Rank Selection in Multidimensional Data

Conrado Martinez
Univ. Politecnica Catalunya
Journées ALEA, CIRM, Marseille-Luminy, March 2010

Joint work with:

R.M. Jiménez

Introduction

The problem: Given a collection of n multidimensional records,
each with K coordinates, and values i, 1 <i < n, andj,
1 <j <K, find the i-th record along the j-th coordinate

Introduction

The problem: Given a collection of n multidimensional records,
each with K coordinates, and values i, 1 <i < n, andj,
1 <j <K, find the i-th record along the j-th coordinate

Introduction

The problem: Given a collection of n multidimensional records,
each with K coordinates, and values i, 1 <i < n, andj,
1 <j <K, find the i-th record along the j-th coordinate

Introduction

C.A.R.Hoare R.Floyd R.Rivest

Easy solution: use an efficient selection algorithm, with
(expected) linear cost, e.g., using Hoare’s Quickselect or Floyd
and Rivest’s algorithm for selection

Introduction

e What if the collection is organized in some
multidimensional index? (e.g., a K-d tree, a quaditree, ...)

Introduction

e What if the collection is organized in some
multidimensional index? (e.g., a K-d tree, a quadtree, . ..)
¢ |f K =1 and the collection of n records is stored in some

kind of binary search tree = (expected) time O(logn),
using some little extra space

Introduction

e What if the collection is organized in some
multidimensional index? (e.g., a K-d tree, a quadtree, . ..)
¢ |f K =1 and the collection of n records is stored in some

kind of binary search tree = (expected) time O(logn),
using some little extra space

e We look for an algorithm that uses space ©(n),
independent of K

Introduction

What if the collection is organized in some
multidimensional index? (e.g., a K-d tree, a quaditree, ...)

If K =1 and the collection of n records is stored in some
kind of binary search tree = (expected) time O(logn),
using some little extra space

We look for an algorithm that uses space ©(n),
independent of K

The data structure for the n records should efficiently
support usual spatial queries, e.g., orthogonal range
search

Introduction

What if the collection is organized in some
multidimensional index? (e.g., a K-d tree, a quadtree, . ..)
If K =1 and the collection of n records is stored in some
kind of binary search tree = (expected) time O(logn),
using some little extra space

We look for an algorithm that uses space ©(n),
independent of K

The data structure for the n records should efficiently
support usual spatial queries, e.g., orthogonal range
search

We assume w.l.0.g. the n records are points from [0, 1]¥

’\.\ A

J.L. Bentley

Definition
A K-d tree for a set X C [0, 1]¥ is either the empty tree if X = ()
or a binary tree where:

e the root contains y € X and some value j, 1 <j <K
e the left subtree is a K-d tree for X~ = {x € X[x; < y;}
« the right subtree is a K-d tree for X* = {x € X|y; < x;}

K-d trees

¢ In standard K-d trees, discriminants (the values j) of the
nodes are cyclically assigned by level: the root hasj =1,
the nodes in next level have j = 2, ..., nodes at level K
have j = K, then at level K + 1 all nodes have j = 1, etc.

K-d trees

¢ In standard K-d trees, discriminants (the values j) of the
nodes are cyclically assigned by level: the root hasj =1,
the nodes in next level have j = 2, ..., nodes at level K
have j = K, then at level K + 1 all nodes have j = 1, etc.

e In relaxed K-d trees discriminants are assigned uniformly
at random

K-d trees

¢ In standard K-d trees, discriminants (the values j) of the
nodes are cyclically assigned by level: the root hasj =1,
the nodes in next level have j = 2, ..., nodes at level K
have j = K, then at level K + 1 all nodes have j = 1, etc.

e In relaxed K-d trees discriminants are assigned uniformly
at random

¢ In squarish K-d trees discriminants are assigned to divide
the region corresponding to each node as evenly as
possible

» A

K-d trees

U'

» A

K-d trees

U'

» A

K-d trees

U'

» A

K-d trees

» A

» C

K-d trees

K-d trees

¢ In a partial match query we are given a query
qg =(q4,...,qk) where s coordinates are specified and
K — s are “don’t cares”

K-d trees

¢ In a partial match query we are given a query
qg =(q4,...,qk) where s coordinates are specified and

K — s are “don’t cares”
e The goal is to find all records in a collection that satisfy the

query

Ph. Flajolet C. Puech

¢ In a partial match query we are given a query
q=(41,-..,9qx) Where s coordinates are specified and
K — s are “don’t cares”

e The goal is to find all records in a collection that satisfy the
query

¢ Flajolet and Puech (1986) showed that a partial match in a
random standard K-d tree of size n has expected cost
O(n*s/K)) 'where a(x) =1 —x+ ¢(x), 0 < d(x) < 0.07

Ph. Flajolet C. Puech

In a partial match query we are given a query
q=(41,-..,9qx) Where s coordinates are specified and

K — s are “don’t cares”

The goal is to find all records in a collection that satisfy the
query

Flajolet and Puech (1986) showed that a partial match in a
random standard K-d tree of size n has expected cost
O(n*s/K)) 'where a(x) =1 —x+ ¢(x), 0 < d(x) < 0.07
Similar results have been proved for other variants of K-d
trees, quadtrees, etc.

L. Devroye

e Orthogonal range queries ask for all records falling inside
an hyperrectangle (with sides parallel to the axis); their
expected cost has been analyzed by Chanzy, Devroye and
Zamora-Cura (2001) and Duch and Martinez (2002):

1/K

n - volume of query + n*"/®) . perimeter of query + l.o.t.

The algorithm

Our algorithm has three main steps

e The main loop starts with a strip x; € [low, high] = [0, 1]
and explores the K-d tree, reducing the strip in such a way
that it always contains the i-th record along coordinate j

The algorithm

Our algorithm has three main steps

e The main loop starts with a strip x; € [low, high] = [0, 1]
and explores the K-d tree, reducing the strip in such a way
that it always contains the i-th record along coordinate j

e When the main loop finishes, it has found the sought
element (if it is stored in a node that discriminates w.r.t. j)
or the strip does only contain nodes discriminating w.r.t. a
coordinate # j; if needed, the second step performs an
orthogonal range search to locate all records within the
strip

The algorithm

Our algorithm has three main steps

e The main loop starts with a strip x; € [low, high] = [0, 1]
and explores the K-d tree, reducing the strip in such a way
that it always contains the i-th record along coordinate j

e When the main loop finishes, it has found the sought
element (if it is stored in a node that discriminates w.r.t. j)
or the strip does only contain nodes discriminating w.r.t. a
coordinate # j; if needed, the second step performs an
orthogonal range search to locate all records within the
strip

¢ A conventional selection algorithm is used to find the
sought element among the elements reported in the
previous step

The algorithm: main loop

both subtrees
must be explored

low high

The algorithm: main loop

only right subtree

C/ must be explored

L

low high

The algorithm: main loop

find the rank of the element
along coordinate j =

count how many

elements are below

The algorithm: main loop

update the strip [low, high] and

continue as in previous case exploring
one subtree

low high

The algorithm

procedure KD-SELECT(T, 1, j)
Q.PUsH(T)
low «— 0; high «— 1
found « false
while —Q.EMPTY() A —found do
t «— Q.Por()
if t.discr # j then
Q.PusH(t.left); Q.PUSH(t.right)
else
...nextslide ...
> found = true or the “strip” [lLow, high] contains
> the i-th record along coordinate j

The algorithm

else > t.discr =3

z — t.keylj]

if z € [low, high] then
> BELOW returns the number of points x in T such that x; < z
r «— BELOW(T,j, z)
ifi< rthen high «— z
elseif i > r then low «— z
else found « true

if z < low then Q.PUsSH(t.right)

if high < z then Q.PUSH(t.left)

Analysis

Hypothesis for the analysis:

e The n records are independently drawn from a continuous
distribution in [0, 1]¥ (standard probability model for
random K-d tree)

Analysis

Hypothesis for the analysis:

e The n records are independently drawn from a continuous

distribution in [0, 1]¥ (standard probability model for
random K-d tree)

e The sought rank i is random, with uniform probability in
[1.m]

Analysis

Hypothesis for the analysis:

e The n records are independently drawn from a continuous
distribution in [0, 1]¥ (standard probability model for
random K-d tree)

e The sought rank i is random, with uniform probability in
[1.m]

e The given coordinate j is also random, with uniform
probability in [1..K]

Analysis

Five key observations

© The number of visited nodes in the main loop is at most the
number of nodes visited by an orthogonal range search
with the strip [low, high]

Analysis

Five key observations

© The number of visited nodes in the main loop is at most the
number of nodes visited by an orthogonal range search
with the strip [low, high]

® The cost of a call to BELoOw is that of a partial match with a
single specified coordinate

Analysis

Five key observations

© The number of visited nodes in the main loop is at most the
number of nodes visited by an orthogonal range search
with the strip [low, high]

® The cost of a call to BELoOw is that of a partial match with a
single specified coordinate

® The expected number of calls to BELOW is ©(logn)

Analysis

Five key observations

© The number of visited nodes in the main loop is at most the
number of nodes visited by an orthogonal range search
with the strip [low, high]

® The cost of a call to BELoOw is that of a partial match with a
single specified coordinate

©® The expected number of calls to BELOW is ©(logn)

@ The main loop finds the sought point when the node
discriminates along j-th coordinate or the strip [low, high]
contains it and no point that discriminates with respect to j

Analysis

Five key observations

© The number of visited nodes in the main loop is at most the
number of nodes visited by an orthogonal range search
with the strip [low, high]

® The cost of a call to BELoOw is that of a partial match with a
single specified coordinate

® The expected number of calls to BELOW is ©(logn)

@ The main loop finds the sought point when the node
discriminates along j-th coordinate or the strip [low, high]
contains it and no point that discriminates with respect to j

® The strip contains ©(1) points on average

Analysis

To achieve a good expected performance for a call to BELOw, it
is necessary that each node contains the size of the subtree
rooted at that tree

procedure BELOW(T, j, z)
if T = then return 0
if T.discr #j then
¢ — [T.keylj] < z]
return BELOW(z,j, T.left) + BELOW(z,j, T.right) + ¢
else
if z < T.keylj] then return BELOW(z,]j, T.left)
else return T.left.size + BELOW(z,j, T.right)

Analysis

e The expected cost of the second and third phases (if
needed) is ©(1) (Observation #5)

Analysis

e The expected cost of the second and third phases (if
needed) is ©(1) (Observation #5)

¢ The expected cost of the main loop, without counting the
cost of calls to BELOW is ©(n*) (Observation #1), where
o = «(K) depends on the type of K-d tree; for any K and
any variant of K-d trees

1
1—E<OC(K)<1

For instance «(2) ~ 0.56 for standard K-d trees

Analysis

e The expected cost of the second and third phases (if
needed) is ©(1) (Observation #5)

¢ The expected cost of the main loop, without counting the
cost of calls to BELOW is ©(n*) (Observation #1), where
o = «(K) depends on the type of K-d tree; for any K and
any variant of K-d trees

1
1—E<OC(K)<1

For instance «(2) ~ 0.56 for standard K-d trees

e The expected cost of a call to BELOW is ©(n%)
(Observation #2)

Analysis

e The expected cost of the second and third phases (if
needed) is ©(1) (Observation #5)

¢ The expected cost of the main loop, without counting the
cost of calls to BELOW is ©(n*) (Observation #1), where
o = «(K) depends on the type of K-d tree; for any K and
any variant of K-d trees

1
1— X < a(K) < 1
For instance «(2) ~ 0.56 for standard K-d trees
e The expected cost of a call to BELOW is ©(n%)
(Observation #2)

e The expected cost of the algorithm is @(n* logn)
(Observations #1 — #3)

Final remarks

¢ A simple algorithm with sublinear expected cost

Final remarks

¢ A simple algorithm with sublinear expected cost

e It can easily be extended to many other multidimensional
data structures

Final remarks

¢ A simple algorithm with sublinear expected cost

e It can easily be extended to many other multidimensional
data structures

o Very little overhead: storing the size of each subtree is not
very space consuming and it can also be sucessfully used
for balancing (e.g., randomized relaxed K-d trees)

Final remarks

A simple algorithm with sublinear expected cost

It can easily be extended to many other multidimensional
data structures

Very little overhead: storing the size of each subtree is not
very space consuming and it can also be sucessfully used
for balancing (e.g., randomized relaxed K-d trees)

Experiments show that it is competitive in practice
compared to alternative solutions, for reasonably low
dimensions (when K grows, «(K) — 1)

Merci beaucoup!

