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1733: Countess Buffon drops her knitting kit on the floor.

Count Buffon picks it up and notices that about 63% of
the needles intersect a line on the floor.

Oh-Oh! 0.6366 is almost 2/pi (?)...
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® A large body of literature on

real-number simulations,
starting with von Neumann, Ulam, Metropolis,...

® | uc Devroye’s monumental synthesis, which is
available on the web:

Q) http://cqg.scs.carleton.ca/~luc/

-
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What to do if you travel and don’t want to carry
floor planks and knitting needles?

 Assume you have a coin!

Insist on PERFECT
~ simulations!

J
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1. The framework




Basic Buffon Machines

Definition
A basic Buffon Machine is an algorithm or program that can call
an external procedure “flip” that provides a source of

. Its output is in {0, 1} (also, in Z~p) and stops.
It Is assumed to terminate with probability 1.

Also: interpret 1 as success (); 0 as

@ Can be viewed as device, such as a Turing machine, with an

external tape, or that is a string.
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Basic Buffon Machines

Definition
A basic Buffon Machine is an algorithm or program that can call
an external procedure “flip” that provides a source of

. Its output is in {0, 1} (also, in Z~p) and stops.
It Is assumed to terminate with probability 1.

e Read the first two symbols on the tape and output 1 if the tape starts
. Succeeds with probability %.

e Scan tape until first 1 is encountered; output 1 if the position is even.

Succeeds with probability % | 116 b = %
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Facts about Buffon Machines (1)

= (0,1}

Buffon Machine, when used repeatedly, produces i.i.d random
variables. Since these are in {0,1}, the BM produces a Bernoulli
random variable with a certain probability p of success (1; T).
That probability is a computable real € [0, 1]:

An

P = Ev

where A, is the number of successful oracles of length n.

e Buffon machines have no permanent memory => they
can only produce i.i.d random variables; typically, Bernoulli.
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Facts about Buffon Machines (2)

e Conversely, given any computable real x € [0, 1], we can
construct a simple Buffon Machine that has probability of
success x. Simplified version:

@ Compute on demand as many bits of x = (0.bybobs - - )> as
needed;

@ Compare with the oracle until a discrepant digit is found;
output 1 if oracle loses (is smaller).

Optimization. To get a Bernoulli generator ['B(p), do:

rB(p) return bitg(p), where G € 1 + Geom(%).

Generally, make use of a computable sequence of “framing’ intervals.
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Problems with the universal construction of a [ B(p):

~ @ Requires arbitrary-precison routines, so that program size is
= HUGE

@ Does not qualify as "simple process”; e.g., is not human
Implementable.

Main purpose here is algorithmic design.
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® Can you do such numbers as

\ 4

1/\/5, et log2,

—s T Oy —s
T e —1

'~
°~d
°~

with only basic coin flips and no
arithmetics.

Simulation: expected # flips is finite.

Strong simulation: + has exponential tails.

~
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Composition of Buffon Machines

Definition (Extended Buffon Machines)

Extend the notion of (basic) Buffon machine, so that it can read

from several input streams (of type {0,1}). In particular, it may
call at will other Buffon Machines.

This way, we can compose BMs.

e Read input_1; read input_2. Output 1 only if received 1 and 1.
Computes a logical and (A).

e If we plug in 'B(p1) and 'B(p2), we get ' B(p1p2); this without
knowing p1, po explicitly. Computes a product (p; x po). !l

Sunday 21 March 2010

13



Composition of Buffon Machines

Definition (Extended Buffon Machines)

Extend the notion of (basic) Buffon machine, so that it can read

from several input streams (of type {0,1}). In particular, it may
call at will other Buffon Machines.

This way, we can compose BMs.

e Read input_1; read input_2. Output 1 only if received 1 and 1.
Computes a logical and (A).

e If we plug in T'B(p1) and 'B(p2), we get I B(p1p2); this without
knowing p1, po explicitly. Computes a product (p; x pp). !

Definition (Function computed by a BM)

An extended BM is said to compute ¢(p) if, given as input a
machine that is a 'B(p) [p unknown!], it produces a ' B(¢(p).

Which of these can be computed?

pP1 + p2
7 2 T 21 7
P p—p >

2p.
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Meta-theorem

Theorem (Class of BM computable functions ¢(p))

You can do constructively, simply, and efficiently:
@ C(losure under half sum, product, composition.

@ All rational numbers p € Q; many polynomials and rational
functions with rational coeffs.

@ Positive Q-alghbebraic functions including /p.
@ Exponentials; logarityhms; trig functions.
@ C(losure under integration; inverse trigs.

@ Hypergeometrics of binomial type.

@ -+ Poisson and logarithmic-series generators.

[Nacu—Peres-Mossel]. With suitable (but costly) arithmetics, can do all
polynomials and rational functions that map [0, 1] to (0,1). [Keane—O'Brien]
Cannot do 2p, without restrictions; do continuous functions by approximation.
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® Builds on ideas of
von Neumann, Knuth-Yao

® Encapsulates constructions by
Wastlund, Nacu, Peres, Mossel

® Develops new constructions:
VN-generator, integration; Poisson &
logarithmic distributions.

Sunday 21 March 2010
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4,141592653580793238462643383279502884197169399375108
b1974944592307816406286208998628034825342811706792 1
480b00313282306647093844609550882231725359408128401117
450284107701938521105559644622948954930381964.<881097
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5881748815209205028292540917153643677s259036001133083
054882046652138414c781941511609477,8727036587595919830
921861173819326117931001854807-462379962749567351888
7828724891227938183011949.57°7,367336244065664308602139
494639522473719070817982C 34 T02770839217176R2931767823
846748184676694085132°CU5681871.7263560827785771342787
789609173637178722/58440901224955.7014654958837105079
RR279689258923841.0199561121290219608010344181598136297
747713099605 °5707211349999998372978049857059731732816
09631859°C°<44594553469083026425282308258334 3850352619
31188174010003137838752886887533208381420617.77669147
307°98R2534904R87554687311595628638823837875937 09877
C188778083217122680661300192787661119590921642019850,,

® We shall see nine ways to get T, some
with 5 coin flips on average, with typically
about a dozen lines of code...
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2. Basic construction
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¢ Decision trees and loopless programs

Do Bernoulli of param. 3/8,5/8; dyadic
“Compute” Boolean combinations

rationals

P P-9
| -
AND > P.q i
(P*q)/2
2
q P
Name realization function
Conjunction (P A Q) if P() = 1 then return(Q()) else return(0) pAqg=p-q
Disjunction (P V Q) if P() = 0 then return(Q()) else return(1) pVg=p+q—pgq
Complementation (-nP) if P() = 0 then return(1) else return(0) 1—p
Squaring (P A P) PQ
Conditional (P — Q|R) if R() =1 then return(P()) else return(Q()) rp+ (1 —7)q.

Sunday 21 March 2010
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® Finite graphs and Markov chains

® Can do all rational p:

To do a [ B(3/7), flip three times;in 3 cases,
return(l); in 4 cases return(0); otherwise repeat.

® | do a geometric [ G(p) from a Bernoulli [ B(p)

® From a [ B(p); repeatedly try till 1 is observed. If

number of trials is even, then return(1).
Computes |/(1+p) = (1-p)[|+p*+p*+ ..]

unday 21 March 2010



® Mossel, Nacu, Peres, Wastlund:

Theorem 1 ([21, 22, 27]). (i) Any polynomzal f(x) with rational coefficients that maps (0,1)
into (0,1) s strongly realizable by a finite graph. (i2) Any rational function f(x) with rational
coefficients that maps (0,1) into (0,1) is strongly realizable by a finite graph.

® .. but it requires arbitrary-precision routines.

Sunday 21 March 2010 21



2 The von Neumann

schema




Von Neumann Schema (1)

® Choose a class of permutations with P, the number of
those of size n.

® Draw NeGeo(A) uniform Random Variables over [0, 1].

® Succeed if the order type is good = in P,

TVN[P](A) := { do { geometric
N :=TG(\);

let U :=( Ui, ..., Un) be a vector of [0, 1]-uniform variables.

{ bits of the U; are produced on a call-by-need basis to determine o and 7 }
set 7 := trie(U); let o := type(U):
if o € Py then return(N) } }.

Sunday 21 March 2010 23



Von Neumann Schema (2)

® Choose a class of permutations with P, the number
of those of size n. Draw N=Geom(lambda).

® Probability of success with N=nis

(1 =A)PpA"/nl 1 Py,
1—-N5S. P/l P\ nl

® T[hus, get Poisson and logarithmic distributions

permutations (P): | all (Q) | sorted (R) cyclic (S)

)\n 1 )\Tl.
distribution: (1 — X))\ e—’\—' =, L:=log(l — \)~!
n! n
geometric | Poisson logarithmic.
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Von Neumann Schema (3)

® Using a digital tree (aka trie), we only need a
single string register to recognize perm
classes for Poisson and logarithmic distribs!

® Poisson = sorted perms: U< U< U3

® | ogarithmic = max-first perms: U, > U, , U3

.( 4
cf Leader elei%on: Prodinger; Fill, Mahmoud, Szpankowski, Janson,...
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® For VN schema, path-length of tries determines
# coin flips.

PGF; n—1

1 1 /n
hin(q) = 1 — gn2l-n Z on \ 1. hi(q)hn—k(q).
k=1

Proposition 1. (z) Given a class P of permutations and a parameter A\ € (0, 1), the von Neumann
schema IU'VN[P](A) produces exactly a discrete random variable with probability distribution

1 PAn
PLAY <nl=:

(i2) The number K of iterations has expectation 1/s, where s = (1 — A\)P (), and its distribution
s 1 + Geo(s).

(iii) The number C of flips consumed by the algorithm (not counting® the ones in TG()\)) is a
random variable with probability generating function

+
(10) [E(«f’) PR

B == —

where HT, H~ are determined by (9):

~ P — P,
H+(Z,q) = (1 o :)Z ﬁhll(Q)znv H_(Z, q) = (1 o z) Z <1 a TT) hn(q)zn
n=0 n=0 N

The distribution has exponential tails.

Sunday 21 March 2010
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Theorem 2. The Poisson and logarithmac distributions of parameter A € (0,1) have a strong
stmulation by a Buffon machine that only uses a single string register.

m- ©® Poisson: Declare success (1) if N=0; failure
o.w. Get exp(-\), etc.

w ® Check P: Do only one run;return(l) if
success. E.g, for Poisson, gives (I-A)exp(\)

m- ©® Use alternating (zigzag) perms & get trigs!

Theorem 3. The following functions admit a strong simulation:

e, el (1 —z)e*, zel 7,

T 1l —=x 1

’ , (1 —x)log , rlog(l/x),
log(1 —z)~1" log(1/x) ( z)lo 1 —z og(1/z)
|
weot(x), (1 - 2)cos(a), (1 - x) tan(a)
cos(z) |
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® Polylogarithms, Bessel,...: do r experiments

0 772
Ll.r(Z) . — n—r.,
n=1
1 1 w2 7
Lis(1/2) = 5 — 5 log?2,  Lis(1/2) = 5 log® 2 — 5 log 2+ 2((3)

Get log(2), then T1%/24, in less than 10 flips on average

Sunday 21 March 2010



4 Square roots, algebraic

& hgpergeometric functions




® Generate NeGeo(A) and succeed if we get
a balanced score from 2N flips.

® The probability of success:
IS(/\) = Z(l o /\)/\n'wn — \/1 — A Wn — ‘2%71 (.27:1) |

n=»_» 1 . -

|The0re1n 4. The square-root construction of Equation (11) provides an exact Bernoulli generator
of parameter /1 — A, given a I'B(A\). The mean number of coin flips required, not counting the
ones involved in the calls to TB(\), s % Hence the function /1 — x 1s strongly realizable.

Theorem 5 ([21]). To each bistoch grammar G and non-termanal S, there corresponds a con-
struction (Figure 3), which can be implemented by a deterministic pushdown automaton and calls
to a TB(A) and is of type TB(A\) — T'B (S (%)) , where S(z) is the algebraic function canonically

associated with the grammar G and non-terminal S.

Sunday 21 March 2010
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® Get hypergeometrics of binomial type.

Ramanujan:

SRINIVASA

~

Sunday 21 March 2010

procedure Ramal(); {returns the value 1 with probability 1/7}
S1.
S2.
S3.
S4.

S5.

let S := X + X5, where X, X5 € Geom(i);
with probability % do S = S+1;
for 7 =1,2,3 do

draw a sequence of 2S coin flippings;

if (# Heads — # Tails) # 0 then return(0);

return(1).

®
™
~N
.
©
N
O

NDIA POSTAGE

<l 1| coin flips on average
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5. A Buton integrator




® |n a construction of a [B(¢p(A)) from a B(A), we
substitute a [B(UA), with U uniform. Get an

: ) A
lntegmtor. (I)()\) - % / (;')(_u:) dw.
0

® We can do a product [ B(UN)=I'B(U).I'B(\) by an AND
(A), while emulating a uniform U with a “bag”:

0 [ Ghalf:=proc() local K;
- | # a geometric RV of param. 1/2
° ; K:=-1; do K:=K+1; if flip()=0
i 2 &= J then return(K) fi; od;
6 :1 1
] 5 :0 -

U — _ 1| bag:=proc(U) local J;
1) J:=14+Ghalf ();
g f g if type(U[J],name)
2 : then U[J]:=flip(); fi;
1 i;E_ return(U[J]); end;
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Theorem 6. Any construction C that produces a TB(¢(N)) from a I'B(A\) can be transformed

into a construction of a I'B(®(N)), where ®(A\) = %fo)\ d(w) dw, by addition of a geometric bag.
In particular, if ¢(\) 2s realizable, then its integral taken starting from 0 s also realizable. If in
addition ¢(\) s analytic at 0, then its integral s strongly realizable.

/
® Chain:p =»p? =»1/(1+p?) =» arctan(x)

Theorem 7. The following functions are strongly realizable (0 < x < 1):

log(1 + =), arctan(z), %arcsin(:z:), / e~ /2 qu.
0

Sunday 21 March 2010
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o [Madhava-Gregory-Leibniz} arctan(l)=T1/4

MGL: =proc () do
if bag(U)=0 then return(l) fi; if bag(U)=0 then return(1l) fi;
if bag(U)=0 then return(0) fi; if bag(U)=0 then return(0) fi; od;

end.

o [Machin machineﬂ arctan(l/2)+arctan(1/3)=T11/4.

6.5 flips on average

T > T
20 25

Distribution of costs (plain & log.)

Sunday 21 March 2010
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MAPLE:

an interpreter
~ 60 lines

(X, ¥))), %,
(flip),

X)), X,
| Z, flip))))))):
> test(Z4,10000);
mean number of flips

0.6313000000 (:
) val(Z4);
1
[ 2
:"“’ / c"' —l \
13, 1 1.1 e 4
2T Y PR A 1) |¥
"3 2|
/ “.‘ 1+ arctan\e <
IN f “;Z
i e \" \ V" € - / (
> evalf(val(z4)):;
0.6356033009 (.

ONE),
sqrtO(prod(£flip,
expn(prod(£flip,Z))))), ¥,

Z4:=expn(compl(ave(flip,ave(intl(intl(intl (even(prod(z, prod
Y, ONE),

z, ONE),compl(sqgrtO(intO(ave(logp
intO(prod(¥, even(intO(even(prod(X,
expn(prod(flip,flip)))))),

103.1645000
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® |Implements all earlier constructions: it works!

® Results for TT-related constants:

Rama

arcsin [1; \17_5 %]

arctan [1/2 4+ 1/3;1]

1

v

10.8

16.:

m

8
26.7 (o0)

Method; constant; mean # flips
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