Distances in plane trees and planar maps

Eric Fusy
LIX, Ecole Polytechnique

Overview

- Structures we study:

- Distance-parameters
- typical (depth, distance between 2 vertices)
- extremal (height, radius, diameter)

Part 1: distances in plane trees

Plane trees

- Plane tree $=$ tree embedded in the plane

- Rooted Plane tree $=$ plane tree + marked corner

- Rooted plane tree <-> Dyck path

Profile of a plane tree

- Overview:
- show (using cyclic lemma) that $\mathrm{h} \approx 2 \cdot$ Typical Level
- show limit profile (Rayleigh law)

Cyclic lemma to count Dyck paths

- Def: quasi-bridge = walk ending at $\{y=-1\}$

Cyclic lemma to count Dyck paths

- Def: quasi-bridge = walk ending at $\{y=-1\}$

Dyck path + appended down-step

Cyclic lemma to count Dyck paths

- Def: quasi-bridge = walk ending at $\{y=-1\}$

Dyck path + appended down-step + marked point Quasi-bridge (by rèrooting)

Cyclic lemma to count Dyck paths

- Def: quasi-bridge = walk ending at $\{y=-1\}$

Dyck path + appended down-step + marked point Quasi-bridge (by ré-rooting)

Cyclic lemma to count Dyck paths

- Def: quasi-bridge = walk ending at $\{y=-1\}$

Dyck path + appended down-step + marked point Quasi-bridge (by rèrooting)

$\Rightarrow \quad D_{n} \cdot(2 n+1)=\binom{2 n+1}{n} \Rightarrow D_{n}=\frac{(2 n)!}{n!(n+1)!}$

Vertical span of a path

Def: vertical span := MaxOrdinate - MinOrdinate

Vertical span and cyclic lemma

$v s(D)=\{\operatorname{vs}(Q)$ if marked point before MaxOrdinate

Vertical span and cyclic lemma

$v s(D)=\left\{\begin{array}{l}v s(Q) \text { if marked point before MaxOrdinate } \\ v s(Q)+1 \text { if marked point after MaxOrdinate }\end{array}\right.$

Vertical span and cyclic lemma

$$
\Rightarrow \quad \operatorname{vs}(D)=v s(Q)+(0 \text { or } 1)
$$

Vertical span and cyclic lemma

Also, $\mathrm{vs}(\mathrm{D})=\mathrm{h}+1$

Vertical span and cyclic lemma

Vertical span and cyclic lemma

D

$$
\Rightarrow \quad \operatorname{vs}(D)=\mathrm{vs}(Q)+(0 \text { or } 1)
$$

Also, $\mathrm{vs}(\mathrm{D})=\mathrm{h}+1$

$$
v s(Q)=h_{\downarrow}(Q)+h_{\wedge}(Q)+1
$$

Combinatorial interpretation of $h_{\downarrow}(\mathbf{Q})$

$\mathrm{Q} \Leftrightarrow \mathrm{D}+$ marked point $\Leftrightarrow \mathrm{T}+$ marked corner

$h_{\downarrow}(Q)=$ distance L between the 2 marked corners

Combinatorial interpretation of $\mathbf{h}_{\downarrow}(\mathbf{Q})$

$\mathrm{Q} \Leftrightarrow \mathrm{D}+$ marked point $\Leftrightarrow \mathrm{T}+$ marked corner

$h_{\downarrow}(Q)=$ distance L between the 2 marked corners
PATHS: $\quad h(D)=h_{\downarrow}(Q)+h_{\uparrow}(Q)+(0$ or -1$)$

TREES:

$$
\mathrm{h}(\mathrm{~T})=\mathrm{L}+\mathrm{L}^{\prime}+(0 \text { or }-1)
$$

Distribution of L (Meir \& Moon'78)

- Use generating functions (cf this morning)

$$
T(z)=\frac{1}{1-z T(z)}
$$

- Two marked corners at distance k

$$
\begin{aligned}
& \mathrm{L}=3 \\
& \mathbb{P}_{n}(L=k)=\frac{\left[z^{n}\right] T_{k}(z)}{(2 n+1)\left[z^{n}\right] T(z)}=\frac{(2 k+2) n!(n+1)!}{(n+k+2)!(n-k)!}
\end{aligned}
$$

(using the Lagrange inversion formula)

Distribution of L (Meir \& Moon'78)

(i) $\mathbb{P}_{n}(L=k)=\frac{\left[z^{n}\right] T_{k}(z)}{(2 n+1)\left[z^{n}\right] T(z)}=\frac{(2 k+2) n!(n+1)!}{(n+k+2)!(n-k)!}$

Distribution of L (Meir \& Moon'78)

(i) $\mathbb{P}_{n}(L=k)=\frac{\left[z^{n}\right] T_{k}(z)}{(2 n+1)\left[z^{n}\right] T(z)}=\frac{(2 k+2) n!(n+1)!}{(n+k+2)!(n-k)!}$
$\forall x>0, \mathbb{P}_{n}(L=\stackrel{\Downarrow}{\sqrt{n}}) \underset{n \rightarrow \infty}{\sim} \frac{1}{\sqrt{n}} 2 x \exp \left(-x^{2}\right)$

Distribution of L (Meir \& Moon'78)

(i) $\mathbb{P}_{n}(L=k)=\frac{\left[z^{n}\right] T_{k}(z)}{(2 n+1)\left[z^{n}\right] T(z)}=\frac{(2 k+2) n!(n+1)!}{(n+k+2)!(n-k)!}$
\Downarrow
$\begin{aligned} \forall x>0, & \mathbb{P}_{n}(L= \\ & \Downarrow \sqrt{n}) \underset{n \rightarrow \infty}{\sim} \frac{1}{\sqrt{n}} 2 x \exp \left(-x^{2}\right) \\ & \Downarrow\end{aligned}$
$L / \sqrt{n} \underset{n \rightarrow \infty}{\longrightarrow} \mathrm{~d} x \cdot 2 x \exp \left(-x^{2}\right) \quad$ Rayleigh law

Distribution of L (Meir \& Moon'78)

(i) $\mathbb{P}_{n}(L=k)=\frac{\left[z^{n}\right] T_{k}(z)}{(2 n+1)\left[z^{n}\right] T(z)}=\frac{(2 k+2) n!(n+1)!}{(n+k+2)!(n-k)!}$

$$
L / \sqrt{n} \underset{n \rightarrow \infty}{\longrightarrow} \mathrm{~d} x \cdot 2 x \exp \left(-x^{2}\right) \quad \text { Rayleigh law }
$$

Rq: (i) implies uniform tail $\mathbb{P}_{n}(L / \sqrt{n} \geq x) \leq a e^{-c x} \forall n, x$
\Rightarrow Moments of $\mathrm{L} / \mathrm{n}^{1 / 2}$ converge to moments of Rayleigh law

The Rayleigh law / stable laws

 cf [Banderier, Flajolet, Schaeffer, Soria'01]Case $\lambda=1 / 2$
If $\quad \mathbb{P}_{n}\left(X_{n}=k\right) \propto\left[z^{n}\right] T(u)^{k}$
with $T(u)=1-c(1-u)^{1 / 2}+\cdots$
then $\frac{X_{n}}{n^{1 / 2}} \rightarrow$ Rayleigh law
Rk: $\quad T(u)^{k}=\operatorname{PGF}\left(\sum_{i=1}^{k} Z_{i}\right)$, with $\operatorname{Tail}\left(Z_{i}\right) \sim k^{-3 / 2}$

$$
\frac{1}{k^{2}} \sum_{i=1}^{k} Z_{i} \longrightarrow \text { Stable law parameter } 1 / 2
$$

The Rayleigh law / stable laws

 cf [Banderier, Flajolet, Schaeffer, Soria'01]General $\lambda \in(0,1)$
If $\quad \mathbb{P}_{n}\left(X_{n}=k\right) \propto\left[z^{n}\right] T(u)^{k}$
with $T(u)=1-c(1-u)^{\lambda}+\cdots$
then $\frac{X_{n}}{n^{\lambda}} \rightarrow G_{\lambda}(\underset{\sim}{u}) \mathrm{d} u$
Rk: $T(u)^{k}=\operatorname{PGF}\left(\sum_{i=1}^{k} Z_{i}\right)$, with $\operatorname{Tail}\left(Z_{i}\right) \sim k^{-\lambda-1}$

$$
\frac{1}{k^{1 / \lambda}} \sum_{i=1}^{k} Z_{i} \longrightarrow \text { Stable law parameter } \lambda
$$

The Rayleigh law / stable laws

 cf [Banderier, Flajolet, Schaeffer, Soria'01]General $\lambda \in(0,1)$
If $\quad \mathbb{P}_{n}\left(X_{n}=k\right) \propto\left[z^{n}\right] T(u)^{k}$
with $T(u)=1-c(1-u)^{\lambda}+\cdots$
then $\frac{X_{n}}{n^{\lambda}} \rightarrow G_{\lambda}(u) \mathrm{d} u$
Rk: $T(u)^{k}=\operatorname{PGF}\left(\sum_{i=1}^{k} Z_{i}\right)$, with $\operatorname{Tail}\left(Z_{i}\right) \sim k^{-\lambda-1}$

$$
\frac{1}{k^{1 / \lambda}} \sum_{i=1}^{k} Z_{i} \longrightarrow \text { Stable law parameter } \lambda
$$

Here $\lambda=1 / 2$ (for maps $\lambda=1 / 4$)

Expectation/tail for the height

$$
h=L+L^{\prime}+(0 \text { or }-1)
$$

Expectation/tail for the height

$$
h=L+L^{\prime}+(0 \text { or }-1)
$$

Expectation: $\mathbb{E}_{n}(h)=2 \mathbb{E}_{n}(L)+\epsilon$, with $\epsilon \in[-1,0]$

$$
\mathbb{E}_{n}(L) \sim \underbrace{\sqrt{\pi} / 2}_{\mathbb{E}(\text { Rayleigh })} \cdot \sqrt{n}
$$

$\Rightarrow \mathbb{E}_{n}(h) \sim \sqrt{\pi} \sqrt{n} \quad$ [De Bruijn, Knuth, Rice'72]

Expectation/tail for the height

$$
h=L+L^{\prime}+(0 \text { or }-1)
$$

Expectation: $\mathbb{E}_{n}(h)=2 \mathbb{E}_{n}(L)+\epsilon$, with $\epsilon \in[-1,0]$

$$
\mathbb{E}_{n}(L) \sim \underbrace{\sqrt{\pi} / 2}_{\mathbb{E}(\text { Rayleigh })} \cdot \sqrt{n}
$$

$\Rightarrow \mathbb{E}_{n}(h) \sim \sqrt{\pi} \sqrt{n} \quad$ [De Bruijn, Knuth, Rice'72]
Exponential tail: $\mathbb{P}_{n}(h \geq k) \leq 2 \mathbb{P}_{n}(L \geq k / 2)$

$$
\begin{aligned}
& \mathbb{P}_{n}(L / \sqrt{n} \geq x) \leq a e^{-c x} \forall n, x \\
\Rightarrow & \mathbb{P}_{n}(h / \sqrt{n} \geq x) \leq 2 a e^{-c x}
\end{aligned}
$$

Limit distribution for the height

Two possible approaches:

- Singularity analysis [Flajolet, Odlyzko'82], [Flajolet et al.'93]

System $y_{h}(z)=1 /\left(1-y_{h-1}(z)\right) \quad[$ height $\leq h]$
Singular expansion of $y_{h}-y_{h-1}$ for $h=\lfloor x \sqrt{n}\rfloor$

$$
\Rightarrow \mathbb{P}\left(\frac{\text { height }}{\sqrt{n}} \leq x\right) \longrightarrow \sum_{k \in \mathbb{Z}}\left(2 k^{2} x^{2}-1\right) e^{-k^{2} x^{2}}
$$

- Continuous limit [Aldous]

If functional $F: \mathcal{C}[0,1] \rightarrow \mathbb{R}$ is continuous for $\|.\|_{\infty}$, then

$$
F\left(D_{n} / \sqrt{n}\right) \longrightarrow F(\text { brownian excursion })
$$

Part 2: distances in planar quadrangulations

Planar maps

- Planar map = planar graph embedded on the sphere

- Quadrangulation = planar map with faces of degree 4

Profile of a pointed quadrangulation

Profile for vertices: $(4,4,4,2)$
Profile for edges: $(4,8,8,6)$

Well-labelled trees

- A well-labelled tree is a plane tree where:
- each vertex v has a non-negative label
- the labels at each edge (v, v ') differ by at most 1
- at least one vertex has label 1

Well-labelled trees

- A well-labelled tree is a plane tree where:
- each vertex v has a non-negative label
- the labels at each edge (v, v) differ by at most 1
- at least one vertex has label 1

- Rooted well-labelled tree = well-labelled tree + marked corner

Well-labelled trees

- A well-labelled tree is a plane tree where:
- each vertex v has a non-negative label
- the labels at each edge (v, v ') differ by at most 1
- at least one vertex has label 1

- Rooted well-labelled tree = well-labelled tree + marked corner

(there are $3^{n} \frac{(2 n)!}{n!(n+1)!}$ such trees with n edges)

Well-labelled tree -> pointed quadrangulation

[Schaeffer'98], also [Cori\&Vauquelin'81]

Well-labelled tree -> pointed quadrangulation

[Schaeffer'98], also [Cori\&Vauquelin'81]

1) Place a red leg in each corner

Well-labelled tree -> pointed quadrangulation

[Schaeffer'98], also [Cori\&Vauquelin'81]

1) Place a red leg in each corner

Well-labelled tree -> pointed quadrangulation

[Schaeffer'98], also [Cori\&Vauquelin'81]

2) Repeat: - choose a leg of label $i>1$

- 'throw" it to next corner of label i-1

Well-labelled tree -> pointed quadrangulation

[Schaeffer'98], also [Cori\&Vauquelin'81]

2) Repeat: - choose a leg of label $i>1$

- 'throw" it to next corner of label i-1

Well-labelled tree -> pointed quadrangulation

[Schaeffer'98], also [Cori\&Vauquelin'81]

2) Repeat: - choose a leg of label $i>1$

- "'throw" it to next corner of label i-1

Well-labelled tree -> pointed quadrangulation

[Schaeffer'98], also [Cori\&Vauquelin'81]

2) Repeat: - choose a leg of label i>1

- "'throw" it to next corner of label i-1

Well-labelled tree -> pointed quadrangulation

[Schaeffer'98], also [Cori\&Vauquelin'81]

2) Repeat: - choose a leg of label i>1

- "'throw" it to next corner of label i-1

Well-labelled tree -> pointed quadrangulation

[Schaeffer'98], also [Cori\&Vauquelin'81]

Well-labelled tree -> pointed quadrangulation

[Schaeffer'98], also [Cori\&Vauquelin'81]

3) Create a new vertex labelled 0 in the outer face

Well-labelled tree -> pointed quadrangulation

[Schaeffer'98], also [Cori\&Vauquelin'81]

(0)
3) Create a new vertex labelled 0 in the outer face

Well-labelled tree -> pointed quadrangulation

[Schaeffer'98], also [Cori\&Vauquelin'81]

(0)
4) Connect all remaining legs (label 1) to the new vertex

Well-labelled tree -> pointed quadrangulation

[Schaeffer'98], also [Cori\&Vauquelin'81]

4) Connect all remaining legs (label 1) to the new vertex

Well-labelled tree -> pointed quadrangulation

[Schaeffer'98], also [Cori\&Vauquelin'81]

5) Delete the black edges

Well-labelled tree -> pointed quadrangulation

[Schaeffer'98], also [Cori\&Vauquelin'81]

5) Delete the black edges

Well-labelled tree -> pointed quadrangulation

[Schaeffer'98], also [Cori\&Vauquelin'81]

Well-labelled tree -> pointed quadrangulation

[Schaeffer'98], also [Cori\&Vauquelin'81]

- faces are of degree 4

Well-labelled tree -> pointed quadrangulation

[Schaeffer'98], also [Cori\&Vauquelin'81]

- faces are of degree 4

Well-labelled tree -> pointed quadrangulation

[Schaeffer'98], also [Cori\&Vauquelin'81]

- faces are of degree 4

Well-labelled tree -> pointed quadrangulation

[Schaeffer'98], also [Cori\&Vauquelin'81]

- faces are of degree 4

Well-labelled tree -> pointed quadrangulation

[Schaeffer'98], also [Cori\&Vauquelin'81]

- faces are of degree 4

Well-labelled tree -> pointed quadrangulation

[Schaeffer'98], also [Cori\&Vauquelin'81]

- faces are of degree 4

- labels = distances from pointed vertex

The mapping is a bijection

Theorem [Schaeffer'98]: The mapping is a bijection from well-labelled trees to pointed quadrangulations

vertex label i corner label i
edge

vertex at distance i
edge at level i
face

The mapping is a bijection

Theorem [Schaeffer'98]: The mapping is a bijection from well-labelled trees to pointed quadrangulations

vertex label i corner label i
edge

vertex at distance i
edge at level i
face

Corollary: there are $3^{n} \frac{(2 n)!}{n!(n+1)!}$ quadrangulations with n faces, a marked vertex, and a marked edge

Relative levels

$T+2$ marked corners $c_{1}, c_{2} \leftrightarrow(Q, v)+2$ marked edges e_{1}, e_{2}

$$
\ell\left(c_{2}\right)-\ell\left(c_{1}\right)=\operatorname{level}\left(e_{2}\right)-\operatorname{level}\left(e_{1}\right)
$$

Relative levels are in the scale $n^{1 / 4}$

L is of order $n^{1 / 2}$

$\Delta:=\ell\left(c_{2}\right)-\ell\left(c_{1}\right)$ is of order \sqrt{L}, i.e., $n^{1 / 4}$

Relative levels are in the scale $n^{1 / 4}$

L is of order $n^{1 / 2}$
$\Delta:=\ell\left(c_{2}\right)-\ell\left(c_{1}\right)$ is of order \sqrt{L}, i.e., $n^{1 / 4}$

Precisely $\frac{\Delta}{n^{1 / 4}} \underset{n \rightarrow \infty}{\longrightarrow} \mathrm{~d} t g(t)$
where $g(t):=2 \sqrt{\frac{3}{\pi}} \int_{0}^{+\infty} e^{-3 t^{2} / 4 x} \sqrt{x} e^{-x^{2}} \mathrm{~d} x$

$$
\begin{aligned}
& g(t)=\Theta\left(t^{1 / 3} e^{-c t^{4 / 3}}\right) \\
& c:=3^{2 / 3} \frac{5}{8}
\end{aligned}
$$

Relation typical level / radius

Relation typical level / radius

$h_{\downarrow}+1=$ Level(random edge)

$$
L:=h_{\downarrow}+1 / 2=\text { Level }-1 / 2
$$

Relation typical level / radius

$h_{\downarrow}+1=$ Level(random edge) $\quad L:=h_{\downarrow}+1 / 2=$ Level $-1 / 2$

Illustration

- For pointed quadrangulations with 2 faces

(1/2, 1/2, 3/2)
(1/2, 1/2, 1/2) distance L
2
1
radius r

$$
\begin{aligned}
& E(r)=(2+2+1) / 3=5 / 3 \\
& E(L)=(7 / 2+5 / 2+3 / 2) / 9=5 / 6
\end{aligned}
$$

$E(r)=2 E(L)$
in each fixed size

Consequence on the profile

Consequence on the profile

Typical level (\& radius) also of order $\mathrm{n}^{1 / 4}$:

- Chassaing-Schaeffer'04: continuous limit (brownian snake)
- Bouttier-Di Francesco-Guitter'03: exact GF expressions
[Bouttier, Di Francesco, Guitter'03]
$R_{k}(z):=$ GF well-labelled trees with root-label $\leq k$

Exact GF expression

[Bouttier, Di Francesco, Guitter'03]
$R_{k}(z):=$ GF well-labelled trees with root-label $\leq k$
Equation: $R_{k}(z)=\frac{1}{1-z\left(R_{k-1}(z)+R_{k}(z)+R_{k+1}(z)\right.}$
$R=\lim _{k} R_{k} \quad$ satisfies $\quad R=\frac{1}{1-3 z R}$

Exact GF expression

[Bouttier, Di Francesco, Guitter'03]
$R_{k}(z):=$ GF well-labelled trees with root-label $\leq k$
$R=\lim _{k} R_{k} \quad$ satisfies $R=\frac{1}{1-3 z R}$
$\begin{aligned} \text { Exact solution: } R_{k} & =R \frac{\left(1-x^{k}\right)\left(1-x^{k+3}\right)}{\left(1-x^{k+1}\right)\left(1-x^{k+2}\right)} \\ \text { where } x+\frac{1}{x}+1 & =\frac{1}{z R^{2}}\end{aligned}$

Exact GF expression

[Bouttier, Di Francesco, Guitter'03] $R_{k}(z):=$ GF well-labelled trees with root-label $\leq k$
$R=\lim _{k} R_{k} \quad$ satisfies $R=\frac{1}{1-3 z R}$
Exact solution: $R_{k}=R \frac{\left(1-x^{k}\right)\left(1-x^{k+3}\right)}{\left(1-x^{k+1}\right)\left(1-x^{k+2}\right)}$

$$
\text { where } x+\frac{1}{x}+1=\frac{1}{z R^{2}}
$$

RR: $x=1-c(1-z / \rho)^{1 / 4}+\cdots$

$$
\Rightarrow \frac{\text { Level }}{n^{1 / 4}} \longrightarrow \mathrm{du} g(\underset{\sim}{u})
$$

