Distances in plane trees and planar maps

Eric Fusy LIX, Ecole Polytechnique

Overview

- Distance-parameters
 - typical (depth, distance between 2 vertices)
 - extremal (height, radius, diameter)

Part 1: distances in plane trees

Plane trees

• Plane tree = tree embedded in the plane

• Rooted Plane tree = plane tree + marked corner

Rooted plane tree <-> Dyck path

Profile of a plane tree

- Overview:
 - show (using cyclic lemma) that $h \approx 2 \cdot Typical Level$
 - show limit profile (Rayleigh law)

Vertical span of a path

Def: vertical span := MaxOrdinate - MinOrdinate

 $vs(D) = \begin{cases} vs(Q) \text{ if marked point before MaxOrdinate} \\ vs(Q) + 1 \text{ if marked point after MaxOrdinate} \end{cases}$

Also, vs(D) = h + 1

Also, vs(D) = h + 1 $vs(Q) = h_{\downarrow}(Q) + h_{\uparrow}(Q) + 1$

Combinatorial interpretation of h_i(Q)

 $Q \Leftrightarrow D$ + marked point $\Leftrightarrow T$ + marked corner

 $h_{\downarrow}(Q)$ = distance L between the 2 marked corners

Combinatorial interpretation of h₁(Q)

 $Q \Leftrightarrow D$ + marked point $\Leftrightarrow T$ + marked corner

 $h_{\downarrow}(Q)$ = distance L between the 2 marked corners

• Use generating functions (cf this morning)

• Two marked corners at distance k

L=3

$$T_k(z) = z^k T(z)^{2k+2}$$

$$\mathbb{P}_n(L=k) = \frac{[z^n]T_k(z)}{(2n+1)[z^n]T(z)} = \frac{(2k+2)n!(n+1)!}{(n+k+2)!(n-k)!}$$

(using the Lagrange inversion formula)

(i) $\mathbb{P}_n(L=k) = \frac{[z^n]T_k(z)}{(2n+1)[z^n]T(z)} = \frac{(2k+2)n!(n+1)!}{(n+k+2)!(n-k)!}$

(i) $\mathbb{P}_n(L=k) = \frac{[z^n]T_k(z)}{(2n+1)[z^n]T(z)} = \frac{(2k+2)n!(n+1)!}{(n+k+2)!(n-k)!}$ $\forall x > 0, \ \mathbb{P}_n(L=x\sqrt{n}) \underset{n \to \infty}{\sim} \frac{1}{\sqrt{n}} 2x \exp(-x^2)$

 \Rightarrow Moments of L / n^{1/2} converge to moments of Rayleigh law

The Rayleigh law / stable laws

cf [Banderier, Flajolet, Schaeffer, Soria'01]

Case
$$\lambda = 1/2$$

If $\mathbb{P}_n(X_n = k) \propto [z^n]T(u)^k$
with $T(u) = 1 - c(1-u)^{1/2} + \cdots$
then $\frac{X_n}{n^{1/2}} \rightarrow Rayleigh \ law$
Rk: $T(u)^k = PGF\left(\sum_{i=1}^k Z_i\right), \ with \ Tail(Z_i) \sim k^{-3/2}$
 $\frac{1}{k^2}\sum_{i=1}^k Z_i \longrightarrow Stable \ law \ parameter \ 1/2$

The Rayleigh law / stable laws

cf [Banderier, Flajolet, Schaeffer, Soria'01]

General
$$\lambda \in (0, 1)$$

If $\mathbb{P}_n(X_n = k) \propto [z^n]T(u)^k$
with $T(u) = 1 - c(1-u)^{\lambda} + \cdots$
then $\frac{X_n}{n^{\lambda}} \to G_{\lambda}(u) du$
Rk: $T(u)^k = PGF\left(\sum_{i=1}^k Z_i\right)$, related to Stable _{λ}
Rk: $T(u)^k = PGF\left(\sum_{i=1}^k Z_i\right)$, with $Tail(Z_i) \sim k^{-\lambda-1}$
 $\frac{1}{k^{1/\lambda}}\sum_{i=1}^k Z_i \longrightarrow Stable \ law \ parameter \ \lambda$

The Rayleigh law / stable laws

cf [Banderier, Flajolet, Schaeffer, Soria'01]

General
$$\lambda \in (0, 1)$$

If $\mathbb{P}_n(X_n = k) \propto [z^n]T(u)^k$
with $T(u) = 1 - c(1 - u)^{\lambda} + \cdots$
then $\frac{X_n}{n^{\lambda}} \to G_{\lambda}(u) \, du$
Rk: $T(u)^k = PGF\left(\sum_{i=1}^k Z_i\right)$, with $Tail(Z_i) \sim k^{-\lambda-1}$
 $\frac{1}{k^{1/\lambda}}\sum_{i=1}^k Z_i \longrightarrow Stable \ law \ parameter \ \lambda$
Here $\lambda = 1/2$ (for maps $\lambda = 1/4$)

Expectation/tail for the height

h = L + L' + (0 or -1)

Expectation/tail for the height

$$h = L + L' + (0 \text{ or } -1)$$

Expectation: $\mathbb{E}_n(h) = 2 \mathbb{E}_n(L) + \epsilon$, with $\epsilon \in [-1, 0]$ $\mathbb{E}_n(L) \sim \underbrace{\sqrt{\pi/2}}_{\mathbb{E}(\text{Rayleigh})} \cdot \sqrt{n}$ $\Rightarrow \mathbb{E}_n(h) \sim \sqrt{\pi} \sqrt{n}$ [De Bruijn, Knuth, Rice'72]

Expectation/tail for the height

$$h = L + L' + (0 \text{ or } -1)$$

Expectation: $\mathbb{E}_n(h) = 2 \mathbb{E}_n(L) + \epsilon$, with $\epsilon \in [-1, 0]$ $\mathbb{E}_n(L) \sim \sqrt{\pi}/2 \cdot \sqrt{n}$ $\mathbb{E}(\text{Rayleigh})$ $\Rightarrow \mathbb{E}_n(h) \sim \sqrt{\pi} \sqrt{n}$ [De Bruijn, Knuth, Rice'72] Exponential tail: $\mathbb{P}_n(h \ge k) \le 2\mathbb{P}_n(L \ge k/2)$ $\mathbb{P}_n(L/\sqrt{n} \ge x) \le a e^{-cx} \ \forall n, x$ $\Rightarrow |\mathbb{P}_n(h/\sqrt{n} \ge x) \le 2a e^{-cx}$

Limit distribution for the height

Two possible approaches:

Singularity analysis [Flajolet, Odlyzko'82], [Flajolet et al.'93]

System $y_h(z) = 1/(1 - y_{h-1}(z))$ [height $\leq h$] Singular expansion of $y_h - y_{h-1}$ for $h = |x\sqrt{n}|$ $\implies \mathbb{P}\Big(\frac{height}{\sqrt{n}} \le x\Big) \longrightarrow \sum (2k^2x^2 - 1)e^{-k^2x^2}$ $k \in \mathbb{Z}$ Continuous limit [Aldous] Image credit J.F. Marckert If functional $F : \mathcal{C}[0,1] \to \mathbb{R}$ is continuous for $||.||_{\infty}$, then $F(D_n/\sqrt{n}) \longrightarrow F(brownian \ excursion)$

Part 2: distances in planar quadrangulations

Planar maps

• Planar map = planar graph embedded on the sphere

Embedded in the plane

• Quadrangulation = planar map with faces of degree 4

Profile of a pointed quadrangulation

Profile for vertices: (4,4,4,2)

Profile for edges: (4,8,8,6)

Well-labelled trees

- A well-labelled tree is a plane tree where:
- each vertex v has a non-negative label
- the labels at each edge (v,v') differ by at most 1
- at least one vertex has label 1

Well-labelled trees

- A well-labelled tree is a plane tree where:
- each vertex v has a non-negative label
- the labels at each edge (v,v') differ by at most 1
- at least one vertex has label 1
- Rooted well-labelled tree = well-labelled tree + marked corner

Well-labelled trees

3

2

3

- A well-labelled tree is a plane tree where:
- each vertex v has a non-negative label
- the labels at each edge (v,v') differ by at most 1
- at least one vertex has label 1
- Rooted well-labelled tree = well-labelled tree + marked corner

[Schaeffer'98], also [Cori&Vauquelin'81]

1) Place a red leg in each corner

[Schaeffer'98], also [Cori&Vauquelin'81]

1) Place a red leg in each corner

[Schaeffer'98], also [Cori&Vauquelin'81]

[Schaeffer'98], also [Cori&Vauquelin'81]

3) Create a new vertex labelled 0 in the outer face

[Schaeffer'98], also [Cori&Vauquelin'81]

0

3) Create a new vertex labelled 0 in the outer face

[Schaeffer'98], also [Cori&Vauquelin'81]

0

4) Connect all remaining legs (label 1) to the new vertex

[Schaeffer'98], also [Cori&Vauquelin'81]

4) Connect all remaining legs (label 1) to the new vertex

[Schaeffer'98], also [Cori&Vauquelin'81]

5) Delete the black edges

[Schaeffer'98], also [Cori&Vauquelin'81]

5) Delete the black edges

[Schaeffer'98], also [Cori&Vauquelin'81]

- faces are of degree 4

[Schaeffer'98], also [Cori&Vauquelin'81]

pointed vertex

The mapping is a bijection

Theorem [Schaeffer'98]: The mapping is a bijection from well-labelled trees to pointed quadrangulations

vertex at distance i

edge at level i

face

vertex label i corner label i

edge

The mapping is a bijection

Theorem [Schaeffer'98]: The mapping is a bijection from well-labelled trees to pointed quadrangulations

Corollary: there are $3^n \frac{(2n)!}{n!(n+1)!}$ quadrangulations with n faces, a marked vertex, and a marked edge

Relative levels

 $T + 2 \operatorname{marked \ corners} \ c_1, c_2 \leftrightarrow (Q, v) + 2 \operatorname{marked \ edges} \ e_1, e_2$ $\ell(c_2) - \ell(c_1) = \operatorname{level}(e_2) - \operatorname{level}(e_1)$

Relative levels are in the scale n^{1/4}

L is of order $n^{1/2}$ $\Delta := \ell(c_2) - \ell(c_1)$ is of order \sqrt{L} , i.e., $n^{1/4}$

Relative levels are in the scale n^{1/4}

L is of order $n^{1/2}$ $\Delta := \ell(c_2) - \ell(c_1)$ is of order \sqrt{L} , i.e., $n^{1/4}$

Precisely
$$\frac{\Delta}{n^{1/4}} \xrightarrow[n \to \infty]{} \mathrm{d}t \, g(t)$$

where $g(t) := 2\sqrt{\frac{3}{\pi}} \int_{0}^{+\infty} e^{-3t^{2}/4x} \sqrt{x} \, e^{-x^{2}} \mathrm{d}x$

Relation typical level / radius

r

-1)

Relation typical level / radius

 h_{\downarrow} +1 = Level(random edge) L := h_{\downarrow} +1/2 = Level - 1/2

Relation typical level / radius

 h_{\downarrow} +1 = Level(random edge) L := h_{\downarrow} +1/2 = Level - 1/2

Illustration

• For pointed quadrangulations with 2 faces

(1/2, 3/2, 3/2) (1/2, 1/2, 3/2) (1/2, 1/2, 1/2) distance L 2 2 1 radius r

$$E(r) = (2+2+1)/3 = 5/3$$

$$E(L) = (7/2 + 5/2 + 3/2)/9 = 5/6$$

$$E(r) = 2 E(L) \text{ in each fixed size}$$

Typical level (& radius) also of order n^{1/4}:

- Chassaing-Schaeffer'04: continuous limit (brownian snake)
- Bouttier-Di Francesco-Guitter'03: exact GF expressions

Exact GF expression [Bouttier, Di Francesco, Guitter'03]

 $R_k(z) := \mathbf{GF}$ well-labelled trees with root-label $\leq k$

 $\begin{array}{l} \textbf{Exact GF expression} \\ \textbf{[Bouttier, Di Francesco, Guitter'03]} \\ R_k(z) := \textbf{GF well-labelled trees with root-label} \leq k \\ \textbf{Equation: } R_k(z) = \frac{1}{1 - z(R_{k-1}(z) + R_k(z) + R_{k+1}(z))} \\ R = \lim_k R_k \quad \textbf{satisfies} \quad R = \frac{1}{1 - 3zR} \end{array}$

Exact GF expression [Bouttier, Di Francesco, Guitter'03] $R_k(z) := \mathbf{GF}$ well-labelled trees with root-label $\leq k$ Equation: $R_k(z) = \frac{1}{1 - z(R_{k-1}(z) + R_k(z) + R_{k+1}(z))}$ $R = \lim_{k} R_k \quad \text{satisfies} \ R = \frac{1}{1 - 3zR}$ Exact solution: $R_k = R \frac{(1-x^k)(1-x^{k+3})}{(1-x^{k+1})(1-x^{k+2})}$ where $x + \frac{1}{x} + 1 = \frac{1}{zR^2}$

Exact GF expression [Bouttier, Di Francesco, Guitter'03] $R_k(z) := \mathbf{GF}$ well-labelled trees with root-label $\leq k$ Equation: $R_k(z) = \frac{1}{1 - z(R_{k-1}(z) + R_k(z) + R_{k+1}(z))}$ $R = \lim_{k} R_k \quad \text{satisfies} \quad R = \frac{1}{1 - 3zR}$ Exact solution: $R_k = R \frac{(1-x^k)(1-x^{k+3})}{(1-x^{k+1})(1-x^{k+2})}$ where $x + \frac{1}{r} + 1 = \frac{1}{2R^2}$ **Rk:** $x = 1 - c(1 - z/\rho)^{1/4} + \cdots$ related to Stable_{1/4}