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G(n, p)
G(n, (di )

n
1
)

Erd®s-Rényi graphs

[ Erd®s and Rényi, On the evolution of random graphs, Publ. Math.

Inst. Hungar. Acad. Sci., 1960 ]

Model :

G (n, p) with p =
c

n

C1(n)= largest connected component of G
(
n,
c

n

)
Sub-critical phase : c ≤ 1 (no giant component)

|C1(n)| =
n→∞

op(n)

Super-critical phase : c > 1 (giant component of order n)

∃ρ > 0, |C1(n)| =
n→∞

ρn + op(n)
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G(n, p)
G(n, (di )

n
1
)

Graphs with given degree sequence (di)
n
1

[ Molloy and Reed, A critical point for random graphs with a given

degree sequence, Rand. Struct. Alg., 1995 ]

Model :

For each n ∈ N, (di )
n
1
sequence of non-negative integers such

that there exists a graph with degree sequence (di )
n
1

G (n, (di )
n
1
) random graph with degree sequence (di )

n
1
,

uniformly chosen among all possibilities

Conditions :
∃(pk)∞k=1

probability distribution such that :

(i) ]{i : di = k}/n→ pk as n→∞, for every k ≥ 0
(ii)

∑
k kpk ∈ (0;∞)

(iii) p1 > 0

(iv)
∑

i d
2

i = O(n)

Coupechoux - Lelarge Giant component for random hypergraphs



Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

G(n, p)
G(n, (di )

n
1
)

Graphs with given degree sequence (di)
n
1

D ∼ (pk)∞k=1

C1(n)= largest connected component of G (n, (di )
n
1)

Theorem :

Sub-critical phase : E [D(D − 1)] ≤ E [D]
(no giant component)

|C1(n)| =
n→∞

op(n)

Super-critical phase : E [D(D − 1)] > E [D]
(giant component of order n)

∃ρ > 0, |C1(n)| =
n→∞

ρn + op(n)
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Hypergraph : de�nition

V and E �nite sets

Hypergraph : γ ⊂ V × E

V = { vertices }

E = { hyper-edges }

Degree of a vertex v = its number of edges

Weight of a hyper-edge e = its number of edges
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Degree and weight functions :

d :

{
V → N

v 7→ d(v) = degree of v

w :

{
E → N

e 7→ w(e) = weight of e

Degree and weight frequency vectors :

p = (p1, ..., pL) : pd = number of vertices of degree d
q = (q1, ..., qL) : qw = number of hyper-edges of weight w

Correspondence

p = (|d−1({1})|, ..., |d−1({L})|) = n(d)
q = (|w−1({1})|, ..., |w−1({L})|) = n(w)
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p = (2, 2, 1, 0)

q = (1, 2, 0, 1)

m =
L∑

d=1

dpd =
L∑

w=1

wqw (number of edges)
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Random hypergraphs

p = (p1, ..., pL) and q = (q1, ..., qL) �xed vectors such that∑L

d=1
dpd =

∑L

w=1
wqw = m

Choose V , E �nite sets, d degree function and w weight function
such that n(d) = Np and n(w) = Nq, for N ∈ N∗

G (d,w) = set of all hypergraphs on V × E with degree function d

and weight function w

Γ random hypergraph taken uniformly at random in G (d,w)
(Γ ∼ U(d,w))

Number of edges = Nm, number of vertices = N‖p‖1, number of
hyper-edges = N‖q‖1
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Size of the largest component when N →∞ ?

Connected component of a given vertex :

EXPLORATION ALGORITHM

Need to explore a proportion α of the vertices
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Branching process approximation : a way to guess the result

Γ ∼ U(d,w) converges locally, when N →∞, to a tree

Corresponding random tree :

Alternating one : generation of nodes of type V / generation of nodes of
type E

Except root, each node of type V has d −1 o�springs with probability
dp

d

m

Each of type E has w − 1 o�springs with probability wqw
m
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Algorithm on the tree

Step 0 : Let α > 0 and turn each vertex into alive with probability α

Step 1a : turn into alive all individuals of type E having some alive vertex
as an o�spring

Step 1b : turn into alive all individuals of type V having some alive
hyper-edge as an o�spring

Repeat step 1 in�nitely often
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How to guess the result

De�nitions

s0 = g0 = 1

sn = P(after n steps, a hyper-edge e is not alive)

gn+1 = P(after n steps, a vertex v is not alive)

sn =
∑
w

wqw

m
(gn)

w−1

=: σ(gn)

gn+1 = (1− α)
∑
d

dpd

m
(sn)

d−1

=: φα(gn)
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How to guess the result

φα maps continuously [0, 1] to [0, 1) and is increasing,
so (gn)n≥0 converges to

z∗α = largest root of φα(z) = z in [0, 1)

Proportion of alive vertices :

P(α) = 1− (1− α)
∑
d

pd
‖p‖1

(σ(z∗α))d
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Two di�erent behaviours

fα(z) = z − φα(z)

P(α) →
α→0

0

m
lim
α→0

f ′α(1) ≥ 0

P(α) →
α→0

λ0 > 0

m
lim
α→0

f ′α(1) < 0
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D random variable such that P(D = d) ∝ pd

φD(z) =
L∑

d=1

pd
‖p‖1

zd

W random variable such that P(W = w) ∝ qw

φW (z) =
L∑

w=1

qw

‖q‖1
zw

fα(z) = z − (1− α)
1

E [D]
φ′D

(
1

E [W ]
φ′W (z)

)
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When N →∞, is there a giant component of order N ?

C1(N) = largest connected component of Γ ∼ U(d,w)

D random variable such that P(D = d) ∝ pd

W random variable such that P(W = w) ∝ qw

Theorem

Case (i) If E [D(D − 1)]E [W (W − 1)] ≤ E [D]E [W ]

then for each ε > 0, P

(
|C1(N)|

N
> ε

)
−→
N→∞

0

(there is no giant component)

Case (ii) If E [D(D − 1)]E [W (W − 1)] > E [D]E [W ]
then, there exists λ > 0 such that, for each ε > 0,

P

(∣∣∣∣ |C1(N)|
N

− λ
∣∣∣∣ > ε

)
−→
N→∞

0

(there exists a giant component of order N)
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Exploring process

Exploring the component of a given vertex

Active vertices = those we want to explore the component

α > 0 : activate each vertex independently with proba α

3 types of vertices : sleeping, alive, dead

sleeping = we haven't explored it
alive = we must explore it
dead = we have explored it
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Exploring process : algorithm

1 Initially, label active vertices as alive, and non-active ones as sleeping

2 While there is a vertex that is alive do

3 Choose a vertex v uniformly at random among all alive vertices

4 For all hyper-edges e that contains v but no dead vertex do

5 For all sleeping vertices u connected with e do

6 Label u as alive

7 Label v as dead
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Jumping chain

Sequence of random hypergraphs

Γ0 = Γ ∼ U(d,w)
Γn = Γn−1\{dead vertex and its hyper-edges}
Dn,Wn = degree and weight functions of Γn
Conditionally on the past, Γn ∼ U(Dn,Wn)

Markov chain
ξd,d',0n = nb of non active vertices with current degree d and initial degree d'

ξd,d',1n = nb of active vertices with current degree d and initial degree d'

ξwn = nb of hyper-edges with current weight w

ξn =
(
ξd,d

′,k
n , ξwn : 0 ≤ d ≤ d ′, k ∈ {0, 1}, 0 ≤ w

)
(ξn)n≥0 is a Markov chain
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Di�erential equation approximation

(Xt) continuous-time Markov chain with jump chain (ξn)

Coordinate functions :

Yt =

(
X
d ,d ,0
t

N
,
Xw
t

N
: 1 ≤ d ≤ L, 1 ≤ w ≤ L

)

Estimation of the generator

Di�erential equation approximation :{
xwt = e−twqw

x
d ,d ,0
t = σ(e−t)d (1− α)pd

Terminal values
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Proportion of dead vertices

End of the algorithm

⇐⇒ number of edges connected with alive vertices = 0

⇐⇒
∑

w wx
w
t −

∑
d dx

d ,d ,0
t = 0

⇐⇒ fα(e−t) = 0

Proportion of dead vertices :

P(α) = 1− |{remained vertices}|
|{initial vertices}|

= 1− 1

‖p‖1

∑
d

σ(z∗α)d (1− α)pd
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Two di�erent behaviours

fα(z) = z − φα(z)

P(α) →
α→0

0

m
lim
α→0

f ′α(1) ≥ 0

P(α) →
α→0

λ0 > 0

m
lim
α→0

f ′α(1) < 0
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Conclusion

As for random graphs, existence of a phase transition for the
appearance of the giant component

Branching process : a way to guess the result

Markov chain : a tool for proving it

Thanks for your attention !
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How to guess the result

De�nitions
s0 = g0 = 1

sn = P(after n steps, a hyper-edge e isn't alive)

gn+1 = P(after n steps, a vertex v isn't alive)

gdn+1 = P(a vertex of degree d isn't alive at time n)

sn = P(every o�spring of e wasn't alive at time n − 1)

=
∑
w

P(e has w − 1 o�springs) (P(a given o�spring v isn't alive at time n − 1))w−1

=
∑
w

wqw

m
(gn)

w−1

=: σ(gn)
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How to guess the result

gdn+1 = P(a vertex v of degree d isn't alive at time n |v ∈ VA )P(v ∈ VA)

+ P(a vertex v of degree d isn't alive at time n |v /∈ VA )P(v /∈ VA)

= (1− α) P(a vertex v of degree d isn't alive at time n |v /∈ VA )

= (1− α) P(none of the d − 1 o�springs of v is alive at time n)

= (1− α) sd−1n

= (1− α) (σ(gn))
d−1

gn+1 =
∑
d

P(v isn't alive at time n |v has degree d )P(v has degree d)

= (1− α)
∑
d

dpd

m
(σ(gn))

d−1

=: φα(gn)
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Graphs with clustering
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Upper bound : idea

For each α > 0 :

PN(α) = proportion of alive vertices at the end of the
algorithm

P(α) = lim
N→∞

PN(α) (limit in probability)

If we activate some vertex in C1(N), then

|C1(N)|
Nn

≤ PN(α)

The probability of activating no vertex in C1(N) tends to 0
(when N →∞)

Coupechoux - Lelarge Giant component for random hypergraphs


	Giant component for random graphs
	G(n,p)
	G(n,(di)1n)

	Hypergraphs and branching process approximation
	Hypergraphs
	Random hypergraphs
	Branching process approximation

	Giant component for random hypergraphs
	Result
	Exploring process
	Differential equation approximation for Markov chains


