

ASL 2013 - University of Waterloo 8-11 May

Probabilistic Coherent Spaces vs Probabilistic PCF A Full Abstraction Result.

joint work with Thomas Ehrhard and Michele Pagani

Christine Tasson

Christine.Tasson@pps.univ-paris-diderot.fr

Laboratoire PPS - Université Paris Diderot

An example of Randomized Algorithm

- Formalize its syntax.
- Reason on its semantics.

A Full Abstraction Result in a Probabilistic Setting

- Semantics : PCoh, Probabilistic Coherent Spaces [Girard04]
- Syntax : PPCF, a Probabilistic extension of PCF [Plotkin77]

Derivation, the key stone of Probabilistic Full Abstraction

- Taylor expansion
- Well-pointedness and derivation

Full Abstraction:

A Bridge between Syntax and Semantics.

Semantics, What else?

« Decide what you want to say before you worry how you are going to Say it. » The Scott-Strachey Approach to Programming Language Theory, preface, Scott (77)

Denotational semantics:

a program as a function between mathematical spaces

Operational semantics:

a program as a sequence of computation steps

« Full Abstraction studies connections between denotational and operational semantics. » LCF Considered as a Programming Language, Plotkin (77)

Full Abstraction in a nutshell

FA relates Semantical and Observational equivalences:

How to prove Full Completeness :

- **1** By **contradiction**, start with $[\![P]\!] \neq [\![Q]\!]$
- **2** Find **testing function** : f such that $f[P] \neq f[Q]$
- **3** Prove **definability** : $\exists C[\cdot], \forall P, f[P] = [C[P]]$ and $C[P] \rightarrow p$.
- **4** Conclude : $\exists C[\cdot], \ \llbracket C[P] \rrbracket \neq \llbracket C[Q] \rrbracket \Rightarrow p \neq q \Rightarrow P \not\simeq_o Q.$

Randomized algorithm:

A Las Vegas example.

An example of Randomized algorithm

Input: A 0/1 array of length $n \ge 2$ in which half cells are 0.

$$\underline{0} \ | \ \underline{1} \ | \ \underline{0} \ | \ \underline{1} \ | \ \underline{1} \ | \ \underline{0}$$
 $f: 0, 1, 5 \mapsto \underline{0}, \quad 1, 2, 3 \mapsto \underline{1}$

Output : Find the index of a cell containing $\underline{0}$.

```
let rec LasVegas (f: nat -> nat) (n:nat) =
    let k = random n in
    if (f k = 0) then k
    else LasVegas f n
```

This algorithm succeeds with probability one.

- Success in 1 step is : $\frac{1}{2}$.
- Success in 2 steps is : $\frac{1}{2^2}$.
- Success in *n* steps is : $\frac{1}{2^n}$.

Success in any steps is:

$$\sum_{k=1}^{\infty} \frac{1}{2^k} = 1$$

Modeling Probabilistic Data and Programs:

Type: set of positive vectors

Program: function seen as a positive matrix

Interaction: composition seen as multiplication

Modeling Probabilistic Data

Example: nat

Coin: nat returns the toss of a fair coin.

Random n: nat returns uniformly any $\{0, \ldots, n-1\}$.

Non Determinism, a first approximation : |nat| = N.

$$|\mathtt{Coin}| = \{0,1\}$$
 and $|\mathtt{Random}\; \mathtt{n}| = \{0,\ldots,n-1\}$

Enriching with positive coefficients : $[nat] \subseteq (\mathbb{R}^+)^{\mathbb{N}}$.

Subprobability Distributions over $\mathbb N$:

$$exttt{[nat]} = \left\{ (\lambda_n)_{n \in \mathbb{N}} \;\mid\; orall n, \lambda_n \in \mathbb{R}^+ \; ext{and} \; \sum_n \lambda_n \leq 1
ight\}$$

Modeling Probabilistic **Programs**

Example : Random : $nat \rightarrow nat$

Input: an integer n

Output : any integer $\{0, \ldots, n-1\}$ uniformly chosen.

Non Determinism: $|Random| \subseteq |nat| \times |nat|$ is a relation.

$$|\text{Random}| = \{(n, k) \mid n \in \mathbb{N}, k \in \{0, ..., n-1\}\}$$

Enriching with positive coefficients : $[Random] \in (\mathbb{R}^+)^{(\mathbb{N} \times \mathbb{N})}$.

$$\begin{pmatrix} 1 & 2 & \cdots & n & \cdots \\ 1 & \frac{1}{2} & \cdots & \frac{1}{n} & \cdots \\ 0 & \frac{1}{2} & \cdots & \frac{1}{n} & \cdots \\ \vdots & 0 & \ddots & \vdots & & \\ \vdots & 0 & \frac{1}{n} & & & \\ & \vdots & \ddots & \ddots & & \\ & \vdots & \ddots & \ddots & & \\ & \vdots & \vdots & \ddots & \ddots \end{pmatrix} \xrightarrow{\rightarrow 0}$$

Modeling Probabilistic **Programs**

Once: nat \rightarrow nat

Input: an integer n

Output: if n=0 then 42

else Coin

$$\begin{pmatrix} 0 & \frac{1}{2} & \cdots & \cdots \\ 0 & \frac{1}{2} & \frac{1}{2} & \cdots \\ 0 & \frac{1}{2} & \frac{1}{2} & \cdots \\ 0 & 0 & 0 & \cdots \\ \cdots & 0 & \cdots & \ddots \\ 1 & 0 & \cdots & \ddots \\ \cdots & 0 & \cdots & \ddots \end{pmatrix} \xrightarrow{> 0}$$

$$\texttt{Twice}: \mathtt{nat} \to \mathtt{nat}$$

Input: an integer n

Output: if n=0 then 42

else Random n

$$\begin{array}{ccc} ([0],42) & \mapsto & 1 \\ ([n_1,n_2],k) & \mapsto & \frac{1}{n_1} + \frac{1}{n_2} \\ & \text{if} & 0 \leq k \leq n_1 - 1 \leq n_2 - 1 \end{array}$$

if
$$0 \le k \le n_1 - 1 \le n_2 - 1$$

$$([n_1, n_2], k) \mapsto \frac{1}{n_2}$$

if
$$n_1 - 1 < k \le n_2 - 1$$

Otherwise

Modeling Probabilistic Interaction

Probabilistic Data:

If x:nat, then $[\![\mathtt{x}]\!]=(\mathtt{x}_n)_{n\in\mathbb{N}}$

where x_n is the probability that x is n.

 $\textbf{Probabilistic Program: P:nat} \rightarrow \textbf{nat}$

where $[P \ x]_n$ is the probability that $P \ x$ computes n.

Syntax:

probabilistic PCF

A Typed Probabilistic Functional Programing Language

Types:

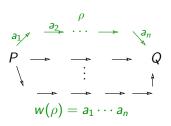
$$\sigma, \tau = \mathtt{nat} \mid \sigma \Rightarrow \tau$$

Probabilistic PCF:

$$\begin{split} \mathbf{N},\mathbf{P},\mathbf{Q} := \underline{\mathbf{n}} \mid \mathsf{pred}(\mathbf{N}) \mid \mathsf{succ}(\mathbf{N}) \mid \mathbf{x} \mid \lambda \mathbf{x}^{\sigma} \, \mathbf{P} \mid (\mathbf{P}) \mathbf{Q} \mid \mathsf{fix}(\mathbf{M}) \\ \mid \mathsf{if} \, (\mathcal{N} = \underline{\mathbf{0}}) \, \mathsf{then} \, \mathit{P} \, \mathsf{else} \, \mathit{Q} \mid \mathit{a} \cdot \mathit{P} + \mathit{b} \cdot \mathit{Q}, \, \, \mathsf{when} \, \, \mathit{a} + \mathit{b} \leq 1 \end{split}$$

Operational Semantics:

P reduces to Q in one step with probability a



if
$$(\underline{0} = \underline{0})$$
 then P else $Q \xrightarrow{1} P$
if $(\underline{n+1} = \underline{0})$ then P else $Q \xrightarrow{1} Q$
 $a \cdot P + b \cdot Q \xrightarrow{a} P$

$$\mathsf{Proba}(P \overset{*}{\to} Q) = \sum_{\rho} w(\rho)$$

Las Vegas implementation in PCF

Caml encoding:

```
let rec LasVegas (f:nat->nat) (n:nat) =
    let k = random n in
    if (f k = 0) then k
    else LasVegas f n
```

PCF encoding:

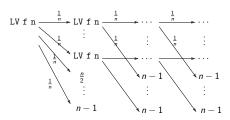
```
\begin{array}{c} \textbf{fix} \left( \lambda \, \texttt{LasVegas}^{(\texttt{nat} \Rightarrow \texttt{nat}) \Rightarrow \texttt{nat} \Rightarrow \texttt{nat}} \\ \lambda \, \texttt{f}^{\texttt{nat} \Rightarrow \texttt{nat}} \lambda \, \texttt{n}^{\texttt{nat}} \\ \left( \frac{1}{n} \lambda \, \texttt{g}^{\texttt{nat} \Rightarrow \texttt{nat}} g \, \, \underline{0} + \dots + \frac{1}{n} \lambda \, \texttt{g}^{\texttt{nat} \Rightarrow \texttt{nat}} g \, \, \underline{n-1} \right) \\ \lambda \, \texttt{k}^{\texttt{nat}} \, \, \text{if} \, \left( \texttt{f} \, \, \texttt{k} = \underline{0} \right) \, \, \text{then} \, \, \texttt{k} \\ & \quad \quad \text{else} \, \, \, \text{LasVegas} \, \, \texttt{f} \, \, \texttt{n} ) \end{array}
```

Las Vegas Operational Semantics

PCF encoding:

$$\begin{array}{cccc} \textbf{fix} \left(\lambda & \texttt{LasVegas}^{(\texttt{nat} \Rightarrow \texttt{nat}) \Rightarrow \texttt{nat} \Rightarrow \texttt{nat}} \\ & \lambda \texttt{f}^{\texttt{nat} \Rightarrow \texttt{nat}} \lambda \texttt{n}^{\texttt{nat}} \\ & \left(\frac{1}{n} \lambda \texttt{g}^{\texttt{nat} \Rightarrow \texttt{nat}} g & \underline{1} + \dots + \frac{1}{n} \lambda \texttt{g}^{\texttt{nat} \Rightarrow \texttt{nat}} g & \underline{n} \right) \\ & \lambda \texttt{k}^{\texttt{nat}} & \texttt{if} & (\texttt{f} & \texttt{k} = \underline{0}) & \texttt{then} & \texttt{k} \\ & & \texttt{else} & \texttt{LasVegas} & \texttt{f} & \texttt{n}) \end{array}$$

Operational Semantics:



Quantitative Semantics:

Probabilistic Coherent Spaces (Pcoh)

```
Types (Object): representing randomized data: nat, ...

Programs (Maps): Input Type \rightarrow Output Type

Interaction (Composition):

Input Type \stackrel{P}{\rightarrow} Intermediate Type \stackrel{Q}{\rightarrow} Output Type
```

A Probabilistic Orthogonality

Orthogonality:

$$x, y \in (\mathbb{R}^+)^{|\sigma|}$$
.

$$x \perp y \iff \sum_{a \in |\sigma|} x_a y_a \in [0,1].$$

Given a set $P \subseteq (\mathbb{R}^+)^{|\sigma|}$ we define P^\perp , the *orthogonal* of P, as

$$\mathbf{P}^{\perp} := \{ y \in (\mathbb{R}^+)^{|\sigma|} \mid \forall x \in \mathbf{P} \ \langle x, y \rangle \leq 1 \}.$$

Probabilistic Coherent Space:

$$\mathcal{X} = (|\mathcal{X}|, P(\mathcal{X}))$$

where $|\mathcal{X}|$ is a countable set and $P(\mathcal{X}) \subseteq (\mathbb{R}^+)^{|\mathcal{X}|}$

such that the following holds:

closedness :
$$P(\mathcal{X})^{\perp \perp} = P(\mathcal{X})$$
,

boundedness:
$$\forall a \in |\mathcal{X}|, \exists \mu > 0, \forall x \in P(\mathcal{X}), x_a \leq \mu$$
,

completeness:
$$\forall a \in |\mathcal{X}|, \exists \lambda > 0, \lambda e_a \in P(\mathcal{X}).$$

Types as Probabilistic Coherent Spaces

Objects of PCoh:

$$\mathcal{X} = (|\mathcal{X}|, P(\mathcal{X}))$$

where $|\mathcal{X}|$ is a countable set and $P(\mathcal{X}) \subseteq (\mathbb{R}^+)^{|\mathcal{X}|}$

$$oxed{ \left[exttt{nat}
ight] = \left(\mathbb{N}, \operatorname{P} \left(exttt{nat}
ight) = \left\{ \left(\lambda_{ exttt{n}}
ight) \mid \sum_{ exttt{n}} \lambda_{ exttt{n}} \leq 1
ight\}
ight) }$$

Data Example:

if M : nat, then
$$[\![M]\!] \in P$$
 (nat) $\subseteq (\mathbb{R}^+)^\mathbb{N}$ is a subprobability distributions.

Coin:

$$\frac{1}{2} \cdot \underline{0} + \frac{1}{2} \cdot \underline{1}$$

$$[\![\mathtt{Coin}]\!] = \left(\tfrac{1}{2}, \tfrac{1}{2}, 0, \dots\right)$$

Programs as Probabilistic Coherent Maps

$$f:(\left|\mathcal{X}\right|,\mathrm{P}\left(\mathcal{X}\right))\rightarrow(\left|\mathcal{Y}\right|,\mathrm{P}\left(\mathcal{Y}\right))$$

defined as a **matrix** $M(f) \in (\mathbb{R}^+)^{\mathcal{M}_{\mathsf{fin}}(|\mathcal{X}|) \times |\mathcal{Y}|}$

thanks to Taylor formula:

$$f(x) = \sum_{\mu \in \mathcal{M}_{\mathsf{fin}}(|\sigma|)} M(f)_{\mu} \cdot x^{\mu}$$

with
$$x^{\mu} = \prod_{a \in \text{Supp}(x)} x_a^{\mu(a)}$$

f can be seen as an **entire function** $f:(\mathbb{R}^+)^{|\mathcal{X}|} \to (\mathbb{R}^+)^{|\mathcal{Y}|}$ **preserving** probabilistic coherence, $f(P(\mathcal{X})) \subseteq P(\mathcal{Y})$

Example: if $P : nat \to nat$, then $[\![P]\!] : (\mathbb{R}^+)^{\mathbb{N}} \to (\mathbb{R}^+)^{\mathbb{N}}$ is an entire function preserving subprobability distributions.

Example of Programs in PCoh

Once : nat \rightarrow nat

 λn if n=0 then 42 else Coin

$$[\![\texttt{Once}]\!](x)_0 = \frac{1}{2} \sum_{n \ge 1} x_n \\ [\![\texttt{Once}]\!](x)_1 = \frac{1}{2} \sum_{n \ge 1} x_n \\ [\![\texttt{Once}]\!](x)_{42} = x_0$$

Twice : nat \rightarrow nat

 λn if n=0 then 42 else Random n

$$[\![\text{Twice}]\!](x)_k = \sum_{p=1}^k \sum_{q \ge k+1} \frac{1}{q} x_p x_q + \sum_{p=1}^{k+1} \sum_{q \ge k+1} (\frac{1}{p} + \frac{1}{q}) x_p x_q, \text{ if } k \ne 42$$

$$[\![\text{Twice}]\!](x)_{42} = x_0 + \sum_{p=1}^{42} \sum_{q \ge 43} \frac{1}{q} x_p x_q + \sum_{p=1}^{43} \sum_{q \ge 43} (\frac{1}{p} + \frac{1}{q}) x_p x_q$$

Probabilistic Coherence Spaces Properties

A model of PPCF:

in particular, PCoh is a model of differential linear logic.

Compositionality:

For
$$C: \sigma \Rightarrow \tau, P: \sigma$$
,
$$[(C)P]_{-} = \sum_{\mu \in \mathcal{M}_{fin}(|\sigma|)} [C]_{\mu,-} [P]^{\mu}$$

Adequacy Lemma:

Let M: nat be a closed program. Then for all n,

$$\mathsf{Proba}(M \xrightarrow{*} \underline{n}) = \llbracket M \rrbracket_n.$$

LasVegas f n: nat

$$\textbf{Proba}(\texttt{LasVegas} \ \texttt{f} \ \texttt{n} \to^* \bullet) = \sum_{\textbf{k}} \llbracket \texttt{LasVegas} \ \texttt{f} \ \texttt{n} \rrbracket_{\textbf{k}} = 1$$

Probabilistic Full Abstraction:

The completeness theorem

FA relates Semantical and Observational equivalences:

Let
$$P,Q:\sigma$$
 $\forall \alpha \in |\sigma|, \ \llbracket P \rrbracket_{\alpha} = \llbracket Q \rrbracket_{\alpha}$ Adequacy $\Downarrow \ \uparrow \ \mathsf{Full} \ \mathsf{Completeness}$ $\forall C:\sigma \Rightarrow \mathsf{nat}, \ \forall n \in |\mathsf{nat}|, \ \mathsf{Proba}((C)P \xrightarrow{*} n) = \mathsf{Proba}((C)Q \xrightarrow{*} n))$

Adequacy proof:

- **1** Apply Adequacy Lemma : $\forall n$, Proba $((C)P \xrightarrow{*} \underline{n}) = [(C)P]_n$.
- 2 Apply Compositionality :

$$\forall n, \ \llbracket (C)P \rrbracket_n = \sum_{\mu \in \mathcal{M}_{\text{fin}}(|\sigma|)} \llbracket C \rrbracket_{\mu,n} \prod_{\alpha \in \mu} \llbracket P \rrbracket_{\alpha}^{\mu(\alpha)}$$

FA relates Semantical and Observational equivalences:

Let
$$P,Q:\sigma$$
 $\forall \alpha \in |\sigma|, \ \llbracket P \rrbracket_{\alpha} = \llbracket Q \rrbracket_{\alpha}$ Adequacy $\Downarrow \ \uparrow \ \mathsf{Full} \ \mathsf{Completeness}$ $\forall C:\sigma \Rightarrow \mathsf{nat}, \ \forall n \in |\mathsf{nat}|, \ \mathsf{Proba}((C)P \xrightarrow{*} n) = \mathsf{Proba}((C)Q \xrightarrow{*} n))$

Adequacy proof:

- **①** Apply Adequacy Lemma : $\forall n$, Proba $((C)P \xrightarrow{*} \underline{n}) = [(C)P]_n$.
- Apply Compositionality :

$$\forall n, \ \llbracket(C)P\rrbracket_n = \sum_{\mu \in \mathcal{M}_{fin}(|\sigma|)} \llbracket C \rrbracket_{\mu,n} \prod_{\alpha \in \mu} \llbracket P \rrbracket_{\alpha}^{\mu(\alpha)}$$
$$= \sum_{\mu \in \mathcal{M}_{fin}(|\sigma|)} \llbracket C \rrbracket_{\mu,n} \prod_{\alpha \in \mu} \llbracket Q \rrbracket_{\alpha}^{\mu(\alpha)} = \llbracket (C)Q \rrbracket_n$$

FA relates Semantical and Observational equivalences:

Let
$$P,Q:\sigma$$
 $\forall \alpha \in |\sigma|, \ [\![P]\!]_{\alpha} = [\![Q]\!]_{\alpha}$ Adequacy $\Downarrow \ \uparrow$ Full Completeness $\forall C:\sigma\Rightarrow \mathrm{nat}, \ \forall n\in |\mathrm{nat}|, \ \mathrm{Proba}((C)P \xrightarrow{*} n) = \mathrm{Proba}((C)Q \xrightarrow{*} n))$

Full Completeness proof:

- **1** By contradiction : $\exists \alpha \in |\sigma|, \|P\|_{\alpha} \neq \|Q\|_{\alpha}$
- **2** Find **testing context** : T_{α} such that $[(T_{\alpha})P]_0 \neq [(T_{\alpha})Q]_0$
- **3** Prove **definability** : $T_{\alpha} \in PPCF$
- 4 Apply Adequacy : Proba $((T_{\alpha})P \stackrel{*}{\to} 0) \neq \text{Proba}((T_{\alpha})Q \stackrel{*}{\to} 0).$

Find a testing context: Base Case

Assumptions

- P, Q: nat
- $\bullet \ \llbracket P \rrbracket_n \neq \llbracket Q \rrbracket_n$

Goal

- T_n : nat \rightarrow nat
- $[(T_n)P]_0 \neq [(T_n)Q]_0$

Choose

If
$$T_n = \lambda x^{\text{nat}}$$
 if $(x = \underline{n})$ then $\underline{0}$ Then

$$\llbracket T_n \rrbracket_{[n],0} = 1$$

Conclude

By Compositionality,
$$[(T_n)P]_0 = [P]_n \neq [Q]_n = [(T_n)Q]_0$$

Find a testing context: Induction Case

Assumptions

- $P, Q: \phi \Rightarrow \psi$
- $\alpha = ([\gamma_1, \ldots, \gamma_n], \beta)$
- $[P]_{\alpha} \neq [Q]_{\alpha}$

Goal

- $T_{\alpha}: (\phi \Rightarrow \psi) \rightarrow \textit{nat}$
- $\bullet \ \llbracket (T_{\alpha})P \rrbracket \neq \llbracket (T_{\alpha})Q \rrbracket$
- $\bullet \ \llbracket T_{\alpha} \rrbracket_{\mu} \neq 0 \Leftrightarrow \mu = [\alpha]$

Compositionality

$$\llbracket (\mathcal{T}_{\alpha}) P \rrbracket = \sum_{\mu \in \mathcal{M}_{\mathsf{fin}}(|\sigma|)} \llbracket \mathcal{T}_{\alpha} \rrbracket_{\mu} \prod_{\delta \in \mu} \llbracket P \rrbracket_{\delta}^{\mu(\delta)}$$

Choose

$$\begin{split} \mathcal{T}_{\alpha}(\vec{X}) &= \lambda f^{\phi \Rightarrow \psi} \; \mathcal{T}_{\beta}(\vec{Y}) \left((f) \sum_{i=1}^k \frac{L_i}{n} \mathcal{N}_{\gamma_i}(\vec{Z}_i') \right) \\ \mathcal{N}_{\alpha}(\vec{X}') &= \lambda x^{\phi} \; \text{if} \; (\wedge_{i=1}^k \mathcal{T}_{\gamma_i}(\vec{Z}_i') \mathbf{x} = \underline{0}) \; \text{then} \; \mathcal{N}_{\beta}(\vec{Y}') \; \text{else} \; \Omega_{\psi} \, . \end{split}$$

Taylor Formula

$$\forall \mu, \ [\![\mathcal{T}_{\alpha}(\vec{X})]\!]_{\mu} \text{ is a power series in } \vec{X}$$
 with coeff of $\prod \vec{X} \neq 0 \iff \mu = [\alpha]$

The coeff of $\prod \vec{X}$ in $\llbracket (\mathcal{T}_{\alpha}(\vec{X}))P \rrbracket$ is proportional to $\llbracket P \rrbracket_{\alpha}$.

Finding a testing context : Definability

Summary:

- The coeff of $\prod \vec{X}$ in $[(\mathcal{T}_{\alpha}(\vec{X}))P]$ is proportional to $[\![P]\!]_{\alpha}$.
- $\bullet \ \llbracket P \rrbracket_{\alpha} \neq \llbracket Q \rrbracket_{\alpha}.$
- $[(\mathcal{T}_{\alpha}(\vec{X}))P]$ and $[(\mathcal{T}_{\alpha}(\vec{X}))Q]$ are two real power series with different coefficients.

Definability:

Find
$$\vec{\lambda} \in [0,1]^{(\mathbb{N})}$$
 then $\mathcal{T}_{\alpha}(\vec{\lambda})$ in ProbaPCF such that $[(\mathcal{T}_{\alpha}(\vec{\lambda}))P] \neq [(\mathcal{T}_{\alpha}(\vec{\lambda}))Q]$

By contradiction:

- If they were equal, their derivatives near zero would be equal.
- Coefficients of power series are computed by derivation at 0.

Differential categories in use:

Full Abstraction from Taylor expansion and Topological derivation.

Differential Operator

$$f: !X \multimap Y$$
 $df: X \otimes !X \multimap Y$

$$df: X \otimes !X \stackrel{\bar{d} \otimes -}{\multimap} !X \otimes !X \stackrel{\bar{c}}{\multimap} !X \stackrel{f}{\multimap} Y$$

Pcoh is not a differential category

cocontraction does not preserve probabilistic coherence

$$\bar{c}(1^!\otimes 1^!)=(1+1)^!$$

with
$$\lambda^! = (\lambda, \lambda, \dots)$$

Pcoh is embedded in $Rel(\mathbb{R}^{+\infty})$ which is a differential category

Well Pointedness and Derivation

Pcoh is well pointed

Derivation is topologic

Example:

if
$$f: !1 \multimap 1$$
, then $\llbracket f \rrbracket : \mathbb{R}^+ \to \mathbb{R}^+$ such that $f(x) = \sum_k f_k x^k$

$$df(0)(x) = \lim_{t \to 0} \frac{f(tx) - f(0)}{t}$$

$\mathsf{Rel}(\mathbb{R}^{+\infty})$ is not well pointed

Derivation is formal

if
$$g,h: !1 \multimap 1$$
, then $[\![g]\!], [\![h]\!]: \mathbb{R}^{+\infty} \to \mathbb{R}^{+\infty}$

$$g(x) = \infty x$$
 $dg(0)(x) = \infty$
 $h(x) = \infty x^2$ $dh(0)(x) = 2\infty x$

Sum up

- A Probabilistic extension of PCF encoding LasVegas
- A Quantitative semantics Pcoh enjoying
 - Taylor Formula : $f(x) = \sum_{\mu \in \mathcal{M}_{fin}(|\sigma|)} M(f)_{\mu} \cdot x^{\mu}$
 - Adequacy : $\forall n$, Proba $(P \xrightarrow{*} \underline{n}) = \llbracket P \rrbracket_n$.
- Full Abstraction resulting from
 - Derivation
 - Well pointedness

This is not the end of the story!

- Which models enjoy Taylor Formula?
- Can we extend Full Abstraction to other quantitative models?