfer functions of argument domains are

called in parallel. All post-conditions are given to a user-

defined reduction operator, that can access directly abstract

elements of any domain in the pool and can exploit the pub-

lished reduction channels to refine the final post-condition.

Stacks. Another novelty inMopsa is a stacked reduced prod-

uct of n functors sharing the same subordinate domain in-

stance. This form of composition is useful when several

domains depend on an external domain to delegate manage-

ment of parts of their abstract state. Consider the case of

cell and smashing abstractions from [1, 14] in Fig. 4. Both

domains need a pointer domain for address resolution and

a numeric domain for abstracting numeric environments.

By sharing the same numeric domain instance, relations

between cells and smashed variables can be inferred.

4 Experiments
We instantiated two analyzers, one for C (Fig. 4) and one

for Python (Fig. 5). We note that the configurations share

several domains (underlined), including iterators, heap and

numeric abstractions. C benchmarks were taken from the

Juliet Test Suite (v 1.3) for C/C++. We selected all the C tests

corresponding to the following categories: CWE190 on inte-

ger overflows, CWE369 on divisions by zero, and CWE476 on

null pointer dereferences. Each category provides several

test cases, themselves split in two programs: a bad program

containing an error, and its corrected version. Python bench-

marks were performed on regression tests from the official

Python 3.6.3 distribution, that test the builtins of the lan-

guage and the standard library. The current configuration

for the Python analysis does not provide an analyzer able to

handle all the 500 regression tests; we selected 9 tests in the

scope of our configuration (see [9] for more information).

Tables 1 and 2 provide results of these experimentations: ✓
are good programs for which no alarm was raised, ✓ are bad

programs for which an alarm was raised, ✗ are good pro-

grams for which the analyzer raised an alarm (false positive),

✱ are programs that could not be handled by the analyzer

(e.g., by lack of stubs). False positives in CWE369 are due

to the use of a non-partitioned numerical domain for the

analysis of programs testing divisions by zero; thanks to the

modularity of the analyzer, this could be avoided by adding

a partitioning domain.

5 Conclusion and Future Work
We have presented the design principles of Mopsa, a new

platform for static analysis development through composi-

tions of highly reusable abstractions. It is not yet feature-

complete, but it is already successfully used in research

projects to support the analysis of non-trivial C and Python

3



TAPAS’18, August 28, 2018, Freiburg im Breisgau, Germany Miné et al.

Leaf domains Functor domains Iterator composer

Product composer Stack composer

C pointers

boxes

C integers

×C cells C smash

heap

C program C libs C desugarisation

C switch C interproc loops

intraproc interproc C goto

Figure 4. C analysis configuration.

Table 1. Benchmarks on regression tests of Python 3.6.

Regression test Lines Tests Time ✓ ✗ ✱ Coverage

test_augassign 273 7 645ms 4 2 1 85.71%

test_baseexception 141 10 20ms 6 0 4 60.00%

test_bool 294 26 47ms 12 0 14 46.15%

test_builtin 454 21 360ms 3 0 18 14.29%

test_contains 77 4 418ms 1 0 3 25.00%

test_int_literal 91 6 29ms 6 0 0 100.00%

test_int 218 8 88ms 3 0 5 37.50%

test_list 106 9 88ms 3 0 6 33.33%

test_unary 39 6 11ms 2 0 4 33.33%

Total 1693 97 1.71s 40 2 55 43.30%

codes [9, 11]. In the future, we plan to extend the support

for C standard libraries and Python built-ins to be able to

analyze realistic codes. Other research projects on Mopsa

include static analysis of novel properties beyond safety,

such as a portability analysis. We plan to releaseMopsa as

open-source.

Py program Py libs Py desugarisation

Py exceptions Py generator intraproc

interproc loops Py objects

Py containers Py data model heap

boxes

Figure 5. Python analysis configuration.

Table 2. Benchmarks on CWE from the Juliet test suite.

tests Loc Tests Time ✓ ✓ ✗ ✱ Coverage

CWE190 440k 6840 11.0mn 2584 3213 0 1043 84.75%

CWE369 109k 1368 3.30mn 76 380 304 608 55.55%

CWE476 25k 522 0,207mn 270 252 0 0 100%

Total 574k 8730 14.5mn 2930 3845 304 1651 77.60%

References
[1] J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and

X. Rival. 2010. Static Analysis and Verification of Aerospace Software

by Abstract Interpretation. In AIAA Infotech@Aerospace. AIAA, 1–38.
[2] S, Blazy, D. Bühler, and B. Yakobowski. 2017. Structuring Abstract

Interpreters Through State and Value Abstractions. In Verification,
Model Checking, and Abstract Interpretation. Springer, 112–130.

[3] G. Brat, J. A. Navas, N. Shi, and A. Venet. 2014. IKOS: A Framework

for Static Analysis Based on Abstract Interpretation. In Software Engi-
neering and Formal Methods. Springer, 271–277.

[4] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca,

P. O’Hearn, I. Papakonstantinou, J. Purbrick, and D. Rodriguez. 2015.

Moving Fast with Software Verification. In NFM. Springer, 3–11.

[5] P. Cousot and R. Cousot. 1977. Abstract Interpretation: A Unified

Lattice Model for Static Analysis of Programs by Construction or

Approximation of Fixpoints. In Proc. of POPL’77. ACM, 238–252.

[6] P. Cousot and R. Cousot. 1979. Systematic design of program analysis

frameworks. In Proc. of POPL’79. ACM Press, 269–282.

[7] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,

and X. Rival. 2006. Combination of abstractions in the Astrée static

analyzer. In Proc. of ASIAN’06 (LNCS), Vol. 4435. Springer, 272–300.
[8] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B.

Yakobowski. 2012. Frama-C: A software analysis perspective. Formal
Aspects of Computing 27 (2012), 573–609.

[9] A. Fromherz, A. Ouadjaout, and A. Miné. 2018. Static value analysis of

Python programs by abstract interpretation. In Proc. of NFM’18 (LNCS).
Springer, 185–202.

[10] D. Gopan, F. DiMaio, N. Dor, T. Reps, and M. Sagiv. 2004. Numeric

Domains with Summarized Dimensions. In Proc. of TACAS’04 (LNCS),
Vol. 2988. Springer, 512–529.

[11] M. Journault, A. Ouadjaout, and A. Miné. 2018. Modular static analysis

of string manipulations in C programs. In Proc. of SAS’18 (LNCS).
[12] D. Kästner, S. Wilhelm, S. Nenova, P. Cousot, R. Cousot, J. Feret, L.

Mauborgne, A. Miné, and X. Rival. 2010. Astrée: Proving the absence

of runtime errors. In Proc. of ERTS2 2010.
[13] C. Lattner and V. Adve. 2004. LLVM: A Compilation Framework for

Lifelong Program Analysis & Transformation. In Proc. of CGO’04.
[14] A. Miné. 2006. Field-sensitive value analysis of embedded C programs

with union types and pointer arithmetics. In Proc. of LCTES’06. ACM,

54–63.

[15] H. Oh, K. Heo, W. Lee, W. Lee, and K. Yi. 2012. Design and Implemen-

tation of Sparse Global Analyses for C-like Languages. SIGPLAN Not.
47, 6 (June 2012), 229–238.

[16] F. Spoto. 2005. JULIA: A Generic Static Analyser for the Java Bytecode.

In Proc. of FTfJP’2005. 17.

4


	Abstract
	Acknowledgments
	1 Introduction
	2 Unified Domains Signature
	3 Domain Composition
	4 Experiments
	5 Conclusion and Future Work
	References

