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Giant component for random graphs Gllmy 2

G‘lh((’,’)f}

Erdés-Rényi graphs

[ Erd8s and Rényi, On the evolution of random graphs, Publ. Math.
Inst. Hungar. Acad. Sci., 1960 |

o Model :
G(n, p) with p = %

c
Ci(n)= largest connected component of G (n, ;)

@ Sub-critical phase : ¢ <1 (no giant component)

G(n) = o(n)

@ Super-critical phase : ¢ > 1 (giant component of order n)

39> 0,|G(n)| = pn+ op(n)
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Giant component for random graphs

G(n, p)
G(n, (d;)7)

Graphs with given degree sequence (d;)]

[ Molloy and Reed, A critical point for random graphs with a given
degree sequence, Rand. Struct. Alg., 1995 |

e Model :

o For each n € IN, (d;)7 sequence of non-negative integers such
that there exists a graph with degree sequence (d;)]

o G(n,(d;)}) random graph with degree sequence (d;){,
uniformly chosen among all possibilities

e Conditions :
3(pk)32; probability distribution such that :

(i) #{i: di = k}/n — px as n — oo, for every k > 0

(i) >k kpi € (0;00)
(iii) p1 >0
(iv) >;d? = 0O(n)
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Giant component for random graphs

G(n, p)
G(n, (d;)7)

Graphs with given degree sequence (d;)]

D ~ (pk)i2s
Ci(n)= largest connected component of G (n,(d;)7)

@ Theorem :
o Sub-critical phase : E[D(D —1)] < E[D]
(no giant component)

|G(n)] = op(n)

n—oo

o Super-critical phase : E[D(D —1)] > E[D]
(giant component of order n)

dp >0, |Cy(n)] = _pnt op(n)

— 00
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Hypergraphs and branching process approximation

Hypergraph : definition

V and E finite sets

Hypergraph : v C V x E

V = { vertices }

E = { hyper-edges }

Degree of a vertex v = its number of edges

Weight of a hyper-edge e = its number of edges
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Hypergraphs
Hypergraphs and branching process approximation Random hypergraphs

Branching process approximation

@ Degree and weight functions :

d- V. — N
| v +— d(v)=degree of v

| E — N
e - w(e) = weight of e

@ Degree and weight frequency vectors :
p = (p1,..,pL) : pg = number of vertices of degree d
q=1(¢1,..-,91) : gw = number of hyper-edges of weight w

@ Correspondence

p=(ld7 ({1})],...[d*({L})]) = n(d)
q=(w{1) .. wH{L})]) = n(w)
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Hypergraphs
Hypergraphs and branching process approximation Random hypergraphs

Branching process approximation

p=(2,2,1,0)
q=(1,2,0,1)

L L
m= Z dpg = Z wq,, (number of edges)

d=1 w=1
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Hypergraphs and branching process approximation
ocess approximation

Random hypergraphs

® p=(p1,...,pt) and q = (qu, ..., q) fixed vectors such that

L L
2 a=1dPd =D y—y Wqw = m
@ Choose V, E finite sets, d degree function and w weight function

such that n(d) = Np and n(w) = Nq, for N € IN*

@ G(d,w) = set of all hypergraphs on V x E with degree function d
and weight function w

@ [ random hypergraph taken uniformly at random in G(d,w)
(M~ u(d,w))

@ Number of edges = Nm, number of vertices = N||p||1, number of
hyper-edges = N||ql|1

AR T AT RAT AT
Y ¥ bW ¥ ¥ LY
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Hypergraphs and branching process approximation
cess approximation

Size of the largest component when N — oo ?

Connected component of a given vertex :

EXPLORATION ALGORITHM

N2 AVRY
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Hypergraphs and branching process approximation
cess approximation
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Hypergraphs
Hypergraphs and branching process approximation
cess approximation

Size of the largest component when N — oo ?

Connected component of a given vertex :

EXPLORATION ALGORITHM

VPN Y

Need to explore a proportion « of the vertices
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Hypergraphs and branching process approximation

Branching process approximation : a way to guess the result

I ~ U(d,w) converges locally, when N — oo, to a tree
Corresponding random tree :

@ Alternating one : generation of nodes of type V / generation of nodes of
type E

@ Except root, each node of type V has d —1 offsprings with probability d"#

@ Each of type E has w — 1 offsprings with probability “=
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@ Step 0 : Let o > 0 and turn each vertex into alive with probability «

@ Step la : turn into alive all individuals of type E having some alive vertex
as an offspring

@ Step 1b : turn into alive all individuals of type V' having some alive
hyper-edge as an offspring

@ Repeat step 1 infinitely often
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Hypergraphs and branching process approximation
Branching process approximation

How to guess the result

Definitions
So = 8o = 1

sp = P(after n steps, a hyper-edge e is not alive)

gn+1 = P(after n steps, a vertex v is not alive)

o= Y gyt

m

= ol(gn)
grin = (-a)Y P50
d
= ¢algn)
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Hypergraphs and branc| process approximation

How to guess the result

@ ¢, maps continuously [0,1] to [0,1) and is increasing,
50 (gn)n>0 converges to

z> = largest root of ¢,(z) =z in [0,1)

@ Proportion of alive vertices :

Pla)=1-(1-a)) ”—‘ﬁ (o(z2))°

- llp
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Hypel
Hypergraphs and branching process approximation Random aphs
Branch process approximation

Two different behaviours

fo(2) = z — Pu(2)

P(«) = 0 P(a) — X >0

a—0

lim f/(1) >0 limf/(1) <0

a—0 a—0

T or oz os ne 05 06 07 08 03 1 o o1 0z 03 04 05 05 07 03 o0s 1
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Hypergraphs
Hypergraphs and branching process approximation Random hypergraphs
Branching process approximation

f2) =2 - (1- )0 (E[lw]¢’w(z)) J
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Result
Exploring process
Giant component for random hypergraphs Differential equation approximation for Markov chains

When N — o0, is there a giant component of order N7

@ Ci(N) = largest connected component of I ~ U(d, w)
e D random variable such that P(D = d) x py
e W random variable such that P(W = w) x g

Case (i) IFE[D(D — D]|E[W(W —1)] <E[D]E[W]
then for each € > 0, IP <|C1(NN)| > e> e 0

(there is no giant component)
Case (i) IFE[D(D — 1)]E[W(W —1)] > E[D]E[W]
then, there exists A > 0 such that, for each ¢ > 0,

]P< |G (V) >6> 0

—— —
N
(there exists a giant component of order N)

<
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Result
Exploring process
Giant component for random hypergraphs Differential equation approximation for Markov chains

Exploring process

Exploring the component of a given vertex

Active vertices = those we want to explore the component
a > 0 : activate each vertex independently with proba «

3 types of vertices : sleeping, alive, dead

o sleeping = we haven't explored it
o alive = we must explore it
o dead = we have explored it
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process
Giant component for random hypergraphs i tial equation approximation for Markov ch

Exploring process : algorithm

@ |Initially, label active vertices as alive, and non-active ones as sleeping
@ While there is a vertex that is alive do
Choose a vertex v uniformly at random among all alive vertices
For all hyper-edges e that contains v but no dead vertex do
For all sleeping vertices u connected with e do
Label u as alive
Label v as dead

0000
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process

Giant component for random hypergraphs tial equation approximation for Markov ch

Exploring process : algorithm

@ |Initially, label active vertices as alive, and non-active ones as sleeping
@ While there is a vertex that is alive do

(3] Choose a vertex v uniformly at random among all alive vertices
Q For all hyper-edges e that contains v but no dead vertex do
Q For all sleeping vertices u connected with e do
Q Label u as alive
Q Label v as dead
o S
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Giant component for random hypergraphs tial equation approximation for Markov ch
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Giant component for random hypergraphs tial equation approximation for Markov ch
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Giant component for random hypergraphs tial equation approximation for Markov ch

Exploring process : algorithm
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Result

Giant component for random hype

Exploring process : algorithm

@ |Initially, label active vertices as alive, and non-active ones as sleeping
@ While there is a vertex that is alive do

(3] Choose a vertex v uniformly at random among all alive vertices
Q For all hyper-edges e that contains v but no dead vertex do
Q For all sleeping vertices u connected with e do
Q Label u as alive
Q Label v as dead
[t ;‘\‘\ .-, ,’J,\ :’
1 ""'(.__- ."-\.h r ’1 Al i
i i T L L i \‘ J!
\\ .rl --‘:!"=._:"'-__ .rl ¥ ’
A ] F ST T Al )
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Giant component for random hype
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Result

on for Markov chains

Jumping chain

e Sequence of random hypergraphs
o Mo =T~ U(d,w)
o [, =T,_1\{dead vertex and its hyper-edges}
e D,, W, = degree and weight functions of I,
o Conditionally on the past, ', ~ U(D,,W,)

Giant component for random hypergraphs

@ Markov chain

gﬂ’d"o = nb of non active vertices with current degree d and initial degree d’
{ﬂ’d"l = nb of active vertices with current degree d and initial degree d’
&Y = nb of hyper-edges with current weight w

o &= (g9 ey 0<d<d ke {01},0<w)

® (£n),>0 is @ Markov chain
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Giant component for random hypergraphs n approximation for Markov chains

Differential equation approximation

@ (X;) continuous-time Markov chain with jump chain (&,)
e Coordinate functions :

Xtd,dzo XtW

Y, = Ll <d<lL 1< <L
t N N e dERiES

e Estimation of the generator

@ Differential equation approximation :

X:‘/V = e_thW
x99 (et (1-a)py

@ Terminal values
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Result
Exploring process
Giant component for random hypergraphs Differential equation approximation for Markov chains

Proportion of dead vertices

@ End of the algorithm

<= number of edges connected with alive vertices = 0
= wx =y dxtd’d’0 =0
— f(e7H) =0

@ Proportion of dead vertices :

|{remained vertices}|
|{initial vertices}|

SRR DLICAN RS

ol &

Pla) =
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roce:
Giant component for random hype equation approximation for Markov chains

Two different behaviours

fo(2) = z — Pu(2)

P(«) = 0 P(a) — X >0

a—0

lim f/(1) >0 limf/(1) <0

a—0 a—0

T or oz os ne 05 06 07 08 03 1 o o1 0z 03 04 05 05 07 03 o0s 1
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Result
Explori
Giant component for random hypergraphs Differential equ. approximation for Markov chains

Conclusion

@ As for random graphs, existence of a phase transition for the
appearance of the giant component

@ Branching process : a way to guess the result
@ Markov chain : a tool for proving it
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Result
Explori
Giant component for random hypergraphs Differential equ. approximation for Markov chains

Conclusion

@ As for random graphs, existence of a phase transition for the
appearance of the giant component

@ Branching process : a way to guess the result
@ Markov chain : a tool for proving it

Thanks for your attention !
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Exploring process
Giant component for random hypergraphs Differential equation approximation for Markov chains
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roce:
Giant component for random hype i equation approximation for Markov chains

How to guess the result

Definitions

So=go =1
sn = P(after n steps, a hyper-edge e isn’t alive)
gn+1 = P(after n steps, a vertex v isn't alive)

gf:l+1 = IP(a vertex of degree d isn't alive at time n)

sn = IP(every offspring of e wasn't alive at time n — 1)
= Z P(e has w — 1 offsprings) (IP(a given offspring v isn't alive at time n — 1)) ™!
w
wi
=3 B (gt
—~ m

=: o(gn)
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Result
Explori
Giant component for random hypergraphs Differential equ. approximation for Markov chains

How to guess the result

g,‘fﬂ = P(a vertex v of degree d isn't alive at time n|v € V4 )P(v € Vj)
+ IP(a vertex v of degree d isn't alive at time n|v & Va)P(v & Va)
= (1 — «a)P(a vertex v of degree d isn't alive at time n|v ¢ V,)
(1 — &) P(none of the d — 1 offsprings of v is alive at time n)
= (1-a)sd?
(1) (o(ga))?

gnt1 = Z P(v isn't alive at time n|v has degree d )IP(v has degree d)
d
= )Z (U(En
= ¢algn)
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> ing process
Giant component for random hypergraphs i equation approximation for Markov chains

Graphs with clustering

SR AT

Lelarge Giant component for random hypergraphs




Result
Explori
Giant component for random hypergraphs Differ n approximation for Markov chains

Upper bound : idea

For each a > 0 :

@ Pp(«a) = proportion of alive vertices at the end of the
algorithm

e Pla) = NIim Pn(a) (limit in probability)

o If we activate some vertex in C;(N), then

GO _

@ The probability of activating no vertex in C;(N) tends to 0
(when N — o0)

Coupechoux - Lelarge Giant component for random hypergraphs



	Giant component for random graphs
	G(n,p)
	G(n,(di)1n)

	Hypergraphs and branching process approximation
	Hypergraphs
	Random hypergraphs
	Branching process approximation

	Giant component for random hypergraphs
	Result
	Exploring process
	Differential equation approximation for Markov chains


