ALÉA 2010 Boîte à idées

Lucas Gerin

Soient X_1, \ldots, X_n des variables aléatoires indépendantes identiquement distribuées uniformes sur le disque unité $\mathcal{D}(0,1)$ dans \mathbb{R}^2 . On peut montrer via un long calcul que

$$\mathbb{P}(X_1 + \ldots + X_n \in \mathcal{B}(0,1)) = \frac{1}{n+1}$$

où $\mathcal{B}(0,1)$ est la boule unité.

Question: Existe-t-il une preuve combinatoire de ce résultat, par exemple à base de réflexions?

Guy Louchard

Quel est le comportement asymptotique, lorsque $n \to \infty$, de

$$[z^{i}] \prod_{k=1}^{n} (1 - x^{k}) (1 - x^{-k})$$

et en particulier de

$$[z^{0}] \prod_{k=1}^{n} (1-x^{k}) (1-x^{-k})$$

Cyril NICAUD

Pour un entier $k \ge 2$ fixé, peut-on générer aléatoirement et uniformément des partitions de [kn] en n blocs en temps moyen linéaire?

Cela donnerait un algo lineaire en moyenne pour generer des automates déterministes, complets et accessibles.

Philippe Duchon

Je cherche des "structures aléatoires non dépendantes de leur histoire". Plus précisément, je cherche à décrire des *lois de probabilités* sur des structures discrètes (des graphes par exemple) qui :

- évoluent (arbitrairement, par "ajout" et "suppression" d'atomes) dans le temps;
- ont à tout instant une loi qui ne dépend pas de l'historique, mais seulement de la taille courante.

D'une certaine manière, je recherche des triplets (\mathcal{L} , Ajout, Suppression) tels que :

- $-\mathcal{L}$ soit une loi sur les [graphes] de taille n, pour chaque $n:\mathcal{L}_0,\mathcal{L}_1,\mathcal{L}_2,\ldots$
- AJOUT(G) soit une procédure (randomisée) faisant passer d'un [graphe] G de taille n à un [graphe] de taille n+1, et qui transforme \mathcal{L}_n en \mathcal{L}_{n+1}
- SUPPRESSION(G, x) soit une procédure (randomisée) faisant passer d'un [graphe] G dont x est atome à un [graphe] ayant les mêmes atomes sauf x (qui disparait), et qui transforme \mathcal{L}_{n+1} en \mathcal{L}_n pour tout x

Bien sûr, on veut des contraintes :

- les procédures devraient avoir une faible complexité
- on voudrait pouvoir imposer certaines caractéristiques des lois \mathcal{L}_n

Un exemple (non satisfaisant) : les graphes $G_{n,p}$

- Insertion(G): pour chaque sommet préalablement présent dans G, on tire une Bernoulli de paramètre p pour décider si on met une arête ou pas avec le nouveau sommet
- Suppression(G, x): simplement, on supprime le sommet x et ses arêtes incidentes

Olivier Bodini – Thomas Fernique

Problème 1

On se donne la formule de Boltzmann–Planck : $S = -k \log \Omega$.

On a le principe physique : stabilité $\Leftrightarrow F = E - TS$ minimale (F : énergie libre). En particulier, à haute température T, on a stabilité maximale $\Leftrightarrow S$ est maximal.

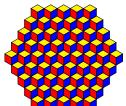
Question : Étant donnés un nombre fixé N de dimères \searrow , quel domaine (forme) admet le plus de pavages (*i.e.* $|\Omega|$ grand, *i.e.* S grande, *i.e.* plus stable à haute température)?

Problème 2

La formule de MacMahon est une série q-variée qui permet de décrire les pavages par dimères de

: c'est un cube dans l'espace.

Question: Trouver pareil pour l'hexagone



: c'est un plan dans l'espace. Et en

déduire des valeurs comme le volume moyen, l'épaisseur, le nombre de chaque motif, ...

Problème 3

On note $\Omega_n = \{\text{mots avec } n \text{ lettres a et } n \text{ lettres b}\} \sim \text{chemin de Dyck généralisé (bridges), ainsi que flip : ab <math>\leftrightarrow$ ba.

Cela donne naissance à 3 processus de Markov différents :

À chaque étape,

- A) choisir un site aléatoirement, et s'il est de la forme ab/ba, alors le flipper
- B) choisir un site de la forme ab/ba, et le flipper
- C) flipper chaque site de la forme ab/ba avec probabilité $\alpha \ll 1$ Alors, si $N = |\Omega_n| = \binom{2n}{n}$, la probabilité d'obtenir une configuration avec k sites flippables est
- A) $\frac{1}{N}$
- B) $\frac{k}{N}$
- C) $\frac{1}{N} {k \choose \alpha k} \sim \frac{c}{N} \frac{\beta^k}{\sqrt{k}}$

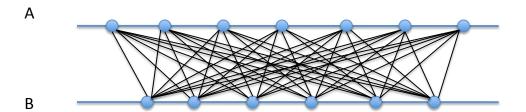
Question : Quelle est l'aire moyenne dans les cas A, B et C? Quelle est la hauteur moyenne dans chacun des trois cas?

Annelyse Thévenin

Tous les sommets de A sont liés à chaque sommet de B.

Soit x_{i,j} une variable booléenne.

- = 1 si nous gardons l'arrête (i,j)
- = 0 sinon



Besoin : interdire, via une inéquation, de garder deux arrêtes qui se croisent.

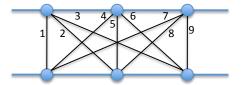
Principe : Si les arrêtes (i,j) et (k,l) se croisent alors

$$x_{i,j} + x_{k,l} \le 1$$

Problème: trouver l'ensemble, de taille minimale, de contraintes permettant d'interdire les croisements.

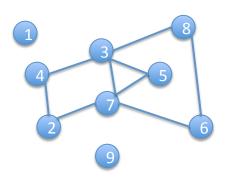
Exemple pour des tailles = 3

Donnée de départ :



	1	2	3	4	5	6	7	8	9
1	*	*	*	*				*	
2	*	*	*	1	*		1	*	*
3	*	*	*	1	1	*	1	1	*
4	*	1	1	*	*	*	*		
5		*	1	*	*	*	1	*	
6			*	*	*	*	1	1	*
7		1	1	*	1	1	*	*	*
8	*	*	1		*	1	*	*	*
9		*	*			*	*	*	*

Graphe de conflit :



Solution: (2x4, 2x7, 3x4, 3x5x7, 3x8, 6x7, 6x8)

x2 + x4 <= 1

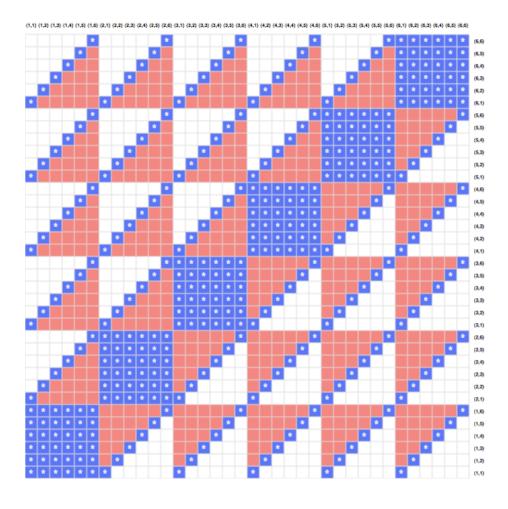
x2 + x7 <= 1

x3 + x4 <= 1

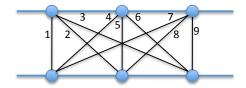
x3 + x5 + x7 <= 1

•••

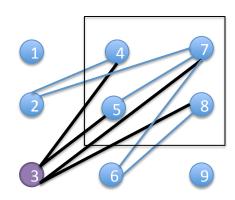
Un exemple plus important : Tailles = 6



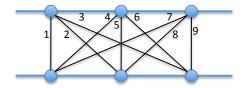
Une autre piste?



Graphe de conflit :



Une autre piste?



Graphe de conflit :

