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Introduction

In [1], Canfield, Janson and Zeilberger analyze the Mahonian
distribution on multiset permutations: classic permutations on m
objects can be viewed as words in the alphabet {1, . . . ,m}. If we
allow repetitions, we can consider all words with a1 occurences of
1, a2 occurences of 2, . . ., am occurences of m. Let Jm denote the
number of inversions. Assuming that all words are equally likely ,
the probability generating function of Jm is given, setting
N = a1 + · · ·+ am, by

φa1,...,am(z) =

∏m
i=1 ai !

∏N
i=1(1− z i )

N!
∏m

j=1

∏aj

i=1(1− z i )
.

The mean µ and variance σ2 are given by

µ(Jm) = e2(a1, . . . , am)/2, σ2(Jm) =
(e1 + 1)e2 − e3

12
,

where ek(a1, . . . , am) is the degree k elementary symmetric
function.
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Let a∗ = maxj aj and N∗ = N − a∗. In [1], the authors prove that,
if N∗ →∞ then the sequence of normalized random variables

Jm − µ(Jm)

σ(Jm)

tends to the standard normal distribution. They also conjecture a
local limit theorem and prove it under additional hypotheses.
In this talk, we analyze simple examples of the Mahonian statistic,
for instance, we consider the case

m = 2, a1 = an, a2 = bn, n→∞.

We analyze the central region j = µ+ xσ and one large deviation
j = µ+ xn7/4. The exponent 7/4 that we have chosen is of course
not sacred, any fixed number below 2 and above 3/2 could also
have been considered.
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We have here

φ(z) =
(an)!(bn)!

∏(a+b)n
i=1 (1− z i )

((a + b)n)!
∏an

i=1(1− z i )
∏bn

i=1(1− z i )
,

µ =
abn2

2
,

σ2 =
ab(a + b + 1/n)n3

12
.
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By Cauchy’s theorem,

Z2(j) := P(J2 = j) =
1

2πi

∫
Ω

φ(z)

z j+1
dz

=
1

2πi

∫
Ω

eS(z)dz , (1)

where Ω is inside the analyticity domain of the integrand and
encircles the origin and

S(z) = S1(z) + S2(z), (2)

S1(z) =

(a+b)n∑
i=1

ln(1− z i )−
an∑
i=1

ln(1− z i )−
bn∑
i=1

ln(1− z i )

− ln(((a + b)n)!) + ln(an!) + ln(bn!),

S2(z) = −(j + 1) ln(z).

Guy Louchard A simple case of the Mahonian statistic: A saddle point approach



Introduction The Gaussian limit, j = µ + xσ The Large deviation, j = µ + xn7/4 Justification of the integration procedures

Set

S (i) :=
d iS

dz i
.

Continuing the approach we used in [3] for classical inversions in
permutations, we will use the Saddle point method (for a good
introduction to this method, see Flajolet and Sedgewick [2,
ch.VIII ]. We obtain here local limit theorems with some
corrections of order 1/n.
The talk is organized as follows: Section 2 deals with the Gaussian
limit. In Section 3, we analyze the case j = µ+ xn7/4 ( large
deviation). Section 4 provides the justification of the integration
procedures.
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The Gaussian limit, j = µ + xσ

The saddle point
To use the saddle point method, we must find the solution of

S (1)(z̃) = 0 (3)

with smallest module. Set z̃ := z∗ − ε, where z∗ = limn→∞ z̃
.Here, it is easy to check that z∗ = 1. This leads, to first order, to

[abn2/2− j−1] + [−1−n3ab(a+b)/12 + 5n2ab/12− j ]ε = 0. (4)

Set j = µ+ xσ in (4). This shows that, asymptotically, ε is given
by a Puiseux series of powers of n−1/2, starting with

− 2x31/2

[ab(a+b)]1/2n3/2 .
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To obtain the next terms, we compute the next terms in the
expansion of (3). Even powers ε2k lead to a O(n2k+1) · ε2k term
and odd powers ε2k+1 lead to a O(n2k+3) · ε2k+1 term. Now we
set j = µ+ xσ, expand into powers of n−1/2 and equate each
coefficient with 0. This leads successively to a full expansion of ε.
Note that to obtain a given precision of ε, it is enough to compute
a given finite number of terms in the generalization of (4). We
obtain (in all our asymptotics, we will provide only a few terms,
but Maple knows more)

ε = − 2x31/2

[ab(a + b)]1/2n3/2
− (2x2a2 − 5ab + 2abx2 + 2b2x2)31/2x

5[ab(a + b)]3/2n5/2

− 6(x2 + 2)

ab(a + b)n3
+ . . .
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We have, with z̃ := z∗ − ε = 1− ε,

Z2(j) =
1

2πi

∫
Ω

exp
[
S(z̃)+S (2)(z̃)(z−z̃)2/2!+

∞∑
l=3

S (l)(z̃)(z−z̃)l/l!
]
dz .

(note carefully that the linear term vanishes). Set z = z̃ + iτ . This
gives

Z2(j) =
1

2π
exp[S(z̃)]

∫ ∞
−∞

exp
[
S (2)(z̃)(iτ)2/2!+

∞∑
l=3

S (l)(z̃)(iτ)l/l!
]
dτ.

(5)
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Let us first analyze S(z̃). To compute S1(z̃), we first compute the
asymptotics of the i term, this leads to a ln(i) contribution, which
will be cancelled by the factorials. Next we sum on i . We obtain

S1(z̃) =
31/2(ab)1/2x

(a + b)1/2
n1/2 +

x2

2
+

(2x2a2 − 5ab + 2abx2 + 2b2x2)31/2x

10[ab(a + b)]3/2n1/2

+
a2x4 + 30ab + abx4 + b2x4

5ab(a + b)n
+O(1/n3/2),

S2(z̃) = −31/2(ab)1/2x

(a + b)1/2
n1/2 − x2 − (2x2a2 − 5ab + 2abx2 + 2b2x2)31/2x

10[ab(a + b)]3/2n1/2

− a2x4 + 30ab + abx4 + b2x4

5ab(a + b)n
+O(1/n3/2),

and so
S(z̃) = −x2/2 +O(n−3/2).
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Also, again computing the asymptotics of the i term and summing
on i ,

S (2)(z̃) =
ab(a + b)n3

12
+

[
ab

12
− 1

20
(a2 + b2 + ab)

]
x2n2 +O(n3/2),

S (3)(z̃) = −(a3 + 2ba2 + 2b2a + b3)(ab)1/231/2x

60(a + b)1/2
n7/2 +O(n3),

S (4)(z̃) = −(a3 + 2ba2 + 2b2a + b3)abn5

120
+O(n4),

S (l)(z̃) = O(nl+1), l ≥ 5.

Note that, with z = z̃e iθ, this leads to

S (2)(z̃)
(z − z̃)2

2
∼ −n3 ab(a + b)

24
θ2. (6)

Guy Louchard A simple case of the Mahonian statistic: A saddle point approach



Introduction The Gaussian limit, j = µ + xσ The Large deviation, j = µ + xn7/4 Justification of the integration procedures

Integration
We can now compute (5), for instance by using the classical trick
of setting

S (2)(z̃)(iτ)2/2! +
∞∑
l=3

S (l)(z̃)(iτ)l/l! = −u2/2,

and computing (by inversion) τ as a truncated series in u. This
leads to

τ =
1

n3/2
[α1u + α2u

2 + α3u
3 + α4u

4 + . . .],

α1 =
31/210ab(a + b)

5[ab(a + b)]3/2
+

31/2(3abx2 + 3x2a2 − 5ab + 3b2x2)

5[ab(a + b)]3/2n
+ . . . ,

α2 =
2i/5(ab + a2 + b2)31/2x

[ab(a + b)]3/2n
+ . . . ,

α3 = −31/2(ab + a2 + b2)(a + b)1/2

10(a + b)2(ab)3/2n
+ . . . ,

α4 = iO(1/n2).
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Setting dτ = dτ
du du, expanding w.r.t. n , integrating on

u = [−∞ . . .∞], (Note that α2 is not useful here), finally (5) leads
to

Theorem 2.1

Z2(j) ∼ e−x2/2·

exp

[[
−3a2 + 13ab + 3b2

20ab(a + b)
+

3(a2 + b2 + ab)x2

10ab(a + b)

]/
n +O(n−3/2)

]
/

(πab(a + b)n3/6)1/2 . (7)

Note that S (3)(z̃) does not contribute to the 1/n correction.

Guy Louchard A simple case of the Mahonian statistic: A saddle point approach



Introduction The Gaussian limit, j = µ + xσ The Large deviation, j = µ + xn7/4 Justification of the integration procedures

To check the effect of the correction, we first give in Figure 1, for
n = 150, a = b = 1/2, (the same values are used in this section)
the comparison between Jn(j) and the asymptotics (2.1), without
the 1/n term.
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Figure 1: Comparison between Jn(j) and the asymptotics (2.1), without
the 1/n term
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Figure 2 gives the same comparison, with the 1/n correction.
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Figure 2: Comparison between Jn(j) and the asymptotics (2.1), with the
1/n correction
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Figure 3 shows the quotient of Z2(j) and the asymptotics (2.1),
with the constant term 1/n. The “hat” behaviour, already noticed
in the classical permutation inversion analysis, is also apparent here
.
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Figure 3: The quotient of Z2(j) and the asymptotics (2.1), with the
constant 1/n term
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Finally, Figure 4 shows the quotient of Z2(j) and the asymptotics
(2.1), with the full 1/n correction (constant and x2 term).
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Figure 4: The quotient of Z2(j) and the asymptotics (2.1), with the full
1/n correction
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The Large deviation, j = µ + xn7/4

The saddle point
Now we consider the case j = µ+ xn7/4. Again, we have here
z∗ = 1. We observe the same behaviour as in Section 2 for the
coefficients of ε in the generalization of (4).
Proceeding as before, we see that asymptotically, ε is now given by
a Puiseux series of powers of n−1/4, starting with − 12x

ab(a+b)n5/4 .

This leads to (we provide only the first two terms, the other ones
are rather complicated, but we use them up to the n−3 term)

ε = − 12x

ab(a + b)n5/4
− 144(a2 + ab + b2)x3

5[ab(a + b)]3n7/4
+ . . . .

This gives (Ci (x , a, b) are complicated functions, not given here)

S(z̃) = − 6x2

ab(a + b)
n1/2 − 36(a2 + ab + b2)x4

5[ab(a + b)]3

+ C1(x , a, b)/n1/2 + C2(x , a, b)/n + . . .
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Also,

S (2)(z̃) =
ab(a + b)

12
n3 − 3(a2 + ab + b2)x2

5ab(a + b)
n5/2 + C3(x , a, b)n2

− 2xn7/4 +O(n3/2),

S (3)(z̃) = −(a2 + ab + b2)x

10
n15/4 − ab(a + b)

4
n3 +O(n11/4),

S (4)(z̃) = −(a3 + 2a2b + 2ab2 + b3)ab

120
n5 +O(n19/4),

S (l)(z̃) = O(nl+1), l ≥ 5,
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Integration
Now

τ =
1

n3/2
[α1u + α2u

2 + α3u
3 + . . .],

α1 = C4(x , a, b) + C5(x , a, b)/n1/2 + C6(x , a, b)/n + . . . ,

α2 = iC7(x , a, b)/n3/4 + . . . ,

α3 = C8(x , a, b)/n3/2.
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and finally we obtain

Theorem 3.1

Z2(j) ∼ exp

[
− 6x2

ab(a + b)
n1/2 − 36(a2 + ab + b2)x4

5[ab(a + b)]3

+C9(x , a, b)/n1/2 + C10(x , a, b)/n + . . .
]

/
(πab(a + b)n3/6)1/2 . (8)

Note that S (3)(z̃) does not contribute to the correction. Of course,
the dominant term is null for x = 0.
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To check the effect of the correction, we first give in Figure 5, for
n = 50, a = b = 1/2 and x ∈ [0..0.2], the comparison between
Jn(j) and the asymptotics (8).
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Figure 5: The comparison between Z2(j) and the asymptotics (8).
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Figure 6 shows the quotient of Z2(j) and the asymptotics (8).
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Figure 6: The quotient of Z2(j) and the asymptotics (2.1)
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Justification of the integration procedures

Splitting value
Let us first analyze

F (r) :=
r∑
1

ln(1− zk)

for z = e iθ. We have

F (j) =

j∑
1

ln
(

1− e ikθ
)

=

j∑
1

ln

(
1− e ikθ

−ikθ

)
+

j∑
1

ln(k) + j ln(−iθ)

=

j∑
1

ln

(
e−ikθ/2 − e ikθ/2

−ikθ

)
+

j∑
1

ikθ

2
+ ln(j!) + j ln(−iθ)

=

j∑
1

ln

(
2 sin(kθ/2)

kθ

)
+

j(j + 1)

2

iθ

2
+ ln(j!) + j ln(−iθ).
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So, from (2), with j = µ+ xσ or j = µ+ xn7/4,

S(e iθ) =

(a+b)n∑
1

ln

(
2 sin(kθ/2)

kθ

)
−

an∑
1

ln

(
2 sin(kθ/2)

kθ

)

−
bn∑
1

ln

(
2 sin(kθ/2)

kθ

)
+O(iθnα),

where α = 3/2 in the Gaussian case and α = 7/4 in the large
deviation case.
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Note that, for small θ, we have

2 sin(kθ/2)

kθ
∼ 1− k2θ2

24
,

ln

(
2 sin(kθ/2)

kθ

)
∼ −k2θ2

24
,

j∑
1

ln

(
2 sin(kθ/2)

kθ

)
∼ − j3

3

θ2

24
,

so

S(e iθ) ∼ −ab(a + b)
θ2

24
n3

which conforms to (6).
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Proceeding now as in [2, ch.VIII ], we introduce a splitting value θ0

such that n3θ2
0 →∞,S (3)θ3

0 → 0, n→∞, where S (3) ∼ n7/2 in
the Gaussian case and S (3) ∼ n15/4 in the large deviation case. For
instance, we choose θ0 = n−4/3.
Let us now turn to (1) which leads to

1

2π

∫ 2π−θ0

θ0

eS(e iθ)e iθdθ.
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Singularity analysis
We will use some singularity analysis. We have

eS(e iθ) ∼
∏bn+an

k=bn+1
2 sin(kθ/2)

kθ∏an
j=1

2 sin(jθ/2)
jθ

eO(iθnα). (9)

For every fixed j∗, sin(j∗θ/2) is null at
θ = `θ∗, θ∗ = 2π

j∗ , ` = 1, . . . , j∗. But then, kθ∗

2 = kπ
j∗ must be

some integer multiple of π, r∗π, say, in order to compensate the
pole in (9) at θ = θ∗. i.e. there must exist some k∗ such that
k∗ = r∗j∗. But, as bn + 1 ≤ k ≤ bn + an, and 1 ≤ j∗ ≤ an, there
exists always at least one value k∗. Also, for integer ` (in the
sequel, `, `1, . . . are always integers),

`k∗θ∗

2
=
`k∗π

j∗
= `r∗π,

so multiples of θ∗ are compensated by the same k∗ as for θ∗.
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Now,

eS(e iθ) ∼ (an)!(bn)!

((a + b)n)!
ψ(n, θ),

with

ψ(n, θ) :=

∏bn+an
k=bn+1 sin(kθ/2)∏an

j=1 sin(jθ/2)
eO(iθnα),

and it remains to prove that

(an)!(bn)!

((a + b)n)!

∫ 2π−θ0

θ0

ψ(n, θ)dθ

tends to 0.
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Firstly, if we choose a pole θ = `12π/j∗1 , we can sometimes choose
another value j∗2 leading to a pole of sin(θj/2). Indeed, it is
enough to have θ = `12π/j∗1 = `22π/j∗2 , or `1j

∗
2 = `2j

∗
1 . Now

choose for instance, j∗ = 2, an = 10, bn = 20, θ∗ = π. The possible
values for j are j ∈ {2, 4, 6, 8, 10} and we must choose
k ∈ {22, 24, 26, 28, 30}. More generally, with
θ = 2π/j∗, β = ban/j∗c, we have β possible values of j leading to
poles and there are at least β possible compensating values for k .
Let us consider

sin(k`θ
2 )

sin( j`θ
2 )

, θ =
2π

j∗
, ` = 1, . . . , β.

We have

j` = `j∗, k` =

⌈
bn + 1

j∗

⌉
j∗ + (`− 1)j∗.

Also

| sin(j`(θ + ε)/2)| ∼ `j∗ε/2, | sin(k`(θ + ε)/2)| ∼ k`ε/2.
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Bounds at the poles
So the contribution of the poles to ψ(n, θ) is bounded by

O

(
(bn + an)an/j∗

j∗an/j
∗
(an/j∗)!

)
.

This is maximum for j∗ = 2, θ = π. So, at the poles,
| exp(S(e iθ))| is bounded by

O

(
(an)!(bn)!

((a + b)n)!

(bn + an)an/2

2an/2(an/2)!

)
∼ O

(
ean/2

(1 + b/a)an/2(1 + a/b)bn

)
,

and, if we choose (as we may) a ≤ b, this tends exponentially to 0
as n→∞ in the form exp(−Dn),D > 0.
PROBLEM: BOUND |ψ(n, θ)| FOR θ DIFFERENT FROM THE
POLES OF ψ(n, θ), SO THAT WE CAN OBTAIN CENTRAL
APPROXIMATION AND TAIL COMPLETION
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