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G(n, p)
G(n, (di )

n
1
)

Erd®s-Rényi graphs

[ Erd®s and Rényi, On the evolution of random graphs, Publ. Math.

Inst. Hungar. Acad. Sci., 1960 ]

Model :

G (n, p) with p =
c

n

C1(n)= largest connected component of G
(
n,
c

n

)
Sub-critical phase : c ≤ 1 (no giant component)

|C1(n)| =
n→∞

op(n)

Super-critical phase : c > 1 (giant component of order n)

∃ρ > 0, |C1(n)| =
n→∞

ρn + op(n)
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G(n, p)
G(n, (di )

n
1
)

Graphs with given degree sequence (di)
n
1

[ Molloy and Reed, A critical point for random graphs with a given

degree sequence, Rand. Struct. Alg., 1995 ]

Model :

For each n ∈ N, (di )
n
1
sequence of non-negative integers such

that there exists a graph with degree sequence (di )
n
1

G (n, (di )
n
1
) random graph with degree sequence (di )

n
1
,

uniformly chosen among all possibilities

Conditions :
∃(pk)∞k=1

probability distribution such that :

(i) ]{i : di = k}/n→ pk as n→∞, for every k ≥ 0
(ii)

∑
k kpk ∈ (0;∞)

(iii) p1 > 0

(iv)
∑

i d
2

i = O(n)
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G(n, p)
G(n, (di )

n
1
)

Graphs with given degree sequence (di)
n
1

D ∼ (pk)∞k=1

C1(n)= largest connected component of G (n, (di )
n
1)

Theorem :

Sub-critical phase : E [D(D − 1)] ≤ E [D]
(no giant component)

|C1(n)| =
n→∞

op(n)

Super-critical phase : E [D(D − 1)] > E [D]
(giant component of order n)

∃ρ > 0, |C1(n)| =
n→∞

ρn + op(n)
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Hypergraph : de�nition

V and E �nite sets

Hypergraph : γ ⊂ V × E

V = { vertices }

E = { hyper-edges }

Degree of a vertex v = its number of edges

Weight of a hyper-edge e = its number of edges
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Degree and weight functions :

d :

{
V → N

v 7→ d(v) = degree of v

w :

{
E → N

e 7→ w(e) = weight of e

Degree and weight frequency vectors :

p = (p1, ..., pL) : pd = number of vertices of degree d
q = (q1, ..., qL) : qw = number of hyper-edges of weight w

Correspondence

p = (|d−1({1})|, ..., |d−1({L})|) = n(d)
q = (|w−1({1})|, ..., |w−1({L})|) = n(w)
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p = (2, 2, 1, 0)

q = (1, 2, 0, 1)

m =
L∑

d=1

dpd =
L∑

w=1

wqw (number of edges)
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Random hypergraphs

p = (p1, ..., pL) and q = (q1, ..., qL) �xed vectors such that∑L

d=1
dpd =

∑L

w=1
wqw = m

Choose V , E �nite sets, d degree function and w weight function
such that n(d) = Np and n(w) = Nq, for N ∈ N∗

G (d,w) = set of all hypergraphs on V × E with degree function d

and weight function w

Γ random hypergraph taken uniformly at random in G (d,w)
(Γ ∼ U(d,w))

Number of edges = Nm, number of vertices = N‖p‖1, number of
hyper-edges = N‖q‖1
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Size of the largest component when N →∞ ?

Connected component of a given vertex :

EXPLORATION ALGORITHM

Need to explore a proportion α of the vertices
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Branching process approximation : a way to guess the result

Γ ∼ U(d,w) converges locally, when N →∞, to a tree

Corresponding random tree :

Alternating one : generation of nodes of type V / generation of nodes of
type E

Except root, each node of type V has d −1 o�springs with probability
dp

d

m

Each of type E has w − 1 o�springs with probability wqw
m
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Algorithm on the tree

Step 0 : Let α > 0 and turn each vertex into alive with probability α

Step 1a : turn into alive all individuals of type E having some alive vertex
as an o�spring

Step 1b : turn into alive all individuals of type V having some alive
hyper-edge as an o�spring

Repeat step 1 in�nitely often
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How to guess the result

De�nitions

s0 = g0 = 1

sn = P(after n steps, a hyper-edge e is not alive)

gn+1 = P(after n steps, a vertex v is not alive)

sn =
∑
w

wqw

m
(gn)

w−1

=: σ(gn)

gn+1 = (1− α)
∑
d

dpd

m
(sn)

d−1

=: φα(gn)
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How to guess the result

φα maps continuously [0, 1] to [0, 1) and is increasing,
so (gn)n≥0 converges to

z∗α = largest root of φα(z) = z in [0, 1)

Proportion of alive vertices :

P(α) = 1− (1− α)
∑
d

pd
‖p‖1

(σ(z∗α))d
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Two di�erent behaviours

fα(z) = z − φα(z)

P(α) →
α→0

0

m
lim
α→0

f ′α(1) ≥ 0

P(α) →
α→0

λ0 > 0

m
lim
α→0

f ′α(1) < 0
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D random variable such that P(D = d) ∝ pd

φD(z) =
L∑

d=1

pd
‖p‖1

zd

W random variable such that P(W = w) ∝ qw

φW (z) =
L∑

w=1

qw

‖q‖1
zw

fα(z) = z − (1− α)
1

E [D]
φ′D

(
1

E [W ]
φ′W (z)

)

Coupechoux - Lelarge Giant component for random hypergraphs



Giant component for random graphs
Hypergraphs and branching process approximation

Giant component for random hypergraphs

Result
Exploring process
Di�erential equation approximation for Markov chains

When N →∞, is there a giant component of order N ?

C1(N) = largest connected component of Γ ∼ U(d,w)

D random variable such that P(D = d) ∝ pd

W random variable such that P(W = w) ∝ qw

Theorem

Case (i) If E [D(D − 1)]E [W (W − 1)] ≤ E [D]E [W ]

then for each ε > 0, P

(
|C1(N)|

N
> ε

)
−→
N→∞

0

(there is no giant component)

Case (ii) If E [D(D − 1)]E [W (W − 1)] > E [D]E [W ]
then, there exists λ > 0 such that, for each ε > 0,

P

(∣∣∣∣ |C1(N)|
N

− λ
∣∣∣∣ > ε

)
−→
N→∞

0

(there exists a giant component of order N)
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Exploring process

Exploring the component of a given vertex

Active vertices = those we want to explore the component

α > 0 : activate each vertex independently with proba α

3 types of vertices : sleeping, alive, dead

sleeping = we haven't explored it
alive = we must explore it
dead = we have explored it
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Exploring process : algorithm

1 Initially, label active vertices as alive, and non-active ones as sleeping

2 While there is a vertex that is alive do

3 Choose a vertex v uniformly at random among all alive vertices

4 For all hyper-edges e that contains v but no dead vertex do

5 For all sleeping vertices u connected with e do

6 Label u as alive

7 Label v as dead
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Jumping chain

Sequence of random hypergraphs

Γ0 = Γ ∼ U(d,w)
Γn = Γn−1\{dead vertex and its hyper-edges}
Dn,Wn = degree and weight functions of Γn
Conditionally on the past, Γn ∼ U(Dn,Wn)

Markov chain
ξd,d',0n = nb of non active vertices with current degree d and initial degree d'

ξd,d',1n = nb of active vertices with current degree d and initial degree d'

ξwn = nb of hyper-edges with current weight w

ξn =
(
ξd,d

′,k
n , ξwn : 0 ≤ d ≤ d ′, k ∈ {0, 1}, 0 ≤ w

)
(ξn)n≥0 is a Markov chain
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Di�erential equation approximation

(Xt) continuous-time Markov chain with jump chain (ξn)

Coordinate functions :

Yt =

(
X
d ,d ,0
t

N
,
Xw
t

N
: 1 ≤ d ≤ L, 1 ≤ w ≤ L

)

Estimation of the generator

Di�erential equation approximation :{
xwt = e−twqw

x
d ,d ,0
t = σ(e−t)d (1− α)pd

Terminal values
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Proportion of dead vertices

End of the algorithm

⇐⇒ number of edges connected with alive vertices = 0

⇐⇒
∑

w wx
w
t −

∑
d dx

d ,d ,0
t = 0

⇐⇒ fα(e−t) = 0

Proportion of dead vertices :

P(α) = 1− |{remained vertices}|
|{initial vertices}|

= 1− 1

‖p‖1

∑
d

σ(z∗α)d (1− α)pd
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Two di�erent behaviours

fα(z) = z − φα(z)

P(α) →
α→0

0

m
lim
α→0

f ′α(1) ≥ 0

P(α) →
α→0

λ0 > 0

m
lim
α→0

f ′α(1) < 0
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Conclusion

As for random graphs, existence of a phase transition for the
appearance of the giant component

Branching process : a way to guess the result

Markov chain : a tool for proving it

Thanks for your attention !
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How to guess the result

De�nitions
s0 = g0 = 1

sn = P(after n steps, a hyper-edge e isn't alive)

gn+1 = P(after n steps, a vertex v isn't alive)

gdn+1 = P(a vertex of degree d isn't alive at time n)

sn = P(every o�spring of e wasn't alive at time n − 1)

=
∑
w

P(e has w − 1 o�springs) (P(a given o�spring v isn't alive at time n − 1))w−1

=
∑
w

wqw

m
(gn)

w−1

=: σ(gn)
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How to guess the result

gdn+1 = P(a vertex v of degree d isn't alive at time n |v ∈ VA )P(v ∈ VA)

+ P(a vertex v of degree d isn't alive at time n |v /∈ VA )P(v /∈ VA)

= (1− α) P(a vertex v of degree d isn't alive at time n |v /∈ VA )

= (1− α) P(none of the d − 1 o�springs of v is alive at time n)

= (1− α) sd−1n

= (1− α) (σ(gn))
d−1

gn+1 =
∑
d

P(v isn't alive at time n |v has degree d )P(v has degree d)

= (1− α)
∑
d

dpd

m
(σ(gn))

d−1

=: φα(gn)
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Graphs with clustering
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Upper bound : idea

For each α > 0 :

PN(α) = proportion of alive vertices at the end of the
algorithm

P(α) = lim
N→∞

PN(α) (limit in probability)

If we activate some vertex in C1(N), then

|C1(N)|
Nn

≤ PN(α)

The probability of activating no vertex in C1(N) tends to 0
(when N →∞)
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