A simple case of the Mahonian statistic: A saddle point approach

Guy Louchard

March 14, 2010

Outline

(1) Introduction

(2) The Gaussian limit, $j=\mu+x \sigma$
(3) The Large deviation, $j=\mu+x n^{7 / 4}$
(4) Justification of the integration procedures

Introduction

In [1], Canfield, Janson and Zeilberger analyze the Mahonian distribution on multiset permutations: classic permutations on m objects can be viewed as words in the alphabet $\{1, \ldots, m\}$. If we allow repetitions, we can consider all words with a_{1} occurences of $1, a_{2}$ occurences of $2, \ldots, a_{m}$ occurences of m. Let J_{m} denote the number of inversions. Assuming that all words are equally likely, the probability generating function of J_{m} is given, setting $N=a_{1}+\cdots+a_{m}$, by

$$
\phi_{a_{1}, \ldots, a_{m}}(z)=\frac{\prod_{i=1}^{m} a_{i}!\prod_{i=1}^{N}\left(1-z^{i}\right)}{N!\prod_{j=1}^{m} \prod_{i=1}^{a_{j}}\left(1-z^{i}\right)} .
$$

The mean μ and variance σ^{2} are given by

$$
\mu\left(J_{m}\right)=e_{2}\left(a_{1}, \ldots, a_{m}\right) / 2, \quad \sigma^{2}\left(J_{m}\right) \quad=\frac{\left(e_{1}+1\right) e_{2}-e_{3}}{12}
$$

where $e_{k}\left(a_{1}, \ldots, a_{m}\right)$ is the degree k elementary symmetric function.

Let $a^{*}=\max _{j} a_{j}$ and $N^{*}=N-a^{*}$. In [1], the authors prove that, if $N^{*} \rightarrow \infty$ then the sequence of normalized random variables

$$
\frac{J_{m}-\mu\left(J_{m}\right)}{\sigma\left(J_{m}\right)}
$$

tends to the standard normal distribution. They also conjecture a local limit theorem and prove it under additional hypotheses. In this talk, we analyze simple examples of the Mahonian statistic, for instance, we consider the case

$$
m=2, a_{1}=a n, a_{2}=b n, n \rightarrow \infty .
$$

We analyze the central region $j=\mu+x \sigma$ and one large deviation $j=\mu+x n^{7 / 4}$. The exponent $7 / 4$ that we have chosen is of course not sacred, any fixed number below 2 and above $3 / 2$ could also have been considered.

We have here

$$
\begin{aligned}
\phi(z) & =\frac{(a n)!(b n)!\prod_{i=1}^{(a+b) n}\left(1-z^{i}\right)}{((a+b) n)!\prod_{i=1}^{a n}\left(1-z^{i}\right) \prod_{i=1}^{b n}\left(1-z^{i}\right)}, \\
\mu & =\frac{a b n^{2}}{2} \\
\sigma^{2} & =\frac{a b(a+b+1 / n) n^{3}}{12} .
\end{aligned}
$$

By Cauchy's theorem,

$$
\begin{align*}
Z_{2}(j) & :=\mathbb{P}\left(J_{2}=j\right)=\frac{1}{2 \pi \mathbf{i}} \int_{\Omega} \frac{\phi(z)}{z^{j+1}} d z \\
& =\frac{1}{2 \pi \mathbf{i}} \int_{\Omega} e^{S(z)} d z \tag{1}
\end{align*}
$$

where Ω is inside the analyticity domain of the integrand and encircles the origin and

$$
\begin{align*}
S(z) & =S_{1}(z)+S_{2}(z) \tag{2}\\
S_{1}(z) & =\sum_{i=1}^{(a+b) n} \ln \left(1-z^{i}\right)-\sum_{i=1}^{a n} \ln \left(1-z^{i}\right)-\sum_{i=1}^{b n} \ln \left(1-z^{i}\right) \\
& -\ln (((a+b) n)!)+\ln (a n!)+\ln (b n!), \\
S_{2}(z) & =-(j+1) \ln (z) .
\end{align*}
$$

Set

$$
S^{(i)}:=\frac{d^{i} S}{d z^{i}} .
$$

Continuing the approach we used in [3] for classical inversions in permutations, we will use the Saddle point method (for a good introduction to this method, see Flajolet and Sedgewick [2, ch. VIII]. We obtain here local limit theorems with some corrections of order $1 / n$.
The talk is organized as follows: Section 2 deals with the Gaussian limit. In Section 3, we analyze the case $j=\mu+x n^{7 / 4}$ (large deviation). Section 4 provides the justification of the integration procedures.

The Gaussian limit, $j=\mu+x \sigma$

The saddle point

To use the saddle point method, we must find the solution of

$$
\begin{equation*}
S^{(1)}(\tilde{z})=0 \tag{3}
\end{equation*}
$$

with smallest module. Set $\tilde{z}:=z^{*}-\varepsilon$, where $z^{*}=\lim _{n \rightarrow \infty} \tilde{z}$.Here, it is easy to check that $z^{*}=1$. This leads, to first order, to

$$
\begin{equation*}
\left[a b n^{2} / 2-j-1\right]+\left[-1-n^{3} a b(a+b) / 12+5 n^{2} a b / 12-j\right] \varepsilon=0 . \tag{4}
\end{equation*}
$$

Set $j=\mu+x \sigma$ in (4). This shows that, asymptotically, ε is given by a Puiseux series of powers of $n^{-1 / 2}$, starting with
$-\frac{2 \times 3^{1 / 2}}{[a b(a+b)]^{1 / 2} n^{3 / 2}}$.

To obtain the next terms, we compute the next terms in the expansion of (3). Even powers $\varepsilon^{2 k}$ lead to a $\mathcal{O}\left(n^{2 k+1}\right) \cdot \varepsilon^{2 k}$ term and odd powers $\varepsilon^{2 k+1}$ lead to a $\mathcal{O}\left(n^{2 k+3}\right) \cdot \varepsilon^{2 k+1}$ term. Now we set $j=\mu+x \sigma$, expand into powers of $n^{-1 / 2}$ and equate each coefficient with 0 . This leads successively to a full expansion of ε. Note that to obtain a given precision of ε, it is enough to compute a given finite number of terms in the generalization of (4). We obtain (in all our asymptotics, we will provide only a few terms, but Maple knows more)

$$
\begin{aligned}
\varepsilon & =-\frac{2 x 3^{1 / 2}}{[a b(a+b)]^{1 / 2} n^{3 / 2}}-\frac{\left(2 x^{2} a^{2}-5 a b+2 a b x^{2}+2 b^{2} x^{2}\right) 3^{1 / 2} x}{5[a b(a+b)]^{3 / 2} n^{5 / 2}} \\
& -\frac{6\left(x^{2}+2\right)}{a b(a+b) n^{3}}+\ldots
\end{aligned}
$$

We have, with $\tilde{z}:=z^{*}-\varepsilon=1-\varepsilon$,
$Z_{2}(j)=\frac{1}{2 \pi \mathbf{i}} \int_{\Omega} \exp \left[S(\tilde{z})+S^{(2)}(\tilde{z})(z-\tilde{z})^{2} / 2!+\sum_{l=3}^{\infty} S^{(I)}(\tilde{z})(z-\tilde{z})^{\prime} / l!\right] d z$.
(note carefully that the linear term vanishes). Set $z=\tilde{z}+\mathbf{i} \tau$. This gives
$Z_{2}(j)=\frac{1}{2 \pi} \exp [S(\tilde{z})] \int_{-\infty}^{\infty} \exp \left[S^{(2)}(\tilde{z})(\mathbf{i} \tau)^{2} / 2!+\sum_{l=3}^{\infty} S^{(I)}(\tilde{z})(\mathbf{i} \tau)^{\prime} / l!\right] d \tau$.
(5)

Let us first analyze $S(\tilde{z})$. To compute $S_{1}(\tilde{z})$, we first compute the asymptotics of the i term, this leads to a $\ln (i)$ contribution, which will be cancelled by the factorials. Next we sum on i. We obtain

$$
\begin{aligned}
S_{1}(\tilde{z}) & =\frac{3^{1 / 2}(a b)^{1 / 2} x}{(a+b)^{1 / 2}} n^{1 / 2}+\frac{x^{2}}{2}+\frac{\left(2 x^{2} a^{2}-5 a b+2 a b x^{2}+2 b^{2} x^{2}\right) 3^{1 / 2} x}{10[a b(a+b)]^{3 / 2} n^{1 / 2}} \\
& +\frac{a^{2} x^{4}+30 a b+a b x^{4}+b^{2} x^{4}}{5 a b(a+b) n}+\mathcal{O}\left(1 / n^{3 / 2}\right), \\
S_{2}(\tilde{z}) & =-\frac{3^{1 / 2}(a b)^{1 / 2} x}{(a+b)^{1 / 2}} n^{1 / 2}-x^{2}-\frac{\left(2 x^{2} a^{2}-5 a b+2 a b x^{2}+2 b^{2} x^{2}\right) 3^{1 / 2} x}{10[a b(a+b)]^{3 / 2} n^{1 / 2}} \\
& -\frac{a^{2} x^{4}+30 a b+a b x^{4}+b^{2} x^{4}}{5 a b(a+b) n}+\mathcal{O}\left(1 / n^{3 / 2}\right),
\end{aligned}
$$

and so

$$
S(\tilde{z})=-x^{2} / 2+\mathcal{O}\left(n^{-3 / 2}\right)
$$

Also, again computing the asymptotics of the i term and summing on i,

$$
\begin{aligned}
& S^{(2)}(\tilde{z})=\frac{a b(a+b) n^{3}}{12}+\left[\frac{a b}{12}-\frac{1}{20}\left(a^{2}+b^{2}+a b\right)\right] x^{2} n^{2}+\mathcal{O}\left(n^{3 / 2}\right), \\
& S^{(3)}(\tilde{z})=-\frac{\left(a^{3}+2 b a^{2}+2 b^{2} a+b^{3}\right)(a b)^{1 / 2} 3^{1 / 2} x}{60(a+b)^{1 / 2}} n^{7 / 2}+\mathcal{O}\left(n^{3}\right), \\
& S^{(4)}(\tilde{z})=-\frac{\left(a^{3}+2 b a^{2}+2 b^{2} a+b^{3}\right) a b n^{5}}{120}+\mathcal{O}\left(n^{4}\right), \\
& S^{(I)}(\tilde{z})=\mathcal{O}\left(n^{I+1}\right), \quad I \geq 5
\end{aligned}
$$

Note that, with $z=\tilde{z} e^{\mathrm{i} \theta}$, this leads to

$$
\begin{equation*}
S^{(2)}(\tilde{z}) \frac{(z-\tilde{z})^{2}}{2} \sim-n^{3} \frac{a b(a+b)}{24} \theta^{2} . \tag{6}
\end{equation*}
$$

Integration

We can now compute (5), for instance by using the classical trick of setting

$$
S^{(2)}(\tilde{z})(\mathbf{i} \tau)^{2} / 2!+\sum_{l=3}^{\infty} S^{(I)}(\tilde{z})(\mathbf{i} \tau)^{\prime} / I!=-u^{2} / 2
$$

and computing (by inversion) τ as a truncated series in u. This leads to

$$
\begin{aligned}
\tau & =\frac{1}{n^{3 / 2}}\left[\alpha_{1} u+\alpha_{2} u^{2}+\alpha_{3} u^{3}+\alpha_{4} u^{4}+\ldots\right], \\
\alpha_{1} & =\frac{3^{1 / 2} 10 a b(a+b)}{5[a b(a+b)]^{3 / 2}}+\frac{3^{1 / 2}\left(3 a b x^{2}+3 x^{2} a^{2}-5 a b+3 b^{2} x^{2}\right)}{5[a b(a+b)]^{3 / 2} n}+\ldots, \\
\alpha_{2} & =\frac{2 \mathbf{i} / 5\left(a b+a^{2}+b^{2}\right) 3^{1 / 2} x}{[a b(a+b)]^{3 / 2} n}+\ldots, \\
\alpha_{3} & =-\frac{3^{1 / 2}\left(a b+a^{2}+b^{2}\right)(a+b)^{1 / 2}}{10(a+b)^{2}(a b)^{3 / 2} n}+\ldots, \\
\alpha_{4} & =\mathbf{i} \mathcal{O}\left(1 / n^{2}\right) .
\end{aligned}
$$

Setting $d \tau=\frac{d \tau}{d u} d u$, expanding w.r.t. n, integrating on $u=[-\infty \ldots \infty]$, (Note that α_{2} is not useful here), finally (5) leads to

Theorem 2.1

$$
\begin{align*}
& Z_{2}(j) \sim e^{-x^{2} / 2} \\
& \exp \left[\left[-\frac{3 a^{2}+13 a b+3 b^{2}}{20 a b(a+b)}+\frac{3\left(a^{2}+b^{2}+a b\right) x^{2}}{10 a b(a+b)}\right] / n+\mathcal{O}\left(n^{-3 / 2}\right)\right] \\
& /\left(\pi a b(a+b) n^{3} / 6\right)^{1 / 2} \tag{7}
\end{align*}
$$

Note that $S^{(3)}(\tilde{z})$ does not contribute to the $1 / n$ correction.

To check the effect of the correction, we first give in Figure 1, for $n=150, a=b=1 / 2$, (the same values are used in this section) the comparison between $J_{n}(j)$ and the asymptotics (2.1), without the $1 / n$ term.

Figure 1: Comparison between $J_{n}(j)$ and the asymptotics (2.1), without the $1 / n$ term

Figure 2 gives the same comparison, with the $1 / n$ correction.

Figure 2: Comparison between $J_{n}(j)$ and the asymptotics (2.1), with the $1 / n$ correction

Figure 3 shows the quotient of $Z_{2}(j)$ and the asymptotics (2.1), with the constant term $1 / n$. The "hat" behaviour, already noticed in the classical permutation inversion analysis, is also apparent here

Figure 3: The quotient of $Z_{2}(j)$ and the asymptotics (2.1), with the constant $1 / n$ term

Finally, Figure 4 shows the quotient of $Z_{2}(j)$ and the asymptotics (2.1), with the full $1 / n$ correction (constant and x^{2} term).

Figure 4: The quotient of $Z_{2}(j)$ and the asymptotics (2.1), with the full $1 / n$ correction

The Large deviation, $j=\mu+x n^{7 / 4}$

The saddle point

Now we consider the case $j=\mu+x n^{7 / 4}$. Again, we have here $z^{*}=1$. We observe the same behaviour as in Section 2 for the coefficients of ε in the generalization of (4).
Proceeding as before, we see that asymptotically, ε is now given by a Puiseux series of powers of $n^{-1 / 4}$, starting with $-\frac{12 x}{a b(a+b) n^{5 / 4}}$. This leads to (we provide only the first two terms, the other ones are rather complicated, but we use them up to the n^{-3} term)

$$
\varepsilon=-\frac{12 x}{a b(a+b) n^{5 / 4}}-\frac{144\left(a^{2}+a b+b^{2}\right) x^{3}}{5[a b(a+b)]^{3} n^{7 / 4}}+\ldots
$$

This gives $\left(C_{i}(x, a, b)\right.$ are complicated functions, not given here)

$$
\begin{aligned}
S(\tilde{z}) & =-\frac{6 x^{2}}{a b(a+b)} n^{1 / 2}-\frac{36\left(a^{2}+a b+b^{2}\right) x^{4}}{5[a b(a+b)]^{3}} \\
& +C_{1}(x, a, b) / n^{1 / 2}+C_{2}(x, a, b) / n+\ldots
\end{aligned}
$$

Also,

$$
\begin{aligned}
S^{(2)}(\tilde{z}) & =\frac{a b(a+b)}{12} n^{3}-\frac{3\left(a^{2}+a b+b^{2}\right) x^{2}}{5 a b(a+b)} n^{5 / 2}+C_{3}(x, a, b) n^{2} \\
& -2 x n^{7 / 4}+\mathcal{O}\left(n^{3 / 2}\right), \\
S^{(3)}(\tilde{z}) & =-\frac{\left(a^{2}+a b+b^{2}\right) x}{10} n^{15 / 4}-\frac{a b(a+b)}{4} n^{3}+\mathcal{O}\left(n^{11 / 4}\right), \\
S^{(4)}(\tilde{z}) & =-\frac{\left(a^{3}+2 a^{2} b+2 a b^{2}+b^{3}\right) a b}{120} n^{5}+\mathcal{O}\left(n^{19 / 4}\right), \\
S^{(I)}(\tilde{z}) & =\mathcal{O}\left(n^{\prime+1}\right), \quad l \geq 5,
\end{aligned}
$$

Integration

Now

$$
\begin{aligned}
\tau & =\frac{1}{n^{3 / 2}}\left[\alpha_{1} u+\alpha_{2} u^{2}+\alpha_{3} u^{3}+\ldots\right], \\
\alpha_{1} & =C_{4}(x, a, b)+C_{5}(x, a, b) / n^{1 / 2}+C_{6}(x, a, b) / n+\ldots, \\
\alpha_{2} & =\mathbf{i} C_{7}(x, a, b) / n^{3 / 4}+\ldots, \\
\alpha_{3} & =C_{8}(x, a, b) / n^{3 / 2}
\end{aligned}
$$

and finally we obtain

Theorem 3.1

$$
\begin{align*}
Z_{2}(j) & \sim \exp \left[-\frac{6 x^{2}}{a b(a+b)} n^{1 / 2}-\frac{36\left(a^{2}+a b+b^{2}\right) x^{4}}{5[a b(a+b)]^{3}}\right. \\
& \left.+C_{9}(x, a, b) / n^{1 / 2}+C_{10}(x, a, b) / n+\ldots\right] \\
& /\left(\pi a b(a+b) n^{3} / 6\right)^{1 / 2} . \tag{8}
\end{align*}
$$

Note that $S^{(3)}(\tilde{z})$ does not contribute to the correction. Of course, the dominant term is null for $x=0$.

To check the effect of the correction, we first give in Figure 5, for $n=50, a=b=1 / 2$ and $x \in[0 . .0 .2]$, the comparison between $J_{n}(j)$ and the asymptotics (8).

Figure 5: The comparison between $Z_{2}(j)$ and the asymptotics (8).

Figure 6 shows the quotient of $Z_{2}(j)$ and the asymptotics (8).

Figure 6: The quotient of $Z_{2}(j)$ and the asymptotics (2.1)

Justification of the integration procedures

Splitting value

Let us first analyze

$$
F(r):=\sum_{1}^{r} \ln \left(1-z^{k}\right)
$$

for $z=e^{i \theta}$. We have

$$
\begin{aligned}
F(j) & =\sum_{1}^{j} \ln \left(1-e^{\mathbf{i} k \theta}\right)=\sum_{1}^{j} \ln \left(\frac{1-e^{\mathbf{i} k \theta}}{-\mathbf{i} k \theta}\right)+\sum_{1}^{j} \ln (k)+j \ln (-\mathbf{i} \theta) \\
& =\sum_{1}^{j} \ln \left(\frac{e^{-\mathbf{i} k \theta / 2}-e^{\mathbf{i} k \theta / 2}}{-\mathbf{i} k \theta}\right)+\sum_{1}^{j} \frac{\mathbf{i} k \theta}{2}+\ln (j!)+j \ln (-\mathbf{i} \theta) \\
& =\sum_{1}^{j} \ln \left(\frac{2 \sin (k \theta / 2)}{k \theta}\right)+\frac{j(j+1)}{2} \frac{\mathbf{i} \theta}{2}+\ln (j!)+j \ln (-\mathbf{i} \theta)
\end{aligned}
$$

So, from (2), with $j=\mu+x \sigma$ or $j=\mu+x n^{7 / 4}$,

$$
\begin{aligned}
S\left(e^{\mathbf{i} \theta}\right) & =\sum_{1}^{(a+b) n} \ln \left(\frac{2 \sin (k \theta / 2)}{k \theta}\right)-\sum_{1}^{a n} \ln \left(\frac{2 \sin (k \theta / 2)}{k \theta}\right) \\
& -\sum_{1}^{b n} \ln \left(\frac{2 \sin (k \theta / 2)}{k \theta}\right)+\mathcal{O}\left(\mathbf{i} \theta n^{\alpha}\right),
\end{aligned}
$$

where $\alpha=3 / 2$ in the Gaussian case and $\alpha=7 / 4$ in the large deviation case.

Note that, for small θ, we have

$$
\begin{aligned}
\frac{2 \sin (k \theta / 2)}{k \theta} & \sim 1-\frac{k^{2} \theta^{2}}{24}, \\
\ln \left(\frac{2 \sin (k \theta / 2)}{k \theta}\right) & \sim-\frac{k^{2} \theta^{2}}{24}, \\
\sum_{1}^{j} \ln \left(\frac{2 \sin (k \theta / 2)}{k \theta}\right) & \sim-\frac{j^{3}}{3} \frac{\theta^{2}}{24},
\end{aligned}
$$

so

$$
S\left(e^{\mathbf{i} \theta}\right) \sim-a b(a+b) \frac{\theta^{2}}{24} n^{3}
$$

which conforms to (6).

Proceeding now as in [2, ch.VIII], we introduce a splitting value θ_{0} such that $n^{3} \theta_{0}^{2} \rightarrow \infty, S^{(3)} \theta_{0}^{3} \rightarrow 0, n \rightarrow \infty$, where $S^{(3)} \sim n^{7 / 2}$ in the Gaussian case and $S^{(3)} \sim n^{15 / 4}$ in the large deviation case. For instance, we choose $\theta_{0}=n^{-4 / 3}$.
Let us now turn to (1) which leads to

$$
\frac{1}{2 \pi} \int_{\theta_{0}}^{2 \pi-\theta_{0}} e^{S\left(e^{\mathbf{i} \theta}\right)} e^{\mathbf{i} \theta} d \theta
$$

Singularity analysis

We will use some singularity analysis. We have

$$
\begin{equation*}
e^{S\left(e^{\mathrm{i} \theta}\right)} \sim \frac{\prod_{k=b n+1}^{b n+a n} \frac{2 \sin (k \theta / 2)}{k \theta}}{\prod_{j=1}^{a n} \frac{2 \sin (j \theta / 2)}{j \theta}} e^{\mathcal{O}\left(\mathbf{i} \theta n^{\alpha}\right)} \tag{9}
\end{equation*}
$$

For every fixed $j^{*}, \quad \sin \left(j^{*} \theta / 2\right)$ is null at
$\theta=\ell \theta^{*}, \quad \theta^{*}=\frac{2 \pi}{j^{*}}, \quad \ell=1, \ldots, j^{*}$. But then, $\frac{k \theta^{*}}{2}=\frac{k \pi}{j^{*}}$ must be some integer multiple of $\pi, \quad r^{*} \pi$, say, in order to compensate the pole in (9) at $\theta=\theta^{*}$. i.e. there must exist some k^{*} such that $k^{*}=r^{*} j^{*}$. But, as $b n+1 \leq k \leq b n+a n$, and $1 \leq j^{*} \leq a n$, there exists always at least one value k^{*}. Also, for integer ℓ (in the sequel, ℓ, ℓ_{1}, \ldots are always integers),

$$
\frac{\ell k^{*} \theta^{*}}{2}=\frac{\ell k^{*} \pi}{j^{*}}=\ell r^{*} \pi
$$

so multiples of θ^{*} are compensated by the same k^{*} as for θ^{*}.

Now,

$$
e^{S\left(e^{\mathrm{i} \theta}\right)} \sim \frac{(a n)!(b n)!}{((a+b) n)!} \psi(n, \theta)
$$

with

$$
\psi(n, \theta):=\frac{\prod_{k=b n+1}^{b n+a n} \sin (k \theta / 2)}{\prod_{j=1}^{a n} \sin (j \theta / 2)} e^{\mathcal{O}\left(i \theta n^{\alpha}\right)},
$$

and it remains to prove that

$$
\frac{(a n)!(b n)!}{((a+b) n)!} \int_{\theta_{0}}^{2 \pi-\theta_{0}} \psi(n, \theta) d \theta
$$

tends to 0 .

Firstly, if we choose a pole $\theta=\ell_{1} 2 \pi / j_{1}^{*}$, we can sometimes choose another value j_{2}^{*} leading to a pole of $\sin (\theta j / 2)$. Indeed, it is enough to have $\theta=\ell_{1} 2 \pi / j_{1}^{*}=\ell_{2} 2 \pi / j_{2}^{*}$, or $\ell_{1} j_{2}^{*}=\ell_{2} j_{1}^{*}$. Now choose for instance, $j^{*}=2$, $a n=10, b n=20, \theta^{*}=\pi$. The possible values for j are $j \in\{2,4,6,8,10\}$ and we must choose $k \in\{22,24,26,28,30\}$. More generally, with $\theta=2 \pi / j^{*}, \beta=\left\lfloor a n / j^{*}\right\rfloor$, we have β possible values of j leading to poles and there are at least β possible compensating values for k. Let us consider

$$
\frac{\sin \left(\frac{k_{\ell} \theta}{2}\right)}{\sin \left(\frac{j_{\ell} \theta}{2}\right)}, \quad \theta=\frac{2 \pi}{j^{*}}, \quad \ell=1, \ldots, \beta
$$

We have

$$
j_{\ell}=\ell j^{*}, \quad k_{\ell}=\left\lceil\frac{b n+1}{j^{*}}\right\rceil j^{*}+(\ell-1) j^{*} .
$$

Also

$$
\left|\sin \left(j_{\ell}(\theta+\varepsilon) / 2\right)\right| \sim \ell j^{*} \varepsilon / 2, \quad\left|\sin \left(k_{\ell}(\theta+\varepsilon) / 2\right)\right| \sim k_{\ell} \varepsilon / 2
$$

Bounds at the poles

So the contribution of the poles to $\psi(n, \theta)$ is bounded by

$$
\mathcal{O}\left(\frac{(b n+a n)^{a n / j *}}{j^{* a n / j^{*}}\left(a n / j^{*}\right)!}\right)
$$

This is maximum for $j^{*}=2, \quad \theta=\pi$. So, at the poles, $\left|\exp \left(S\left(e^{\mathbf{i} \theta}\right)\right)\right|$ is bounded by
$\mathcal{O}\left(\frac{(a n)!(b n)!}{((a+b) n)!} \frac{(b n+a n)^{a n / 2}}{2^{a n / 2}(a n / 2)!}\right) \sim \mathcal{O}\left(\frac{e^{a n / 2}}{(1+b / a)^{a n / 2}(1+a / b)^{b n}}\right)$,
and, if we choose (as we may) $a \leq b$, this tends exponentially to 0 as $n \rightarrow \infty$ in the form $\exp (-D n), D>0$.
PROBLEM: BOUND $|\psi(n, \theta)|$ FOR θ DIFFERENT FROM THE POLES OF $\psi(n, \theta)$, SO THAT WE CAN OBTAIN CENTRAL APPROXIMATION AND TAIL COMPLETION

围 E. R. Canfield, S. Janson, and D. Zeilberger. The mahonian probability distribution on words is asymptotically normal.
Technical report, 2009.
囯 P. Flajolet and R. Sedgewick.
Analytic combinatorics.
Cambridge University press, 2009.
B
G. Louchard and H. Prodinger.

The number of inversions in permutations: A saddle point approach.
Journal of Integer Sequences, 6:03.2.8, 2003.

