
Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Apparition de la composante géante pour un

hypergraphe aléatoire

E. Coupechoux - M. Lelarge

INRIA-ENS

23 mars 2010

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Outline

1 Giant component for random graphs
G (n, p)
G (n, (di)

n
1)

2 Hypergraphs and branching process approximation
Hypergraphs
Random hypergraphs
Branching process approximation

3 Giant component for random hypergraphs
Result
Exploring process
Di�erential equation approximation for Markov chains

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

G(n, p)
G(n, (di)

n
1
)

Erd®s-Rényi graphs

[Erd®s and Rényi, On the evolution of random graphs, Publ. Math.

Inst. Hungar. Acad. Sci., 1960]

Model :

G (n, p) with p =
c

n

C1(n)= largest connected component of G
(
n,
c

n

)
Sub-critical phase : c ≤ 1 (no giant component)

|C1(n)| =
n→∞

op(n)

Super-critical phase : c > 1 (giant component of order n)

∃ρ > 0, |C1(n)| =
n→∞

ρn + op(n)

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

G(n, p)
G(n, (di)

n
1
)

Graphs with given degree sequence (di)
n
1

[Molloy and Reed, A critical point for random graphs with a given

degree sequence, Rand. Struct. Alg., 1995]

Model :

For each n ∈ N, (di)
n
1
sequence of non-negative integers such

that there exists a graph with degree sequence (di)
n
1

G (n, (di)
n
1
) random graph with degree sequence (di)

n
1
,

uniformly chosen among all possibilities

Conditions :
∃(pk)∞k=1

probability distribution such that :

(i)]{i : di = k}/n→ pk as n→∞, for every k ≥ 0
(ii)

∑
k kpk ∈ (0;∞)

(iii) p1 > 0

(iv)
∑

i d
2

i = O(n)

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

G(n, p)
G(n, (di)

n
1
)

Graphs with given degree sequence (di)
n
1

D ∼ (pk)∞k=1

C1(n)= largest connected component of G (n, (di)
n
1)

Theorem :

Sub-critical phase : E [D(D − 1)] ≤ E [D]
(no giant component)

|C1(n)| =
n→∞

op(n)

Super-critical phase : E [D(D − 1)] > E [D]
(giant component of order n)

∃ρ > 0, |C1(n)| =
n→∞

ρn + op(n)

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Hypergraphs
Random hypergraphs
Branching process approximation

Hypergraph : de�nition

V and E �nite sets

Hypergraph : γ ⊂ V × E

V = { vertices }

E = { hyper-edges }

Degree of a vertex v = its number of edges

Weight of a hyper-edge e = its number of edges

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Hypergraphs
Random hypergraphs
Branching process approximation

Degree and weight functions :

d :

{
V → N

v 7→ d(v) = degree of v

w :

{
E → N

e 7→ w(e) = weight of e

Degree and weight frequency vectors :

p = (p1, ..., pL) : pd = number of vertices of degree d
q = (q1, ..., qL) : qw = number of hyper-edges of weight w

Correspondence

p = (|d−1({1})|, ..., |d−1({L})|) = n(d)
q = (|w−1({1})|, ..., |w−1({L})|) = n(w)

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Hypergraphs
Random hypergraphs
Branching process approximation

p = (2, 2, 1, 0)

q = (1, 2, 0, 1)

m =
L∑

d=1

dpd =
L∑

w=1

wqw (number of edges)

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Hypergraphs
Random hypergraphs
Branching process approximation

Random hypergraphs

p = (p1, ..., pL) and q = (q1, ..., qL) �xed vectors such that∑L

d=1
dpd =

∑L

w=1
wqw = m

Choose V , E �nite sets, d degree function and w weight function
such that n(d) = Np and n(w) = Nq, for N ∈ N∗

G (d,w) = set of all hypergraphs on V × E with degree function d

and weight function w

Γ random hypergraph taken uniformly at random in G (d,w)
(Γ ∼ U(d,w))

Number of edges = Nm, number of vertices = N‖p‖1, number of
hyper-edges = N‖q‖1

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Hypergraphs
Random hypergraphs
Branching process approximation

Size of the largest component when N →∞ ?

Connected component of a given vertex :

EXPLORATION ALGORITHM

Need to explore a proportion α of the vertices

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Hypergraphs
Random hypergraphs
Branching process approximation

Size of the largest component when N →∞ ?

Connected component of a given vertex :

EXPLORATION ALGORITHM

Need to explore a proportion α of the vertices

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Hypergraphs
Random hypergraphs
Branching process approximation

Size of the largest component when N →∞ ?

Connected component of a given vertex :

EXPLORATION ALGORITHM

Need to explore a proportion α of the vertices

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Hypergraphs
Random hypergraphs
Branching process approximation

Size of the largest component when N →∞ ?

Connected component of a given vertex :

EXPLORATION ALGORITHM

Need to explore a proportion α of the vertices

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Hypergraphs
Random hypergraphs
Branching process approximation

Size of the largest component when N →∞ ?

Connected component of a given vertex :

EXPLORATION ALGORITHM

Need to explore a proportion α of the vertices

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Hypergraphs
Random hypergraphs
Branching process approximation

Size of the largest component when N →∞ ?

Connected component of a given vertex :

EXPLORATION ALGORITHM

Need to explore a proportion α of the vertices

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Hypergraphs
Random hypergraphs
Branching process approximation

Branching process approximation : a way to guess the result

Γ ∼ U(d,w) converges locally, when N →∞, to a tree

Corresponding random tree :

Alternating one : generation of nodes of type V / generation of nodes of
type E

Except root, each node of type V has d −1 o�springs with probability
dp

d

m

Each of type E has w − 1 o�springs with probability wqw
m

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Hypergraphs
Random hypergraphs
Branching process approximation

Algorithm on the tree

Step 0 : Let α > 0 and turn each vertex into alive with probability α

Step 1a : turn into alive all individuals of type E having some alive vertex
as an o�spring

Step 1b : turn into alive all individuals of type V having some alive
hyper-edge as an o�spring

Repeat step 1 in�nitely often

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Hypergraphs
Random hypergraphs
Branching process approximation

Algorithm on the tree

Step 0 : Let α > 0 and turn each vertex into alive with probability α

Step 1a : turn into alive all individuals of type E having some alive vertex
as an o�spring

Step 1b : turn into alive all individuals of type V having some alive
hyper-edge as an o�spring

Repeat step 1 in�nitely often

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Hypergraphs
Random hypergraphs
Branching process approximation

Algorithm on the tree

Step 0 : Let α > 0 and turn each vertex into alive with probability α

Step 1a : turn into alive all individuals of type E having some alive vertex
as an o�spring

Step 1b : turn into alive all individuals of type V having some alive
hyper-edge as an o�spring

Repeat step 1 in�nitely often

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Hypergraphs
Random hypergraphs
Branching process approximation

How to guess the result

De�nitions

s0 = g0 = 1

sn = P(after n steps, a hyper-edge e is not alive)

gn+1 = P(after n steps, a vertex v is not alive)

sn =
∑
w

wqw

m
(gn)

w−1

=: σ(gn)

gn+1 = (1− α)
∑
d

dpd

m
(sn)

d−1

=: φα(gn)

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Hypergraphs
Random hypergraphs
Branching process approximation

How to guess the result

φα maps continuously [0, 1] to [0, 1) and is increasing,
so (gn)n≥0 converges to

z∗α = largest root of φα(z) = z in [0, 1)

Proportion of alive vertices :

P(α) = 1− (1− α)
∑
d

pd
‖p‖1

(σ(z∗α))d

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Hypergraphs
Random hypergraphs
Branching process approximation

Two di�erent behaviours

fα(z) = z − φα(z)

P(α) →
α→0

0

m
lim
α→0

f ′α(1) ≥ 0

P(α) →
α→0

λ0 > 0

m
lim
α→0

f ′α(1) < 0

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Hypergraphs
Random hypergraphs
Branching process approximation

D random variable such that P(D = d) ∝ pd

φD(z) =
L∑

d=1

pd
‖p‖1

zd

W random variable such that P(W = w) ∝ qw

φW (z) =
L∑

w=1

qw

‖q‖1
zw

fα(z) = z − (1− α)
1

E [D]
φ′D

(
1

E [W]
φ′W (z)

)

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Result
Exploring process
Di�erential equation approximation for Markov chains

When N →∞, is there a giant component of order N ?

C1(N) = largest connected component of Γ ∼ U(d,w)

D random variable such that P(D = d) ∝ pd

W random variable such that P(W = w) ∝ qw

Theorem

Case (i) If E [D(D − 1)]E [W (W − 1)] ≤ E [D]E [W]

then for each ε > 0, P

(
|C1(N)|

N
> ε

)
−→
N→∞

0

(there is no giant component)

Case (ii) If E [D(D − 1)]E [W (W − 1)] > E [D]E [W]
then, there exists λ > 0 such that, for each ε > 0,

P

(∣∣∣∣ |C1(N)|
N

− λ
∣∣∣∣ > ε

)
−→
N→∞

0

(there exists a giant component of order N)

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Result
Exploring process
Di�erential equation approximation for Markov chains

Exploring process

Exploring the component of a given vertex

Active vertices = those we want to explore the component

α > 0 : activate each vertex independently with proba α

3 types of vertices : sleeping, alive, dead

sleeping = we haven't explored it
alive = we must explore it
dead = we have explored it

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Result
Exploring process
Di�erential equation approximation for Markov chains

Exploring process : algorithm

1 Initially, label active vertices as alive, and non-active ones as sleeping

2 While there is a vertex that is alive do

3 Choose a vertex v uniformly at random among all alive vertices

4 For all hyper-edges e that contains v but no dead vertex do

5 For all sleeping vertices u connected with e do

6 Label u as alive

7 Label v as dead

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Result
Exploring process
Di�erential equation approximation for Markov chains

Exploring process : algorithm

1 Initially, label active vertices as alive, and non-active ones as sleeping

2 While there is a vertex that is alive do

3 Choose a vertex v uniformly at random among all alive vertices

4 For all hyper-edges e that contains v but no dead vertex do

5 For all sleeping vertices u connected with e do

6 Label u as alive

7 Label v as dead

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Result
Exploring process
Di�erential equation approximation for Markov chains

Exploring process : algorithm

1 Initially, label active vertices as alive, and non-active ones as sleeping

2 While there is a vertex that is alive do

3 Choose a vertex v uniformly at random among all alive vertices

4 For all hyper-edges e that contains v but no dead vertex do

5 For all sleeping vertices u connected with e do

6 Label u as alive

7 Label v as dead

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Result
Exploring process
Di�erential equation approximation for Markov chains

Exploring process : algorithm

1 Initially, label active vertices as alive, and non-active ones as sleeping

2 While there is a vertex that is alive do

3 Choose a vertex v uniformly at random among all alive vertices

4 For all hyper-edges e that contains v but no dead vertex do

5 For all sleeping vertices u connected with e do

6 Label u as alive

7 Label v as dead

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Result
Exploring process
Di�erential equation approximation for Markov chains

Exploring process : algorithm

1 Initially, label active vertices as alive, and non-active ones as sleeping

2 While there is a vertex that is alive do

3 Choose a vertex v uniformly at random among all alive vertices

4 For all hyper-edges e that contains v but no dead vertex do

5 For all sleeping vertices u connected with e do

6 Label u as alive

7 Label v as dead

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Result
Exploring process
Di�erential equation approximation for Markov chains

Exploring process : algorithm

1 Initially, label active vertices as alive, and non-active ones as sleeping

2 While there is a vertex that is alive do

3 Choose a vertex v uniformly at random among all alive vertices

4 For all hyper-edges e that contains v but no dead vertex do

5 For all sleeping vertices u connected with e do

6 Label u as alive

7 Label v as dead

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Result
Exploring process
Di�erential equation approximation for Markov chains

Exploring process : algorithm

1 Initially, label active vertices as alive, and non-active ones as sleeping

2 While there is a vertex that is alive do

3 Choose a vertex v uniformly at random among all alive vertices

4 For all hyper-edges e that contains v but no dead vertex do

5 For all sleeping vertices u connected with e do

6 Label u as alive

7 Label v as dead

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Result
Exploring process
Di�erential equation approximation for Markov chains

Exploring process : algorithm

1 Initially, label active vertices as alive, and non-active ones as sleeping

2 While there is a vertex that is alive do

3 Choose a vertex v uniformly at random among all alive vertices

4 For all hyper-edges e that contains v but no dead vertex do

5 For all sleeping vertices u connected with e do

6 Label u as alive

7 Label v as dead

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Result
Exploring process
Di�erential equation approximation for Markov chains

Exploring process : algorithm

1 Initially, label active vertices as alive, and non-active ones as sleeping

2 While there is a vertex that is alive do

3 Choose a vertex v uniformly at random among all alive vertices

4 For all hyper-edges e that contains v but no dead vertex do

5 For all sleeping vertices u connected with e do

6 Label u as alive

7 Label v as dead

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Result
Exploring process
Di�erential equation approximation for Markov chains

Exploring process : algorithm

1 Initially, label active vertices as alive, and non-active ones as sleeping

2 While there is a vertex that is alive do

3 Choose a vertex v uniformly at random among all alive vertices

4 For all hyper-edges e that contains v but no dead vertex do

5 For all sleeping vertices u connected with e do

6 Label u as alive

7 Label v as dead

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Result
Exploring process
Di�erential equation approximation for Markov chains

Exploring process : algorithm

1 Initially, label active vertices as alive, and non-active ones as sleeping

2 While there is a vertex that is alive do

3 Choose a vertex v uniformly at random among all alive vertices

4 For all hyper-edges e that contains v but no dead vertex do

5 For all sleeping vertices u connected with e do

6 Label u as alive

7 Label v as dead

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Result
Exploring process
Di�erential equation approximation for Markov chains

Jumping chain

Sequence of random hypergraphs

Γ0 = Γ ∼ U(d,w)
Γn = Γn−1\{dead vertex and its hyper-edges}
Dn,Wn = degree and weight functions of Γn
Conditionally on the past, Γn ∼ U(Dn,Wn)

Markov chain
ξd,d',0n = nb of non active vertices with current degree d and initial degree d'

ξd,d',1n = nb of active vertices with current degree d and initial degree d'

ξwn = nb of hyper-edges with current weight w

ξn =
(
ξd,d

′,k
n , ξwn : 0 ≤ d ≤ d ′, k ∈ {0, 1}, 0 ≤ w

)
(ξn)n≥0 is a Markov chain

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Result
Exploring process
Di�erential equation approximation for Markov chains

Di�erential equation approximation

(Xt) continuous-time Markov chain with jump chain (ξn)

Coordinate functions :

Yt =

(
X
d ,d ,0
t

N
,
Xw
t

N
: 1 ≤ d ≤ L, 1 ≤ w ≤ L

)

Estimation of the generator

Di�erential equation approximation :{
xwt = e−twqw

x
d ,d ,0
t = σ(e−t)d (1− α)pd

Terminal values

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Result
Exploring process
Di�erential equation approximation for Markov chains

Proportion of dead vertices

End of the algorithm

⇐⇒ number of edges connected with alive vertices = 0

⇐⇒
∑

w wx
w
t −

∑
d dx

d ,d ,0
t = 0

⇐⇒ fα(e−t) = 0

Proportion of dead vertices :

P(α) = 1− |{remained vertices}|
|{initial vertices}|

= 1− 1

‖p‖1

∑
d

σ(z∗α)d (1− α)pd

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Result
Exploring process
Di�erential equation approximation for Markov chains

Two di�erent behaviours

fα(z) = z − φα(z)

P(α) →
α→0

0

m
lim
α→0

f ′α(1) ≥ 0

P(α) →
α→0

λ0 > 0

m
lim
α→0

f ′α(1) < 0

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Result
Exploring process
Di�erential equation approximation for Markov chains

Conclusion

As for random graphs, existence of a phase transition for the
appearance of the giant component

Branching process : a way to guess the result

Markov chain : a tool for proving it

Thanks for your attention !

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Result
Exploring process
Di�erential equation approximation for Markov chains

Conclusion

As for random graphs, existence of a phase transition for the
appearance of the giant component

Branching process : a way to guess the result

Markov chain : a tool for proving it

Thanks for your attention !

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Result
Exploring process
Di�erential equation approximation for Markov chains

Some bibliography

[1] Bollobas, Random Graphs, Cambridge Univ. Press, 2001
(1st publication : Academic Press, 1985)

[2] Coja-Oghlan, Moore & Sanwalani, Counting Connected
Graphs and Hypergraphs via the Probabilistic Method,
Rand. Struct. and Algorithms, 2007

[3] Darling & Norris, Di�erential Equation Approximations for
Markov Chains, Prob. Surveys, 2008

[4] Janson & Luczak, A New Approach to the Giant
Component Problem, Rand. Struct. and Algorithms, 2009

[5] Lelarge, Di�usion and Cascading Behaviour on Clustered
Networks (not published)

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Result
Exploring process
Di�erential equation approximation for Markov chains

How to guess the result

De�nitions
s0 = g0 = 1

sn = P(after n steps, a hyper-edge e isn't alive)

gn+1 = P(after n steps, a vertex v isn't alive)

gdn+1 = P(a vertex of degree d isn't alive at time n)

sn = P(every o�spring of e wasn't alive at time n − 1)

=
∑
w

P(e has w − 1 o�springs) (P(a given o�spring v isn't alive at time n − 1))w−1

=
∑
w

wqw

m
(gn)

w−1

=: σ(gn)

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Result
Exploring process
Di�erential equation approximation for Markov chains

How to guess the result

gdn+1 = P(a vertex v of degree d isn't alive at time n |v ∈ VA)P(v ∈ VA)

+ P(a vertex v of degree d isn't alive at time n |v /∈ VA)P(v /∈ VA)

= (1− α) P(a vertex v of degree d isn't alive at time n |v /∈ VA)

= (1− α) P(none of the d − 1 o�springs of v is alive at time n)

= (1− α) sd−1n

= (1− α) (σ(gn))
d−1

gn+1 =
∑
d

P(v isn't alive at time n |v has degree d)P(v has degree d)

= (1− α)
∑
d

dpd

m
(σ(gn))

d−1

=: φα(gn)

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Result
Exploring process
Di�erential equation approximation for Markov chains

Graphs with clustering

Coupechoux - Lelarge Giant component for random hypergraphs

Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Result
Exploring process
Di�erential equation approximation for Markov chains

Upper bound : idea

For each α > 0 :

PN(α) = proportion of alive vertices at the end of the
algorithm

P(α) = lim
N→∞

PN(α) (limit in probability)

If we activate some vertex in C1(N), then

|C1(N)|
Nn

≤ PN(α)

The probability of activating no vertex in C1(N) tends to 0
(when N →∞)

Coupechoux - Lelarge Giant component for random hypergraphs

	Giant component for random graphs
	G(n,p)
	G(n,(di)1n)

	Hypergraphs and branching process approximation
	Hypergraphs
	Random hypergraphs
	Branching process approximation

	Giant component for random hypergraphs
	Result
	Exploring process
	Differential equation approximation for Markov chains

