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Trailer

An example of Randomized Algorithm
@ Formalize its syntax.

@ Reason on its semantics.

A Full Abstraction Result in a Probabilistic Setting
@ Semantics : PCoh, Probabilistic Coherent Spaces [Girard04]
e Syntax : PPCF, a Probabilistic extension of PCF [Plotkin77]

Derivation, the key stone of Probabilistic Full Abstraction
@ Taylor expansion

@ Well-pointedness and derivation
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Full Abstraction :

A Bridge between Syntax and Semantics.
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Semantics, What else ?

« Decide what you want to say before you worry how you are going

to say 1t. » The Scott-Strachey Approach to Programming L Theory, preface, Scott (77)

Denotational semantics :
a program as a function between mathematical spaces

Operational semantics :
a program as a sequence of computation steps

« Full Abstraction studies connections between denotational and
operationa/ semantics. » LCF Considered as a Progr ing L Plotkin (77)
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Full Abstraction in a nutshell

FA relates Semantical and Observational equivalences :

Adequacy
[P] =[Q] = P~,Q

Full Completeness  (vc[], cipl =* v < c[Q] =* v)

How to prove Full Completeness :
@ By contradiction, start with [P] # [Q]
@ Find testing function : f such that f[P] # f[Q]

© Prove definability :
C[], VP, f[P] = [C[P]] and C[P] — p.
@ Conclude :
ACLL [CIP #[CIQRI = p# g= P %0 Q.
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Randomized algorithm :

A Las Vegas example.
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An example of Randomized algorithm

Input : A 0/1 array of length n > 2 in which half cells are 0.

9]

=

[0TL1[1[0] £:0,1,5-0, 1,231

Output : Find the index of a cell containing 0.

let rec LasVegas (f: nat -> nat) (n:nat) =
let k = random n in
if (f k = 0) then k
else LasVegas f n

This algorithm succeeds with probability one.

@ Success in 1 step is : %

Success in any steps is :

@ Success in 2 steps is : 2% © 1
. . — =1.
@ Success in n steps is : 2i 2k

k=1
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Modeling Probabilistic Data and Programs :

Type : set of positive vectors
Program : function seen as a positive matrix

Interaction : composition seen as multiplication
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Modeling Probabilistic Data
Example : nat

Coin: nat returns the toss of a fair coin.
Random n: nat returns uniformly any {0,...,n—1}.

Non Determinism, a first approximation : |nat| = N.
|Coin| = {0,1} and |Random n| = {0,...,n—1}
Enriching with positive coefficients : [nat] C (R*)N.

[Coin] =

(1.3.0..) and [Randonn] — (....10...)
v 1y 1 1
012 0 ... n-1

Subprobability Distributions over N :

[nat] = {()\,,),,eN | Vn,A\p € RT and Z)\n < 1}
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Modeling Probabilistic Programs

Example : Random : nat — nat
Input : an integer n
Output : any integer {0,...,n — 1} uniformly chosen.
Non Determinism : |[Random| C |nat| x |nat| is a relation.

|Random| = {(n, k) | neN, ke {0,...,n—1}}

Enriching with positive coefficients : [Random] € (R+)(N*N),

1 2 n
L i
L3 7 -0
0 1 1
2 n —1
N .

o
.
1
7
_
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Modeling Probabilistic Programs

0 1
il
o L 1
Once : nat — nat 2 2 — 0
. o 11 o
Input : an integer n
P & 00 0
Output : if n=0 then 42
else Coin 0 -
1 0- —42
.0 -
Twice : nat — nat ([0],42) — 1
Input : an integer n ([, k) = oo+ o
Output : if n=0 then 42 it 0Sk=m-—1<m-1
else Random n ([, 2], k) = ,,%
if m—1<k<np,—1
Otherwise 0
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Modeling Probabilistic Interaction

Probabilistic Data :
If x:nat, then [x] = (%Xn)nen
where x, is the probability that x is n.

Probabilistic Program : P : nat — nat
where [P x|, is the probability that P x computes n.

[Once] € (RF)NXN [Twice] € (R+)Man(N)xN
[Once x], = [Once] - [1] [Twice x], = [Twice] - [x]'
= Y [oncelon B - Srsicly [Tk
k kep
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Syntax :

probabilistic PCF
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A Typed Probabilistic Functional Programing Language

Types : o,7T=nat|oc=r7

Probabilistic PCF :

N,P,Q:=n| pred(N) | succ(N) | x | Ax? P | (P)Q | fix(M)
| if (N=0)thenPelseQ|a-P+b-Q, whena+b<1

Operational Semantics : P2 Q
P reduces to @ in one step with probability a

p
I S if (0 = 0)then Pelse @ 1> P
a}/ \f\n (— 7) ,
P— — — Q if(n+1=0)thenPelse @ = Q
\ : ) a3 P+b-QXP
w(p) = a1 an Proba(P = Q) = Z w(p)
p
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Las Vegas implementation in PCF

Caml encoding :

let rec LasVegas (f:nat->nat) (n:nat) =
let k = random n in
if (f k = 0) then k
else LasVegas f n

PCF encoding :

fix ()\ Lasvegas(nat:>nat):>nat:>nat

)\fnatﬁnat )\nnat
(%)\gnat >natg 0+ -+ %/\gnat >natg n— 1)
Ak"et if (f k:Q) then k
else LasVegas f n)
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Las Vegas Operational Semantics

PCF encoding :

fix ()\ Lasvegas(natﬁnat)ﬁnaténat
)\fnat:>nat )\nnat

(Agm=mmtg 14t bgmomig 1)
Akt 4 f (f k=0) then k
else LasVegas f n)

Operational Semantics :

1 1 1
7

LVfn "L LVfn
\ AN
\Lan

n—1 n—1 n—1

LN
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Quantitative Semantics :

Probabilistic Coherent Spaces (Pcoh)

Types (Object) : representing randomized data : nat, ...
Programs (Maps) : Input Type — Output Type
Interaction (Composition):

Input Type % Intermediate Type RN Output Type
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A Probabilistic Orthogonality

Orthogonality : x,y € (RH)ll.

x Ly < ZxayQE[O,l].

a€|o]|

Given a set P C (]R+)|"| we define P+, the orthogonal of P, as
PL:={y e ®RY)|vxeP (x,y)<1}.

Probabilistic Coherent Space : X =(|X|,P (X))
where |X| is a countable set
and P (X) C (RT)I¥

such that the following holds :

closedness : P (X)) =P (X),
boundedness : Va € |X|, 3u > 0, Vx € P(X), x, < p,
completeness : Va € |X|, 3A > 0, Ae, € P (X).
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Types as Probabilistic Coherent Spaces

Objects of PCoh : X =(|X|,P (X))
where |X| is a countable set
and P (X) C (RT)¥]

Type Example : [nat] = (N, P (nat) = {(Aa) | D, An < 1})

Data Example : if M : nat, then [M] € P (nat) C (RT)N
is a subprobability distributions.

-1

. 1
Coin : 1.0+

N[
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Programs as Probabilistic Coherent Maps

Maps of PCoh : f:(X,P(X)) = (Y],P())
defined as a matrix M(f) € (R*)Man(IX])x|Y|

thanks to Taylor formula :

f(x) = Z M(f)y - x" with x* = H x1(3)

REMiin(lo|) acSupp(x)

f can be seen as an entire function f : (RT)I*l — (RT)V

preserving probabilistic coherence, f(P (X)) C P ())

Example : if P nat — nat, then [P] : (RT)N — (RT)N
is an entire function preserving subprobability distributions.
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Example of Programs in PCoh

Once : nat — nat An if n=0 then 42 else Coin

[once](x)o = 3 D n>1%n
[Once](x)1 = 33,51 %
[Once](x)s2 = xo

Twice : nat — nat An if n=0 then 42 else Random n

k k+1
[Twice](x Z Z 3XpXq + Z Z xpxq, if k#£42
p= 1q>k+1 p= 1q>k+1
[Twice](x)s2 = xo0+ Z Z = XpXq + Z Z xpxq
p=1g>43 p=1g>43
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Probabilistic Coherence Spaces Properties

A model of PPCF :
in particular, PCoh is a model of differential linear logic.

Compositionality :

ForC:oc=r1,P:0,| [(C)P]- = Z [Cl.,-IPI"
REMiin(lo])

Adequacy Lemma :

Let M : nat be a closed program. Then for all n,

Proba(M = n) = [M],.

LasVegas f n : nat

Proba(LasVegas f n —" o) = Z[[LasVegas fofp=1
K
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Probabilistic Full Abstraction :

The completeness theorem
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Full Abstraction : Pcoh = Proba-PCF

FA relates Semantical and Observational equivalences :
Let P,Q: 0o Va € |o|, [Pla = [Q]a
Adequacy |} 1} Full Completeness

VC : 0 = nat, Vn € |nat|,
Proba((C)P = n) = Proba((C)Q = n))

Adequacy proof :
@ Apply Adequacy Lemma : Vn, Proba((C)P = n) = [(C)P],.
@ Apply Compositionality :

vn, [(OPL = > [Clun [JIPIA

HEMiin(lal) aEp
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Full Abstraction : Pcoh = Proba-PCF

FA relates Semantical and Observational equivalences :
Let P,Q: 0o Va € |o|, [Pla = [Q]a
Adequacy |} 1} Full Completeness

VC : 0 = nat, Vn € |nat|,
Proba((C)P = n) = Proba((C)Q = n))

Adequacy proof :
@ Apply Adequacy Lemma : Vn, Proba((C)P = n) = [(C)P],.
@ Apply Compositionality :

vn, [(OPL = > [Clun [JIPIA

pEMiin(lol) aEp
= > [l [TIQ1 = 1(C)Q1n
pEMiin(lol) agp
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Full Abstraction : Pcoh = Proba-PCF

FA relates Semantical and Observational equivalences :
Let P,Q: 0o Va € |o|, [Pla = [Q]a
Adequacy |} 1t Full Completeness

VC : 0 = nat, Vn € |nat|,
Proba((C)P = n) = Proba((C)Q = n))

Full Completeness proof :

@ By contradiction : 3o € |0, [P]a # [Q]a
@ Find testing context : T, such that [(T.)PJo # [(Ta) Qo
© Prove definability : T, € PPCF

@ Apply Adequacy :
Proba((T,)P = 0) # Proba((T,)Q — 0).
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Find a testing context : Base Case

Assumptions Goal
e P,Q :nat @ T, :nat — nat
o [Pln# [Q]n o [(Tn)PJo # [(Th)QJo
Choose

If T, = Ax™*if (x =n) thenQ  Then  [To]o=1

Conclude

By Compositionality, [(T,)PJo = [P]. # [Q], = [(T,) Qo
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Find a testing context : Induction Case

Assumptions Goal
o PR 0= e T, :(¢p=1)— nat
o a=([y1,---,7l.B) o [(Ta)P] # [(Ta)QI
o [Pla # [Qla ° [[Ta]]u#O@N:[O‘]
Compositionality [(To)P] = Z [Tal, H[[P]]S(‘”
rEMiin(lo|) dep
Choose

LI
Ta(X) = MOZY T5() <<f>2 %x\%,(Z’J)

i=1

Na(R') = AP i (AL T, (Z)x = 0) then Ng (V') else .

Taylor Formula Vi, [[’EX()?)]}M is a power series in X
with coeff of [TX # 0 < p = [0]

The coeff of [T X in [(7.(X))P] is proportional to [P]a.
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Finding a testing context : Definability

Summary :
o The coeff of [] X in [(7.(X))P] is proportional to [P],.
o [Pla # [Qla-

° [[(7;()?))P]] and [[(7;()?))Q]] are two real power series with
different coefficients.

Definability : Find X € [0,1]0Y) then T;,(X) in ProbaPCF
such that [(7a(A))P] # [(Ta(A)) Q]

By contradiction :
o If they were equal, their derivatives near zero would be equal.

o Coefficients of power series are computed by derivation at 0.
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Differential categories in use :

Full Abstraction from Taylor expansion
and Topological derivation.
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Derivation in PCoh

Differential Operator fiIX —oY df 1 X®IX — Y
do— c f
df : X®IX — IX®IX - IX —Y
a o« (] « [a]+o B

Pcoh is not a differential category
cocontraction does not preserve probabilistic coherence

Example : "] = (N,P(11) ={(\n) | An < 1})

c('®@1)=(1+1)
with X' = (A ), ...)

Pcoh is embedded in Rel(R*>°) which is a differential category

C. Tasson Introduction  Syntax Semantics Full Abstraction 29/31



Well Pointedness and Derivation

Pcoh is well pointed Derivation is topologic
Example : if f:11—1, then [f] :RT - R
such that f(x) = Z frxk

k

. f(tx) = £(0)
df (0)(x) = tl|_n>% —
Rel(R*>°) is not well pointed Derivation is formal
Example : if g,h:11 — 1, then [g],[h] : RT>® — R*>
g(x) = oox dg(0)(x) = oo
h(x) = cox? dh(0)(x) = 200x
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Conclusion

Sum up
@ A Probabilistic extension of PCF encoding LasVegas
@ A Quantitative semantics Pcoh enjoying
e Taylor Formula : f(x) = 3_  c v, 1oy M(F)p - X"
o Adequacy : Vn, Proba(P = n) = [P].,.
@ Full Abstraction resulting from

e Derivation
e Well pointedness

This is not the end of the story!

@ Which models enjoy Taylor Formula?

@ Can we extend Full Abstraction to other quantitative models?
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