On Buffon Machines \& Numbers

 Philippe FLAJOLET,INRIA-Rocquencourt, France
With Maryse PELLETIER \& Michèle SORIA, LIP6, Paris

Arxiv \& http://algo.inria.fr/flajolet/

1733: Countess Buffon drops her knitting kit on the floor.
Count Buffon picks it up and notices that about 63% of the needles intersect a line on the floor.

Oh-Oh! 0.6366 is almost $2 / \mathrm{pi}(!) .$.

- A large body of literature on
 real-number simulations, starting with von Neumann, Ulam, Metropolis,...
- Luc Devroye's monumental synthesis, which is available on the web:
@ http://cg.scs.carleton.ca/~luc/

What to do if you travel and don't want to carry floor planks and knitting needles?

Assume you have a coin!

Insist on PERFECT simulations!

Themes:

- Computability theory: the power of probabilistic devices
- Símulation: how to be discrete \& perfect? Boltzmann samplers for combinatorics
- Further connexions: special functions, analytic combinatorics, discrete processes, analysis of algorithms

1. The framework

Basic Buffon Machines

Definition

A basic Buffon Machine is an algorithm or program that can call an external procedure "flip" that provides a source of independent unbiased coin flips. Its output is in $\{0,1\}$ (also, in $\mathbb{Z}_{>0}$) and stops. It is assumed to terminate with probability 1.

Also: interpret 1 as success (T); 0 as failure (\perp).

- Can be viewed as device, such as a Turing machine, with an external tape, or oracle that is a random uniform $\{0,1\}^{\infty}$ string.
- Read the first two symbols on the tape and output 1 if the tape starts $01 \ldots$... Succeeds with probability $\frac{1}{4}$
- Scan tape until first 1 is encountered; output 1 if the position is even. Succeeds with probability $\frac{1}{4}+\frac{1}{16}+\cdots=\frac{1}{3}$

Basic Buffon Machines

Definition

A basic Buffon Machine is an algorithm or program that can call an external procedure "flip" that provides a source of independent unbiased coin flips. Its output is in $\{0,1\}$ (also, in $\mathbb{Z}_{>0}$) and stops. It is assumed to terminate with probability 1.

- Read the first two symbols on the tape and output 1 if the tape starts 01 Succeeds with probability $\frac{1}{4}$.
- Scan tape until first 1 is encountered; output 1 if the position is even. Succeeds with probability $\frac{1}{4}+\frac{1}{16}+\cdots=\frac{1}{3}$.

Facts about Buffon Machines (1)

- A Buffon Machine, when used repeatedly, produces i.i.d random variables. Since these are in $\{0,1\}$, the BM produces a Bernoulli random variable with a certain probability p of success $(1 ; T)$. That probability is a computable real $\in[0,1]$:

$$
p=\sum \frac{A_{n}}{2^{n}}
$$

where A_{n} is the number of successful oracles of length n.

- Buffon machines have no permanent memory $=>$ they can only produce i.i.d random variables; typically, Bernoulli.

Facts about Buffon Machines (2)

- Conversely, given any computable real $x \in[0,1]$, we can construct a simple Buffon Machine that has probability of success x. Simplified version:
- Compute on demand as many bits of $x=\left(0 . b_{1} b_{2} b_{3} \cdots\right)_{2}$ as needed;
- Compare with the oracle until a discrepant digit is found; output 1 if oracle loses (is smaller).

Optimization. To get a Bernoulli generator $\Gamma B(p)$, do:
ГВ(p)

$$
\operatorname{return~}_{\operatorname{bit}_{G}(p), \quad \text { where } G \in 1+\operatorname{Geom}\left(\frac{1}{2}\right) \text {. } . \text {. }}
$$

Generally, make use of a computable sequence of "framing" intervals.

A. Schönhage A. F. W. Grotefeld/E.Vetter

Fast Algorithms

A Multitape Turing
Machine Implementation

Problems with the universal construction of a $\Gamma B(p)$:

- Requires arbitrary-precison routines, so that program size is HUGE
- Does not qualify as "simple process"; e.g., is not human implementable.

Main purpose here is algorithmic design.

- Can you do such numbers as

$$
1 / \sqrt{2}, \quad e^{-1}, \quad \log 2, \quad \frac{1}{\pi}, \quad \pi-3, \quad \frac{1}{e-1}, \quad \text { ??? }
$$

with only basic coin flips and no arithmetics.

- Simulation: expected \# flips is finite. Strong simulation: + has exponential tails.

Composition of Buffon Machines

Definition (Extended Buffon Machines)

Extend the notion of (basic) Buffon machine, so that it can read from several input streams (of type $\{0,1\}$). In particular, it may call at will other Buffon Machines.

This way, we can compose BMs.

- Read input_1; read input_2. Output 1 only if received 1 and 1. Computes a logical and (\wedge).
- If we plug in $\Gamma B\left(p_{1}\right)$ and $\Gamma B\left(p_{2}\right)$, we get $\Gamma B\left(p_{1} p_{2}\right)$; this without knowing p_{1}, p_{2} explicitly. Computes a product $\left(p_{1} \times p_{2}\right)$. !!!

Composition of Buffon Machines

Definition (Extended Buffon Machines)

Extend the notion of (basic) Buffon machine, so that it can read from several input streams (of type $\{0,1\}$). In particular, it may call at will other Buffon Machines.

This way, we can compose BMs.

- Read input_1; read input_2. Output 1 only if received 1 and 1.

Computes a logical and (\wedge).

- If we plug in $\Gamma B\left(p_{1}\right)$ and $\Gamma B\left(p_{2}\right)$, we get $\Gamma B\left(p_{1} p_{2}\right)$; this without knowing p_{1}, p_{2} explicitly. Computes a product $\left(p_{1} \times p_{2}\right)$.!!!

Definition (Function computed by a BM)

An extended BM is said to compute $\phi(p)$ if, given as input a machine that is a $\Gamma B(p)$ [p unknown!], it produces a $\Gamma B(\phi(p)$.

Which of these can be computed?

$$
p^{2}, \quad 2 p-p^{2}, \quad \frac{p_{1}+p_{2}}{2}, \quad 2 p
$$

Theorem (Class of BM computable functions $\varphi(p)$)

You can do constructively, simply, and efficiently:

- Closure under half sum, product, composition.
- All rational numbers $p \in \mathbb{Q}$; many polynomials and rational functions with rational coeffs.
- Positive \mathbb{Q}-algthebraic functions including \sqrt{p}.
- Exponentials; logarityhms; trig functions.
- Closure under integration; inverse trigs.
- Hypergeometrics of binomial type.
- + Poisson and logarithmic-series generators.
[Nacu-Peres-Mossel]. With suitable (but costly) arithmetics, can do all polynomials and rational functions that map $[0,1]$ to $(0,1)$. [Keane-O'Brien] Cannot do $2 p$, without restrictions; do continuous functions by approximation.

- Builds on ideas of von Neumann, Knuth-Yao
- Encapsulates constructions by Wästlund, Nacu, Peres, Mossel
- Develops new constructions: VN-generator, integration; Poisson \& logarithmic distributions.
8.141692683889798238462648383279502884197169899375108 b. 9749445925078164062862089986280548255421170679 480 b - 15282506647093844609550582231725359408128 - 117 450284 TO 2 5665935440 - 847564823378678316527120190910 0485669234
 588174881520920s ©82925409171536456\% J2S9036001155033 05488204665215841405194151160945 , 672703657595919830 9218611738198261179810 185480 62379962749567351885
 494659522475719070217989 d4, 097705592171762951767523 $846748184676694051520 \quad 0681271$ 2 268560827785771542757 789609173637178721 J0440901224956. 014654958587105079
 74771509960° 2072115499999983729780495 1039731782816
 511881 010005157858752886587558208588142061/ T669147 50" 832354904287554687511595628658823837875937.9877 C6577805821712268066150019278766111959092164201985 .

- We shall see nine ways to get π, some with 5 coin flips on average, with typically about a dozen lines of code...

2. Basic construction rules

- Decision trees and loopless programs Do Bernoulli of param. 3/8,5/8; dyadic rationals "Compute" Boolean combinations

Name	realization	function
Conjunction $(P \wedge Q)$	if $P()=1$ then return $(Q())$ else return(0)	$p \wedge q=p \cdot q$
Disjunction $(P \vee Q)$	if $P()=0$ then return $(Q())$ else return(1)	$p \vee q=p+q-p q$
Complementation $(\neg P)$	if $P()=0$ then return(1) else return(0)	$1-p$
Squaring	$(P \wedge P)$	p^{2}
Conditional $(P \rightarrow Q \mid R)$	if $R()=1$ then return $(P())$ else return $(Q())$	$r p+(1-r) q$.

- Finite graphs and Markov chains

- Can do all rational p:

To do a ГВ(3/7), flip three times; in 3 cases, return(I); in 4 cases return(0); otherwise repeat.

do a geometric $\Gamma \mathrm{G}(\mathrm{p})$ from a Bernoulli ГВ(p)

- From a $Г \mathrm{~B}(\mathrm{p})$; repeatedly try till $\mathbf{1}$ is observed. If number of trials is even, then return(1).
Computes $I /(I+p)=(I-p)\left[I+p^{2}+p^{4}+\ldots\right]$

- Mossel, Nacu, Peres,Wästlund:

Theorem 1 ([21, 22, 27]). (i) Any polynomial $f(x)$ with rational coefficients that maps $(0,1)$ into $(0,1)$ is strongly realizable by a finite graph. (ii) Any rational function $f(x)$ with rational coefficients that maps $(0,1)$ into $(0,1)$ is strongly realizable by a finite graph.

- but it requires arbitrary-precision routines.

3. The von Neumann schema

Von Neumann Schema (I)

- Choose a class of permutations with P_{n} the number of those of size n.
- Draw $\mathrm{N} \in \mathrm{Geo}(\lambda)$ uniform Random Variables over $[0, \mathrm{I}]$.
- Succeed if the order type is good $=$ in P_{n}.

```
\GammaVN[\mathcal{P}](\lambda):={ do { geometric
    N:= \GammaG(\lambda);
    let U := ( ( 
    { bits of the U}\mp@subsup{U}{j}{}\mathrm{ are produced on a call-by-need basis to determine }\sigma\mathrm{ and }\tau
    set }\tau:=\operatorname{trie(\mathbf{U}); let \sigma:= type(U);
    if }\sigma\in\mp@subsup{\mathcal{P}}{N}{}\mathrm{ then return(N)}}.
```


Von Neumann Schema (2)

- Choose a class of permutations with P_{n} the number of those of size n. Draw $\mathrm{N}=$ Geom(lambda).
- Probability of success with $N=n$ is

$$
\frac{(1-\lambda) P_{n} \lambda^{n} / n!}{(1-\lambda) \sum_{n} P_{n} \lambda^{n} / n!}=\frac{1}{P(\lambda)} \frac{P_{n} \lambda_{n}}{n!} n
$$

- Thus, get Poisson and logarithmic distributions

permutations $(\mathcal{P}):$	all (\mathcal{Q})	sorted (\mathcal{R})		cyclic (\mathcal{S})
distribution:	$(1-\lambda) \lambda^{n}$	$e^{-\lambda} \frac{\lambda^{n}}{n!}$	$\frac{1}{L} \frac{\lambda^{n}}{n}$,	$L:=\log (1-\lambda)^{-1}$
	geometric	Poisson		logarithmic.

Von Neumann Schema (3)

- Using a digital tree (aka trie), we only need a single string register to recognize perm classes for Poisson and logarithmic distribs!
- $\underline{\text { Poisson }}=$ sorted perms: $\mathrm{U}_{1}<\mathrm{U}_{2}<\mathrm{U}_{3}$
- Logarithmic $=$ max-first perms: $U_{1}>\mathrm{U}_{2}, \mathrm{U}_{3}$

cf Leader election: Prodinger; Fill, Mahmoud, Szpankowskl, Janson,...
- For VN schema, path-length of tries determines \# coin flips.
PGF:

$$
h_{n}(q)=\frac{1}{1-q^{n} 2^{1-n}} \sum_{k=1}^{n-1} \frac{1}{2^{n}}\binom{n}{k} h_{k}(q) h_{n-k}(q) .
$$

Proposition 1. (i) Given a class \mathcal{P} of permutations and a parameter $\lambda \in(0,1)$, the von Neumann schema $\Gamma \mathrm{VN}[\mathcal{P}](\lambda)$ produces exactly a discrete random variable with probability distribution

$$
\mathbb{P}(N=n)=\frac{1}{P(\lambda)} \frac{P_{n} \lambda n}{n!}
$$

(ii) The number K of iterations has expectation $1 / s$, where $s=(1-\lambda) P(\lambda)$, and its distribution is $1+\operatorname{Geo}(s)$.
(iii) The number C of flips consumed by the algorithm (not counting ${ }^{2}$ the ones in $\Gamma \mathrm{G}(\lambda)$) is a random variable with probability generating function

$$
\begin{equation*}
\mathbb{E}\left(q^{C}\right)=\frac{H^{+}(\lambda, q)}{1-H^{-}(\lambda, q)} \tag{10}
\end{equation*}
$$

where H^{+}, H^{-}are determined by (9):

$$
H^{+}(z, q)=(1-z) \sum_{n=0}^{\infty} \frac{P_{n}}{n!} h_{n}(q) z^{n}, \quad H^{-}(z, q)=(1-z) \sum_{n=0}^{\infty}\left(1-\frac{P_{n}}{n!}\right) h_{n}(q) z^{n}
$$

The distribution has exponential tails.

- Poisson: Declare success (I) if $N=0$; failure o.w. Get $\exp (-\lambda)$, etc.
- Check P: Do only one run; return(I) if success. E.g, for Poisson, gives $(I-\lambda) \exp (\lambda)$
* - Use alternating (zigzag) perms \& get trigs!

Theorem 3. The following functions admit a strong simulation:

$$
\begin{aligned}
& e^{-x}, e^{x-1},(1-x) e^{x}, x e^{1-x} \\
& \frac{x}{\log (1-x)^{-1}}, \frac{1-x}{\log (1 / x)},(1-x) \log \frac{1}{1-x}, x \log (1 / x) \\
& \frac{1}{\cos (x)}, x \cot (x),(1-x) \cos (x),(1-x) \tan (x)
\end{aligned}
$$

- Polylogarithms, Bessel,...: do r experiments

$$
\operatorname{Li}_{r}(z):=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{r}}
$$

$$
\mathrm{Li}_{2}(1 / 2)=\frac{\pi^{2}}{12}-\frac{1}{2} \log ^{2} 2, \quad \mathrm{Li}_{3}(1 / 2)=\frac{1}{6} \log ^{3} 2-\frac{\pi^{2}}{12} \log 2+\frac{7}{8} \zeta(3) .
$$

Get $\log (2)$, then $\pi^{2} / 24$, in less than 10 flips on average

4. Square roots, algebraic
 \& hypergeometric functions

- Generate $\mathrm{N} \in \operatorname{Geo}(\lambda)$ and succeed if we get a balanced score from 2 N flips.
- The probability of success:
$s(\lambda):=\sum_{n=0}^{\infty}(1-\lambda) \lambda^{n} \varpi_{n}=\sqrt{1-\lambda} \quad \varpi_{n}=\frac{1}{2^{2 n}}\binom{2 n}{n}$.

Theorem 4. The square-root construction of Equation (11) provides an exact Bernoulli generator of parameter $\sqrt{1-\lambda}$, given a $\Gamma \mathrm{B}(\lambda)$. The mean number of coin flips required, not counting the ones involved in the calls to $\Gamma \mathrm{B}(\lambda)$, is $\frac{2 \lambda}{1-\lambda}$. Hence the function $\sqrt{1-x}$ is strongly realizable.

Theorem 5 ([21]). To each bistoch grammar G and non-terminal \mathcal{S}, there corresponds a construction (Figure 3), which can be implemented by a deterministic pushdown automaton and calls to a $\Gamma \mathrm{B}(\lambda)$ and is of type $\Gamma \mathrm{B}(\lambda) \longrightarrow \Gamma \mathrm{B}\left(S\left(\frac{\lambda}{2}\right)\right)$, where $S(z)$ is the algebraic function canonically associated with the grammar G and non-terminal S.

- Get hypergeometrics of binomial type.

Ramanujan:

$$
\frac{1}{\pi}=\sum_{n=0}^{\infty}\binom{2 n}{n}^{3} \frac{6 n+1}{2^{8 n+4}}
$$

procedure Rama(); \quad returns the value 1 with probability $1 / \pi\}$

S1. let $S:=X_{1}+X_{2}$, where $X_{1}, X_{2} \in \operatorname{Geom}\left(\frac{1}{4}\right)$;
S2. with probability $\frac{5}{9}$ do $S:=S+1$;
S3. for $j=1,2,3$ do
S4. draw a sequence of $2 S$ coin flippings; if (\# Heads - \# Tails) $\neq 0$ then return (0);
S5. return(1).
<| | coin flips on average

5. A Buffon integrator

- In a construction of a $Г \mathrm{~B}(\varphi(\lambda))$ from a $Г \mathrm{~B}(\lambda)$, we substitute a $\Gamma B(U \lambda)$, with \cup uniform. Get an integrator:

$$
\Phi(\lambda)=\frac{1}{\lambda} \int_{0}^{\lambda} \phi(w) d w .
$$

- We can do a product $\lceil B(U \lambda)=\lceil B(U) . \Gamma B(\lambda)$ by an AND (\wedge), while emulating a uniform U with a "bag":

Theorem 6. Any construction C that produces a $\Gamma \mathrm{B}(\phi(\lambda)$) from a $\Gamma \mathrm{B}(\lambda)$ can be transformed into a construction of a $\Gamma \mathrm{B}\left(\Phi(\lambda)\right.$), where $\Phi(\lambda)=\frac{1}{\lambda} \int_{0}^{\lambda} \phi(w) d w$, by addition of a geometric bag. In particular, if $\phi(\lambda)$ is realizable, then its integral taken starting from 0 is also realizable. If in addition $\phi(\lambda)$ is analytic at 0 , then its integral is strongly realizable.

- Chain: $\mathrm{p} \rightarrow \mathrm{p}^{2} \rightarrow \mathrm{I}\left(\mathrm{I}+\mathrm{p}^{2}\right) \rightarrow \arctan (\mathrm{x})$

Theorem 7. The following functions are strongly realizable $(0<x<1)$:

$$
\log (1+x), \arctan (x), \frac{1}{2} \arcsin (x), \int_{0}^{x} e^{-w^{2} / 2} d w
$$

- Madhava-Gregory-Leibniz: $\arctan (I)=\pi / 4$

```
MGL:=proc () do
    if bag(U)=0 then return(1) fi; if bag(U)=0 then return(1) fi;
    if bag(U)=0 then return(0) fi; if bag(U)=0 then return(0) fi; od; end.
```

- Machin machine: $\arctan (I / 2)+\arctan (1 / 3)=\pi / 4$.
6.5 flips on average

Distribution of costs (plain \& log.)
6. Experiments

MAPLE:

an interpreter ~ 60 lines

- Implements all earlier constructions: it works!
- Results for π-related constants:

