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1733: Countess Buffon drops her knitting kit on the floor.

Count Buffon picks it up and notices that about 63% of 
the needles intersect a line on the floor.

Oh-Oh! 0.6366 is almost 2/pi (!)...
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• A large body of literature on 
real-number simulations, 
starting with von Neumann, Ulam, Metropolis,...

• Luc Devroye’s monumental synthesis, which is 
available on the web: 
@ http://cg.scs.carleton.ca/~luc/
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What to do if you travel and don’t want to carry 
floor planks and knitting needles?

Assume you have a coin!

Insist on PERFECT 
simulations!
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Themes:
Computability theory: the power of 
probabilistic devices

Simulation: how to be discrete & perfect?

Boltzmann samplers for combinatorics

Further connexions: special functions, 
analytic combinatorics, discrete processes, 
analysis of algorithms ....
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1. The framework
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Basic Buffon Machines

Definition

A basic Buffon Machine is an algorithm or program that can call
an external procedure “flip” that provides a source of independent
unbiased coin flips. Its output is in {0, 1} (also, in Z>0) and stops.
It is assumed to terminate with probability 1.

Also: interpret 1 as success (�); 0 as failure (⊥).

Can be viewed as device, such as a Turing machine, with an
external tape, or oracle that is a random uniform {0, 1}∞ string.

• Read the first two symbols on the tape and output 1 if the tape starts
01.... Succeeds with probability 1

4 .

• Scan tape until first 1 is encountered; output 1 if the position is even.
Succeeds with probability 1

4 + 1
16 + · · · = 1

3 .

{0,1}
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Facts about Buffon Machines (1)

• A Buffon Machine, when used repeatedly, produces i.i.d random
variables. Since these are in {0, 1}, the BM produces a Bernoulli
random variable with a certain probability p of success (1;�).
That probability is a computable real ∈ [0, 1]:

p =
� An

2n
,

where An is the number of successful oracles of length n.

{0,1}

• Buffon machines have no permanent memory => they 
can only produce i.i.d random variables; typically, Bernoulli.
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Facts about Buffon Machines (2)

• Conversely, given any computable real x ∈ [0, 1], we can

construct a simple Buffon Machine that has probability of

success x . Simplified version:

Compute on demand as many bits of x = (0.b1b2b3 · · · )2 as

needed;

Compare with the oracle until a discrepant digit is found;

output 1 if oracle loses (is smaller).

Optimization. To get a Bernoulli generator ΓB(p), do:

return bitG (p), where G ∈ 1 + Geom(
1
2 ).

Generally, make use of a computable sequence of “framing” intervals.

ΓB(p)
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Problems with the universal construction of a ΓB(p):

Requires arbitrary-precison routines, so that program size is

HUGE

Does not qualify as “simple process”; e.g., is not human

implementable.

☠

☢

Main purpose here is algorithmic design.
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• Can you do such numbers as

with only basic coin flips and no 
arithmetics.

• Simulation: expected # flips is finite.
Strong simulation: + has exponential tails.

???

{0,1}

♥
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Composition of Buffon Machines

Definition (Extended Buffon Machines)

Extend the notion of (basic) Buffon machine, so that it can read

from several input streams (of type {0, 1}). In particular, it may

call at will other Buffon Machines.

This way, we can compose BMs.

• Read input 1; read input 2. Output 1 only if received 1 and 1.

Computes a logical and (∧).

• If we plug in ΓB(p1) and ΓB(p2), we get ΓB(p1p2); this without

knowing p1, p2 explicitly. Computes a product (p1 × p2). !!!

Definition (Function computed by a BM)

An extended BM is said to compute φ(p) if, given as input a

machine that is a ΓB(p) [p unknown!], it produces a ΓB(φ(p).

Which of these can be computed?

p2, 2p − p2,
p1 + p2

2
, 2p.

{0,1}
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{0,1}
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Meta-theorem

Theorem (Class of BM computable functions ϕ(p))

You can do constructively, simply, and efficiently:

Closure under half sum, product, composition.

All rational numbers p ∈ Q; many polynomials and rational

functions with rational coeffs.

Positive Q-algbebraic functions including
√

p.

Exponentials; logarityhms; trig functions.

Closure under integration; inverse trigs.

Hypergeometrics of binomial type.

+ Poisson and logarithmic-series generators.

[Nacu–Peres-Mossel]. With suitable (but costly) arithmetics, can do all

polynomials and rational functions that map [0, 1] to (0, 1). [Keane–O’Brien]

Cannot do 2p, without restrictions; do continuous functions by approximation.
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• Builds on ideas of 
von Neumann, Knuth-Yao

• Encapsulates constructions by 
Wästlund, Nacu, Peres, Mossel

• Develops new constructions: 
VN-generator, integration; Poisson & 
logarithmic distributions. 
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• We shall see nine ways to get π, some 
with 5 coin flips on average, with typically 
about a dozen lines of code...
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2. Basic construction 
rules
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• Decision trees and loopless programs
Do Bernoulli of param. 3/8,5/8; dyadic rationals
“Compute” Boolean combinations

AND

p

q

p.q

p.q

1-p

(p+q)/2

p2
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• Finite graphs and Markov chains

• Can do all rational p:
To do a ΓB(3/7), flip three times; in 3 cases, 
return(1); in 4 cases return(0); otherwise repeat.

•  

• From a ΓB(p);  repeatedly try till 1 is observed. If 
number of trials is even, then return(1).
Computes 1/(1+p) = (1-p)[1+p2+p4+ ...]

do a geometric ΓG(p) from a Bernoulli ΓB(p)
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• Mossel, Nacu, Peres, Wästlund: 

• .... but it requires arbitrary-precision routines.
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3. The von Neumann 
schema
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geometric

• Choose a class of permutations with Pn the number of 
those of size n.

• Draw N∈Geo(λ) uniform Random Variables over [0,1].

• Succeed if the order type is good = in Pn.

Von Neumann Schema (1)
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• Choose a class of permutations with Pn the number 
of those of size n. Draw N=Geom(lambda).

• Probability of success with N=n is

• Thus, get Poisson and logarithmic distributions

n

Von Neumann Schema (2)
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• Using a digital tree (aka trie), we only need a 
single string register to recognize perm 
classes for Poisson and logarithmic distribs!

• Poisson = sorted perms: U1< U2< U3 

• Logarithmic = max-first perms: U1 > U2 , U3 

Uk U1

cf Leader election: Prodinger; Fill, Mahmoud, Szpankowski, Janson,...
☝ ☝

Von Neumann Schema (3)
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• For VN schema, path-length of tries determines 
# coin flips. 

PGF:

n
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• Poisson: Declare success (1) if N=0; failure 
o.w. Get exp(-λ), etc.

• Check P: Do only one run; return(1) if 
success. E.g, for Poisson, gives (1-λ)exp(λ)

• Use alternating (zigzag) perms & get trigs!

☛

☛

☛
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• Polylogarithms, Bessel,...: do r experiments

Get log(2), then π2/24, in less than 10 flips on average
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4. Square roots, algebraic 
& hypergeometric functions
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• Generate N∈Geo(λ) and succeed if we get 
a balanced score from 2N flips. 

• The probability of success:
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• Get hypergeometrics of binomial type.

Ramanujan:

<11 coin flips on average
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5. A Buffon integrator
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• In a construction of a ΓB(φ(λ)) from a ΓB(λ), we 
substitute a ΓB(Uλ), with U uniform. Get an 
integrator:

• We can do a product ΓB(Uλ)=ΓB(U).ΓB(λ) by an AND 
(∧), while emulating a uniform U with a “bag”:
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p phi(p)

p

AND Phi(p)
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• Chain: p ➜p2 ➜1/(1+p2) ➜ arctan(x)
∫
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• Madhava-Gregory-Leibniz:    arctan(1)=π/4

• Machin machine:   arctan(1/2)+arctan(1/3)=π/4.

Distribution of costs (plain & log.)

6.5 flips on average
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6. Experiments
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MAPLE: 
an interpreter 

~ 60 lines
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• Implements all earlier constructions: it works!

• Results for π-related constants:

Method; constant; mean # flips
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