On Buffon Machines & Numbers

Philippe FLAJOLET,

INRIA-Rocquencourt, France With <u>Maryse PELLETIER & Michèle SORIA</u>, LIP6, Paris ~~~ ALÉA, Luminy, March 2010 ~~~

Arxiv & http://algo.inria.fr/flajolet/

1733: Countess Buffon drops her knitting kit on the floor.

Count Buffon picks it up and notices that about 63% of the needles intersect a line on the floor.

Oh-Oh! 0.6366 is almost 2/pi (!)...

 A large body of literature on real-number simulations,

starting with von Neumann, Ulam, Metropolis,...

Sunday 21 March 2010

What to do if you travel and don't want to carry floor planks and knitting needles?

Assume you have a coin!

- Computability theory: the power of probabilistic devices
- Símulatíon: how to be discrete & perfect?
 Boltzmann samplers for combinatorics
 - Further connexions: special functions, analytic combinatorics, discrete processes, analysis of algorithms

1. The framework

Definition

A **basic Buffon Machine** is an algorithm or program that can call an external procedure *"flip"* that provides a source of independent unbiased coin flips. Its output is in $\{0,1\}$ (also, in $\mathbb{Z}_{>0}$) and stops. It is assumed to terminate with probability 1.

Also: interpret **1** as success (\top) ; **0** as failure (\bot) .

- Can be viewed as device, such as a Turing machine, with an external tape, or oracle that is a random uniform {0,1}[∞] string.
- Read the first two symbols on the tape and output 1 if the tape starts 01.... Succeeds with probability $\frac{1}{4}$.
- Scan tape until first 1 is encountered; output 1 if the position is even. Succeeds with probability $\frac{1}{4} + \frac{1}{16} + \cdots = \frac{1}{3}$.

Definition

A **basic Buffon Machine** is an algorithm or program that can call an external procedure *"flip"* that provides a source of independent unbiased coin flips. Its output is in $\{0,1\}$ (also, in $\mathbb{Z}_{>0}$) and stops. It is assumed to terminate with probability 1.

- Read the first two symbols on the tape and output 1 if the tape starts 01.... Succeeds with probability $\frac{1}{4}$.
- Scan tape until first 1 is encountered; output 1 if the position is even. Succeeds with probability $\frac{1}{4} + \frac{1}{16} + \cdots = \frac{1}{3}$.

Facts about Buffon Machines (1)

• A Buffon Machine, when used repeatedly, produces i.i.d random variables. Since these are in $\{0, 1\}$, the BM produces a Bernoulli random variable with a certain probability p of success $(1; \top)$. That probability is a computable real $\in [0, 1]$:

$$p=\sum\frac{A_n}{2^n},$$

where A_n is the number of successful oracles of length n.

 Buffon machines have no permanent memory => they can only produce i.i.d random variables; typically, Bernoulli. • Conversely, given any computable real $x \in [0, 1]$, we can construct a simple Buffon Machine that has probability of success x. Simplified version:

- Compute on demand as many bits of x = (0.b₁b₂b₃···)₂ as needed;
- Compare with the oracle until a discrepant digit is found; output 1 if oracle loses (is smaller).

Optimization. To get a Bernoulli generator $\Gamma B(p)$, do:

return bit_G(p), where $G \in 1 + \text{Geom}(\frac{1}{2})$.

Generally, make use of a computable sequence of "framing" intervals.

ΓB

Problems with the universal construction of a $\Gamma B(p)$:

- Requires arbitrary-precison routines, so that program size is HUGE
- Does not qualify as "simple process"; e.g., is not human implementable.

Main purpose here is algorithmic design.

• Can you do such numbers as

$$1/\sqrt{2}, e^{-1}, \log 2, \frac{1}{\pi}, \pi - 3, \frac{1}{e-1}, \dots$$

with only basic coin flips and no arithmetics.

Definition (Extended Buffon Machines)

Extend the notion of (basic) Buffon machine, so that it can read from several input streams (of type $\{0,1\}$). In particular, it may call at will other Buffon Machines.

This way, we can **compose** BMs.

• Read input_1; read input_2. Output 1 only if received 1 and 1. Computes a logical and (\wedge) .

• If we plug in $\Gamma B(p_1)$ and $\Gamma B(p_2)$, we get $\Gamma B(p_1p_2)$; this without knowing p_1, p_2 explicitly. Computes a product $(p_1 \times p_2)$. !!!

Definition (Extended Buffon Machines)

Extend the notion of (basic) Buffon machine, so that it can read from several input streams (of type $\{0,1\}$). In particular, it may call at will other Buffon Machines.

This way, we can **compose** BMs.

• Read input_1; read input_2. Output 1 only if received 1 and 1. Computes a logical and (\wedge) .

• If we plug in $\Gamma B(p_1)$ and $\Gamma B(p_2)$, we get $\Gamma B(p_1p_2)$; this without knowing p_1, p_2 explicitly. Computes a product $(p_1 \times p_2)$. !!!

Definition (Function computed by a BM)

An extended BM is said to compute $\phi(p)$ if, given as input a machine that is a $\Gamma B(p)$ [p unknown!], it produces a $\Gamma B(\phi(p)$.

Which of these can be computed?

$$p^2$$
, $2p-p^2$, $\frac{p_1+p_2}{2}$, $2p$.

Meta-theorem

Theorem (Class of BM computable functions $\varphi(p)$)

You can do constructively, simply, and efficiently:

- Closure under half sum, product, composition.
- All rational numbers p ∈ Q; many polynomials and rational functions with rational coeffs.
- Positive \mathbb{Q} -algbebraic functions including \sqrt{p} .
- Exponentials; logarityhms; trig functions.
- Closure under integration; inverse trigs.
- Hypergeometrics of binomial type.
- + Poisson and logarithmic-series generators.

[Nacu–Peres-Mossel]. With suitable (but costly) arithmetics, can do all polynomials and rational functions that map [0, 1] to (0, 1). [Keane–O'Brien] Cannot do 2p, without restrictions; do continuous functions by approximation.

- Builds on ideas of von Neumann, Knuth-Yao
- Encapsulates constructions by Wästlund, Nacu, Peres, Mossel
- Develops new constructions:
 VN-generator, integration; Poisson & logarithmic distributions.

3.141592653589793238462643383279502884197169399375105 8.99749445923078164062862089986280348253421170679911 4808.31328230664709384460955058223172535940812841117 4502841.3701938521105559644622948954930381964.4881097 5665933446.3847564823378678316527120190914.5485669234 6034861045432.5482133936072602491412737.4587006606315 5881748815209205.3829254091715364367.5259036001133053 0548820466521384146.5194151160947.5572703657595919530 9218611738193261179316.11854807.462379962749567351885 7527248912279381830119491.955367356244065664308602139 494639522473719070217987.54.7027705392171762931767523 846748184676694051322.55681271.563560827785771342757 789609173637178721.58440901224955.3014654958537105079 227968925892354.51995611212902196086.9344181598136297 747713099607.57072113499999983729780495.1059731732816 096318597.2445945534690830264252230825334.5850352619 311881.2010003137838752886587533208381420617.7669147307.582534904287554687311595628638823537875937.9577

> We shall see nine ways to get π, some with 5 coin flips on average, with typically about a dozen lines of code...

2. Basic construction rules

Decision trees and loopless programs Do Bernoulli of param. 3/8,5/8; dyadic rationals "Compute" Boolean combinations

Name	realization	function
Conjunction $(P \wedge Q)$	if $P() = 1$ then $return(Q())$ else $return(0)$	$p \wedge q = p \cdot q$
Disjunction $(P \lor Q)$	if $P() = 0$ then $return(Q())$ else $return(1)$	$p \lor q = p + q - pq$
Complementation $(\neg P)$	if $P() = 0$ then return(1) else return(0)	1 - p
Squaring	$(P \land P)$	p^2
Conditional $(P \rightarrow Q R)$	$\mathbf{if}\; R() = 1 \; \mathbf{then}\; \mathrm{return}(P()) \; \mathbf{else}\; \mathrm{return}(Q())$	rp + (1 - r)q.

• Finite graphs and Markov chains

• Can do all rational p:

To do a $\Gamma B(3/7)$, flip three times; in 3 cases, return(1); in 4 cases return(0); otherwise repeat.

do a geometric ΓG(p) from a Bernoulli ΓB(p)

From a ΓB(p); repeatedly try till 1 is observed. If number of trials is even, then return(1).
 <u>Computes I/(I+p)</u> = (I-p)[I+p²+p⁴+ ...]

• Mossel, Nacu, Peres, Wästlund:

Theorem 1 ([21, 22, 27]). (i) Any polynomial f(x) with rational coefficients that maps (0,1) into (0,1) is strongly realizable by a finite graph. (ii) Any rational function f(x) with rational coefficients that maps (0,1) into (0,1) is strongly realizable by a finite graph.

• but it requires arbitrary-precision routines.

3. The von Neumann schema

Von Neumann Schema (I)

- Choose a class of permutations with P_n the number of those of size n.
- Draw $N \in Geo(\lambda)$ uniform Random Variables over [0,1].
- Succeed if the order type is good = in P_n .

$$\begin{split} & \Gamma \mathrm{VN}[\mathcal{P}](\lambda) := \{ \ \mathbf{do} \ \{ & \mathbf{geometric} \\ & N := \Gamma \mathrm{G}(\lambda); \\ & \mathbf{let} \ \mathbf{U} := (U_1, \dots, U_N) \ \text{be a vector of } [0,1] \text{-uniform variables.} \\ & \{ \ bits \ of \ the \ U_j \ are \ produced \ on \ a \ call-by-need \ basis \ to \ determine \ \sigma \ and \ \tau \ \} \\ & \mathbf{set} \ \tau := \mathrm{trie}(\mathbf{U}); \ \mathbf{let} \ \sigma := \mathrm{type}(\mathbf{U}); \\ & \mathbf{if} \ \sigma \in \mathcal{P}_N \ \mathbf{then} \ \mathrm{return}(N) \ \} \ . \end{split}$$

Von Neumann Schema (2)

- Choose a class of permutations with P_n the number of those of size *n*. Draw N=Geom(lambda).
- Probability of success with N=n is

$$\frac{(1-\lambda)P_n\lambda^n/n!}{(1-\lambda)\sum_n P_n\lambda^n/n!} = \frac{1}{P(\lambda)}\frac{P_n\lambda_n}{n!}$$

• Thus, get Poisson and logarithmic distributions

permutations (\mathcal{P}) :	all (\mathcal{Q})	sorted (\mathcal{R})	cyclic (S)	
distribution:	$(1-\lambda)\lambda^n$	$e^{-\lambda} \frac{\lambda^n}{n!}$	$\left \frac{1}{L}\frac{\lambda^n}{n}\right , L := \log(1-\lambda)^{-1}$	
	geometric	Poisson	logarithmic.	

Von Neumann Schema (3)

- Using a digital tree (aka trie), we only need a single string register to recognize perm classes for <u>Poisson and logarithmic distribs</u>!
- <u>Poisson</u> = sorted perms: $U_1 < U_2 < U_3$

 For VN schema, path-length of tries determines # coin flips.

PGF:

$$h_n(q) = \frac{1}{1 - q^n 2^{1-n}} \sum_{k=1}^{n-1} \frac{1}{2^n} \binom{n}{k} h_k(q) h_{n-k}(q).$$

Proposition 1. (i) Given a class \mathcal{P} of permutations and a parameter $\lambda \in (0, 1)$, the von Neumann schema $\Gamma VN[\mathcal{P}](\lambda)$ produces exactly a discrete random variable with probability distribution

$$\mathbb{P}(N=n) = \frac{1}{P(\lambda)} \frac{P_n \lambda n}{n!}.$$

(ii) The number K of iterations has expectation 1/s, where $s = (1 - \lambda)P(\lambda)$, and its distribution is 1 + Geo(s).

(iii) The number C of flips consumed by the algorithm (not counting² the ones in $\Gamma G(\lambda)$) is a random variable with probability generating function

(10)
$$\mathbb{E}(q^C) = \frac{H^+(\lambda, q)}{1 - H^-(\lambda, q)}.$$

where H^+, H^- are determined by (9):

$$H^+(z,q) = (1-z)\sum_{n=0}^{\infty} \frac{P_n}{n!} h_n(q) z^n, \qquad H^-(z,q) = (1-z)\sum_{n=0}^{\infty} \left(1 - \frac{P_n}{n!}\right) h_n(q) z^n.$$

The distribution has exponential tails.

Theorem 2. The Poisson and logarithmic distributions of parameter $\lambda \in (0,1)$ have a strong simulation by a Buffon machine that only uses a single string register.

- **Poisson**: Declare success (1) if N=0; failure o.w. Get $exp(-\lambda)$, etc.
- Check P: Do only one run; return(1) if success. E.g, for Poisson, gives (1-λ)exp(λ)
- Use alternating (zigzag) perms & get trigs!

Theorem 3. The following functions admit a strong simulation:

$$\begin{aligned} e^{-x}, \ e^{x-1}, \ (1-x)e^x, \ xe^{1-x}, \\ \frac{x}{\log(1-x)^{-1}}, \ \frac{1-x}{\log(1/x)}, \ (1-x)\log\frac{1}{1-x}, \ x\log(1/x), \\ \frac{1}{\cos(x)}, \ x\cot(x), \ (1-x)\cos(x), (1-x)\tan(x). \end{aligned}$$

• Polylogarithms, Bessel,...: do r experiments

$$\operatorname{Li}_{r}(z) := \sum_{n=1}^{\infty} \frac{z^{n}}{n^{r}},$$

$$\operatorname{Li}_2(1/2) = \frac{\pi^2}{12} - \frac{1}{2}\log^2 2, \qquad \operatorname{Li}_3(1/2) = \frac{1}{6}\log^3 2 - \frac{\pi^2}{12}\log 2 + \frac{7}{8}\zeta(3).$$

Get log(2), then $\pi^2/24$, in less than 10 flips on average

4. Square roots, algebraic & hypergeometric functions

Theorem 4. The square-root construction of Equation (11) provides an exact Bernoulli generator of parameter $\sqrt{1-\lambda}$, given a $\Gamma B(\lambda)$. The mean number of coin flips required, not counting the ones involved in the calls to $\Gamma B(\lambda)$, is $\frac{2\lambda}{1-\lambda}$. Hence the function $\sqrt{1-x}$ is strongly realizable.

Theorem 5 ([21]). To each bistoch grammar G and non-terminal S, there corresponds a construction (Figure 3), which can be implemented by a deterministic pushdown automaton and calls to a $\Gamma B(\lambda)$ and is of type $\Gamma B(\lambda) \longrightarrow \Gamma B(S(\frac{\lambda}{2}))$, where S(z) is the algebraic function canonically associated with the grammar G and non-terminal S. • Get hypergeometrics of binomial type.

Ramanujan:

$$\frac{1}{\pi} = \sum_{n=0}^{\infty} \binom{2n}{n}^3 \frac{6n+1}{2^{8n+4}},$$

procedure Rama(); {returns the value 1 with probability $1/\pi$ } let $S := X_1 + X_2$, where $X_1, X_2 \in \text{Geom}(\frac{1}{4})$; S1. with probability $\frac{5}{9}$ do S := S + 1; S2.for j = 1, 2, 3 do S3. S4. draw a sequence of 2S coin flippings; if $(\# \text{Heads} - \# \text{Tails}) \neq 0$ then return(0); S5. return(1). coin flips on average SRINIVASA RAMANUJI POSTAGE

5. A Buffon integrator

• In a construction of a $\Gamma B(\varphi(\lambda))$ from a $\Gamma B(\lambda)$, we substitute a $\Gamma B(U\lambda)$, with U uniform. Get an integrator:

$$\Phi(\lambda) = \frac{1}{\lambda} \int_0^{\infty} \phi(w) \, dw.$$

We can do a product ΓB(Uλ)=ΓB(U).ΓB(λ) by an AND (Λ), while emulating a uniform U with a "bag":

Theorem 6. Any construction C that produces a $\Gamma B(\phi(\lambda))$ from a $\Gamma B(\lambda)$ can be transformed into a construction of a $\Gamma B(\Phi(\lambda))$, where $\Phi(\lambda) = \frac{1}{\lambda} \int_0^{\lambda} \phi(w) dw$, by addition of a geometric bag. In particular, if $\phi(\lambda)$ is realizable, then its integral taken starting from 0 is also realizable. If in addition $\phi(\lambda)$ is analytic at 0, then its integral is strongly realizable.

• Chain:
$$p \rightarrow p^2 \rightarrow 1/(1+p^2) \rightarrow \arctan(x)$$

Theorem 7. The following functions are strongly realizable (0 < x < 1): $\log(1+x)$, $\arctan(x)$, $\frac{1}{2} \arcsin(x)$, $\int_0^x e^{-w^2/2} dw$.

6. Experiments

- Implements all earlier constructions: it works!
- Results for π-related constants:

$Li_2(1/2)$	Rama	arcsin [$1; \frac{1}{\sqrt{2}}; \frac{1}{2}$	$\frac{1}{2}$]	arcta	n $[1/2 + 1/3; 1]$	$\zeta(4)$	$\zeta(2)$
$\frac{\pi^2}{24}$	$\frac{1}{\pi}$	$\frac{\pi}{4}$	$\frac{\pi}{8}$	$\frac{\pi}{12}$	$\frac{\pi}{4}$	$\frac{\pi}{8}$	$\frac{7\pi^4}{720}$	$\frac{\pi^2}{12}$
7.9	10.8	76.5 (∞)	16.2	4.9	4.5	26.7 (∞)	6.2	7.2.

Method; constant; mean # flips