Limit laws for planar maps

Marc Noy
UPC Barcelona

Planar maps

A planar map is a connected plane graph (possibly with loops and multiple edges)

It can be encoded combinatorially using rotation systems
A rooted map has a distinguished half-edge
$\mathcal{M}_{n}=$ rooted maps with n edges

$$
M_{n}=\left|\mathcal{M}_{n}\right|=\frac{2(2 n)!}{(n+2)!n!} 3^{n}
$$

Parameters of planar maps

- Number of vertices
- Number of loops, bridges, blocks equal to H
- Size of largest block
- Degree of the root face (or vertex)
- Maximum degree
- Diameter (Eric Fusy)
- Maps in surfaces of positive genus
- Graphs instead of maps

Enumeration (Tutte)

$$
M(z, u)=\sum_{n \geq 0, k \geq 0} M_{n, k} u^{k} z^{n}
$$

z marks edges, u marks degree of the root face

$$
M(z, u)=1+z u^{2} M(z, u)^{2}+z \sum_{n \geq 0, k \geq 0} M_{n, k} z^{n}\left(u+u^{2}+\cdots+u^{k+1}\right)
$$

$$
M(z, u)=1+z u^{2} M(z, u)^{2}+z u \frac{M(z, 1)-u M(z, u)}{1-u}
$$

The quadratic method

$$
\begin{gathered}
M(z, u)=1+z u^{2} M(z, u)^{2}+z u \frac{M(z, 1)-u M(z, u)}{1-u} \\
A(z, u) M(z, u)^{2}+B(z, u) M(z, u)+C(z, u)=0 \\
(2 A M+B)^{2}=B^{2}-4 A C
\end{gathered}
$$

Assume there is a function $u(z)$ such that

$$
2 A(z, u(z)) M(z, u(z))+B(z, u(z))=0
$$

Then

$$
\begin{array}{ll}
B(z, u(z))^{2}-4 A(z, u(z)) C(z, u(z)) & =0 \\
\frac{\partial}{\partial u}\left[B(z, u(z))^{2}-4 A(z, u(z)) C(z, u(z))\right] & =0
\end{array}
$$

Eliminate $M(z, 1)$ from above, obtain $u(z)$ and then find $M(z, 1)$

$$
M(z, 1)=\frac{18 z-1+(1-12 z)^{3 / 2}}{54 z^{2}}
$$

From this it follows

$$
\begin{gathered}
M_{n}=\left[z^{n}\right] M(z, 1)=\frac{2(2 n)!}{(n+2)!n!} 3^{n} \\
M_{n} \sim \frac{2}{\sqrt{\pi}} n^{-5 / 2} 12^{n}
\end{gathered}
$$

And an explicit expression for

$$
M(z, u)=\sum_{n \geq 0, k \geq 0} M_{n, k} u^{k} z^{n}
$$

Number of vertices

Let x mark vertices

$$
M(z, u, x)=x+z u^{2} M(z, u, x)^{2}+z u \frac{M(z, 1, x)-u M(z, u, x)}{1-u}
$$

Again quadratic method and we find $u(z, x)$ such that

$$
M(z, x)=M(z, 1, x)=\operatorname{Rat}(z, x, u(z, x))
$$

The singularity $\rho(x)$ of $M(z, x)$ satisfies $P(\rho(x), x)=0$

$$
\left[z^{n}\right] M(z, x) \sim c(x) n^{-5 / 2} \rho(x)^{-n}
$$

By the quasi-powers theorem we get
Theorem
$X_{n}:=$ number of vertices in random planar maps n edges
Then X_{n} is asymp normal and

$$
E\left(X_{n}\right) \sim n / 2 \quad \sigma^{2}\left(X_{n}\right) \sim 5 n / 32
$$

Euler's formula

$$
v+f=n+2
$$

By duality we get

$$
\begin{gathered}
2 E\left(X_{n}\right)=n+2 \\
E\left(X_{n}\right)=\frac{n}{2}+1
\end{gathered}
$$

2-connected (non-separable) maps

Core C of a map M : block containing the root
M is obtained by attaching a map at each corner of C
$B_{n}=$ number of 2-connected maps with n edges

$$
M(z)=\sum B_{k} z^{k} M(z)^{2 k}=B\left(z M(z)^{2}\right)
$$

Set $x=z M(z)^{2}$ and then

$$
\begin{gathered}
B(x)=M(z(x)) \\
B_{n}=\frac{2(3 n-3)!}{(2 n-1)!n!}
\end{gathered}
$$

Number of blocks

w marks blocks in a map

$$
M(z, w)=w B\left(z M(z, w)^{2}\right)-w+1
$$

We know $B(z)$ and can compute

$$
M(z, w)=1+2 w z+\left(w+8 w^{2}\right) z^{2}+\cdots
$$

Singularity at

$$
\rho(w)=\frac{4}{3\left(w^{2}+6 w+9\right)}
$$

Theorem
$X_{n}:=$ number of blocks in random planar maps n edges
Then X_{n} is asymptotically normal and

$$
E\left(X_{n}\right) \sim n / 2 \quad \sigma^{2}\left(X_{n}\right) \sim 3 n / 8
$$

Given C fixed (rooted) 2-connected map
$X_{n}^{C}:=$ number of blocks in a random map equal to C

Theorem
X_{n}^{C} is asymptotically normal and

$$
E\left(X_{n}^{C}\right) \sim \frac{3}{2}\left(\frac{4}{27}\right)^{|C|} \cdot n
$$

Corollary

Number of loops (or bridges) is normal with expectation $\sim 2 n / 9$

Structure of blocks

How large are the blocks of a random map M ?
Gao Wormald 1999
The size X_{n} of the largest block is of order $n / 3$ and deviations are of order at most $n^{2 / 3}$

$$
\mathbf{P}\left(\left|X_{n}-n / 3\right|<w(n) n^{2 / 3} \mid\right) \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

where $w(n) \rightarrow \infty$

Core C of a map M : block containing the root
M is obtained by attaching a map at each corner of C
Banderier Flajolet Schaeffer Soria 2001
The size of C_{n} has a bimodal distribution

- $\left|C_{n}\right|$ is $O(1)$ with prob p
- $\left|C_{n}\right|$ is large with prob $1-p$

$$
\mathbf{P}\left(\left|C_{n}\right|=n / 3+x n^{2 / 3}\right) \rightarrow n^{-2 / 3} g(x)
$$

Where $g(x)$ is a density (of a stable law of index $3 / 2$)
There is a unique largest block w.h.p.
This also applies to 3-connected components, triangulations ...

Degree of the root

$$
\begin{aligned}
& M(z, u)=\sum M_{n, k} u^{k} z^{n} \\
& \qquad p_{n}(u)=\frac{\left[z^{n}\right] M(z, u)}{\left[z^{n}\right] M(z, 1)} \quad \text { PGF }
\end{aligned}
$$

Singularity analysis

$$
M(z, 1)=M_{0}+M_{2}(1-z / 12)+M_{3}(1-z / 12)^{3 / 2}+\cdots
$$

Explicit quadratic for $M(z, u)$ in terms of $M(z, 1)$
Singularity of $M(z, u)$ does not change for $u \sim 1$

$$
\begin{aligned}
& M(z, u)=M_{0}(u)+M_{2}(u)(1-z / 12)+M_{3}(u)(1-z / 12)^{3 / 2}+\cdots \\
& p_{n}(u) \rightarrow p(u)=\frac{M_{3}(u)}{M_{3}}=\frac{u \sqrt{3}}{\sqrt{(2+u)(6-5 u)^{3}}} \\
& \\
& =\frac{1}{12} u+\frac{1}{12} u^{2}+\frac{13}{144} u^{3}+\cdots
\end{aligned}
$$

$$
p(u)=\sum p_{k} u^{k}=\frac{u \sqrt{3}}{\sqrt{(2+u)(6-5 u)^{3}}}
$$

By singularity analysis (with respect to u)

$$
p_{k} \sim c \cdot k^{1 / 2}\left(\frac{5}{6}\right)^{k}
$$

Liskovets (1999) observed that for many classes of planar maps the pattern is the same

2-connected, 3-connected, Eulerian, triangulations, ...
We have tried to give a rationale for this fact with Michael Drmota

Universality of tail estimates

\mathcal{M} class of planar maps
$M(z, u)$ generating function u marks degree of the root
Assume

$$
\begin{gathered}
\left(g_{1} M(z, u)+g_{2}\right)^{2}=g_{3} \\
g_{j}=G_{j}(z, u, y(z)) \quad y(z)=M(z, 1)
\end{gathered}
$$

z_{0} singularity of $M(z, u)$ for $u \sim 1$
$y_{0}=y\left(z_{0}\right)$

$$
G_{3}\left(z_{0}, y_{0}, u_{0}\right)=0, \quad \frac{\partial G_{3}}{\partial u} G_{3}\left(z_{0}, y_{0}, u_{0}\right)=0
$$

Theorem [Drmota MN]
If $\partial^{2} G_{3} / \partial u^{2} G_{3}\left(z_{0}, y_{0}, u_{0}\right)=0$ then

$$
\begin{gathered}
\frac{\left[z^{n} u^{k}\right] M(z, u)}{\left[z^{n}\right] y(z)} \rightarrow p_{k} \quad \text { as } n \rightarrow \infty \\
p_{k} \sim c \cdot k^{1 / 2} u_{0}^{-k}
\end{gathered}
$$

Planar maps

$$
\begin{gathered}
\left(g_{1} M(z, u)+g_{2}\right)^{2}=g_{3} \\
G_{3}=1-2 u-2 u^{2} z+u^{2}+6 u^{3} z+u^{4} z^{2}-4 u^{4} z+\left(4 u^{4} z^{2}-4 u^{3} z^{2}\right) y(z) \\
z_{0}=1 / 12 \quad y_{0}=4 / 3 \quad u_{0}=6 / 5 \\
\frac{\partial^{2} G_{3}}{\partial u^{2}} G_{3}(1 / 12,4 / 3,6 / 5)=0
\end{gathered}
$$

Corollary
The limit distribution $\left(p_{k}\right)$ of the degree of the root face has tail

$$
p_{k} \sim c \cdot k^{1 / 2}(5 / 6)^{k}
$$

2-connected maps

$$
\begin{gathered}
M(z)=\sum B_{k} z^{k} M(z)^{2 k}=B\left(z M(z)^{2}\right) \\
M(z, u)=\sum_{n, k} B_{n, k} u^{k} M(z, u)^{k} M(z)^{2 n-k}=B\left(z M(z)^{2}, \frac{u M(z, u)}{M(z)}\right)
\end{gathered}
$$

Set $x=z M(z)^{2}, \quad w=u M(z, u) / M(z)$
Elimination gives a quadratic equation for $B(x, w)$

$$
\begin{gathered}
G_{3}=3 w^{2} x^{2}-x-3 w y x+y^{2} / 2 \\
x_{0}=4 / 27 \quad y_{0}=4 / 3 \quad w_{0}=3 / 2 \\
\frac{\partial^{2} G_{3}}{\partial u^{2}} G_{3}(4 / 27,4 / 3,3 / 2)=0
\end{gathered}
$$

Bipartite maps

Very similar to general maps for degree of root face By duality: degree of root vertex for Eulerian maps

Degree of root vertex in bipartite maps has the same distribution as degree of root face:
|Bipartite maps of size n and deg(root face) $=2 k \mid$
$=\mid$ Bipartite maps of size n and $\operatorname{deg}($ root vertex $)=k \mid$
Take a bipartite map M colored B and W
Add a red (R) vertex inside each face, and make it adjacent to all the vertices in the face
Obtain an Eulerian triangulation T, which is 3-colorable

Idea of the proof

$$
G(z, u(z), y(z))=0 \quad G_{u}(z, u(z), y(z))=0
$$

Consider $G_{u}(z, u(z), y(z))=0$ with z, u as independent variables and $y=Y(z, u)$ unknown function
Then solve $G(z, u, Y(z, u)=0$

$$
\begin{gathered}
u(z)=g_{1}(z)+g_{2}(z) \sqrt{1-z / z_{0}} \\
y(z)=h_{1}(z)+h_{2}(z)\left(1-z / z_{0}\right)^{3 / 2}
\end{gathered}
$$

This explains the usual estimates for maps

$$
\left[z^{n}\right] y(z) \sim c \cdot n^{-5 / 2} z_{0}^{-n}
$$

From

$$
\left(g_{1} M(z, u)+g_{2}\right)^{2}=g_{3}
$$

We get

$$
M(z, u)=\frac{\sqrt{G_{3}(z, u, y(z))}-G_{2}(z, u, y(z))}{G_{1}(z, u, y(z))}
$$

Essential contribution comes from $\left.\sqrt{G_{3}(z, u, y(z)}\right)$
Expanding G_{3} and estimating coefficients using Cauchy's formula

$$
\left[z^{n} u^{k}\right] M(z, u) \sim d \cdot n^{-5 / 2} z_{0}^{-n} k^{1 / 2} u_{0}^{-k}
$$

uniformly for $k \leq C \log n$

Maximum degree

$$
p_{k}=\mathbf{P}(\operatorname{deg}(\text { root })=k)
$$

Expected number of vertices of degree k is $\sim p_{k} n$
Since $p_{k} \asymp q^{k} \quad q<1$
it is natural to expect that $p_{k} n$ is negligible when

$$
k=\frac{\log n}{\log 1 / q}
$$

$\Delta_{n}=$ maximum degree in maps of size n Gao Wormald 2000

$$
E\left(\Delta_{n}\right) \sim \frac{\log n}{\log (6 / 5)}
$$

Precise limit distribution for Δ_{n}

Maps on surfaces

S_{g} orientable surface of genus g
Maps in S_{g} must be 2-cellular

$$
v-n+f=2-2 g
$$

The number of maps is (Bender Canfield 1986)

$$
M_{n}(g) \sim \operatorname{tg}_{g} n^{5(g-1) / 2} 12^{n}
$$

Gao Richmond 1994
Distribution of the degree of the root independent of genus

Planar graphs and graphs on surfaces

Graphs not embedded and labelled at vertices

- Generating functions not algebraic
- $G(x, y)=\sum G_{n, k} y^{k} \frac{x^{n}}{n!} \quad x$ vertices, y edges
- Necessary to go from rooted graphs to unrooted graphs
- If $g>0$ further complications because 3-connected graphs do not have a unique embedding in Sg

Giménez Noy Rué 2009

Main structural parameters for planar graphs as for planar maps
Chapuy Fusy Giménez Mohar MN 2010
Main structural parameters for graphs of genus g do not depend on the genus

