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Planar maps

A planar map is a connected plane graph
(possibly with loops and multiple edges)

It can be encoded combinatorially using rotation systems

A rooted map has a distinguished half-edge

Mn = rooted maps with n edges

Mn = |Mn| =
2(2n)!

(n + 2)!n!
3n



Parameters of planar maps

! Number of vertices

! Number of loops, bridges, blocks equal to H

! Size of largest block

! Degree of the root face (or vertex)

! Maximum degree

! Diameter (Eric Fusy)

! Maps in surfaces of positive genus

! Graphs instead of maps



Enumeration (Tutte)

M(z , u) =
∑

n≥0,k≥0

Mn,kukzn

z marks edges, u marks degree of the root face

M(z , u) = 1+ zu2M(z , u)2 + z
∑

n≥0,k≥0

Mn,kzn(u + u2 + · · ·+ uk+1)

M(z , u) = 1 + zu2M(z , u)2 + zu
M(z , 1)− uM(z , u)

1− u



The quadratic method

M(z , u) = 1 + zu2M(z , u)2 + zu
M(z , 1)− uM(z , u)

1− u

A(z , u)M(z , u)2 + B(z , u)M(z , u) + C (z , u) = 0

(2AM + B)2 = B2 − 4AC

Assume there is a function u(z) such that

2A(z , u(z))M(z , u(z)) + B(z , u(z)) = 0

Then

B(z , u(z))2 − 4A(z , u(z))C (z , u(z)) = 0

∂

∂u

[
B(z , u(z))2 − 4A(z , u(z))C (z , u(z))

]
= 0

Eliminate M(z , 1) from above, obtain u(z) and then find M(z , 1)



M(z , 1) =
18z − 1 + (1− 12z)3/2

54z2

From this it follows

Mn = [zn]M(z , 1) =
2(2n)!

(n + 2)!n!
3n

Mn ∼
2√
π

n−5/212n

And an explicit expression for

M(z , u) =
∑

n≥0,k≥0

Mn,kukzn



Number of vertices
Let x mark vertices

M(z , u, x) = x + zu2M(z , u, x)2 + zu
M(z , 1, x)− uM(z , u, x)

1− u

Again quadratic method and we find u(z , x) such that

M(z , x) = M(z , 1, x) = Rat(z , x , u(z , x))

The singularity ρ(x) of M(z , x) satisfies P(ρ(x), x) = 0

[zn]M(z , x) ∼ c(x)n−5/2ρ(x)−n

By the quasi-powers theorem we get

Theorem
Xn := number of vertices in random planar maps n edges
Then Xn is asymp normal and

E (Xn) ∼ n/2 σ2(Xn) ∼ 5n/32



Euler’s formula
v + f = n + 2

By duality we get
2E (Xn) = n + 2

E (Xn) =
n

2
+ 1



2-connected (non-separable) maps

Core C of a map M: block containing the root

M is obtained by attaching a map at each corner of C

Bn = number of 2-connected maps with n edges

M(z) =
∑

BkzkM(z)2k = B(zM(z)2)

Set x = zM(z)2 and then

B(x) = M(z(x))

Bn =
2(3n − 3)!

(2n − 1)!n!



Number of blocks

w marks blocks in a map

M(z ,w) = wB(zM(z ,w)2)− w + 1

We know B(z) and can compute

M(z ,w) = 1 + 2wz + (w + 8w2)z2 + · · ·

Singularity at

ρ(w) =
4

3(w2 + 6w + 9)

Theorem
Xn := number of blocks in random planar maps n edges
Then Xn is asymptotically normal and

E (Xn) ∼ n/2 σ2(Xn) ∼ 3n/8



Given C fixed (rooted) 2-connected map

XC
n := number of blocks in a random map equal to C

Theorem
XC

n is asymptotically normal and

E (XC
n ) ∼ 3

2

(
4

27

)|C |
· n

Corollary
Number of loops (or bridges) is normal
with expectation ∼ 2n/9



Structure of blocks

How large are the blocks of a random map M?

Gao Wormald 1999
The size Xn of the largest block is of order n/3 and deviations are
of order at most n2/3

P(|Xn − n/3| < w(n)n2/3|)→ 1 as n→∞

where w(n)→∞



Core C of a map M: block containing the root

M is obtained by attaching a map at each corner of C

Banderier Flajolet Schaeffer Soria 2001
The size of Cn has a bimodal distribution

! |Cn| is O(1) with prob p

! |Cn| is large with prob 1− p

P(|Cn| = n/3 + xn2/3)→ n−2/3g(x)

Where g(x) is a density (of a stable law of index 3/2)

There is a unique largest block w.h.p.

This also applies to 3-connected components, triangulations . . .



Degree of the root
M(z , u) =

∑
Mn,kukzn

pn(u) =
[zn]M(z , u)

[zn]M(z , 1)
PGF

Singularity analysis

M(z , 1) = M0 + M2(1− z/12) + M3(1− z/12)3/2 + · · ·

Explicit quadratic for M(z , u) in terms of M(z , 1)
Singularity of M(z , u) does not change for u ∼ 1

M(z , u) = M0(u) + M2(u)(1− z/12) + M3(u)(1− z/12)3/2 + · · ·

pn(u)→ p(u) =
M3(u)

M3
=

u
√

3√
(2 + u) (6− 5 u)3

=
1

12
u +

1

12
u2 +

13

144
u3 + · · ·



p(u) =
∑

pkuk =
u
√

3√
(2 + u) (6− 5 u)3

By singularity analysis (with respect to u)

pk ∼ c · k1/2

(
5

6

)k

Liskovets (1999) observed that for many classes of planar maps the
pattern is the same

2-connected, 3-connected, Eulerian, triangulations, . . .

We have tried to give a rationale for this fact
with Michael Drmota



Universality of tail estimates
M class of planar maps
M(z , u) generating function u marks degree of the root

Assume
(g1M(z , u) + g2)

2 = g3

gj = Gj(z , u, y(z)) y(z) = M(z , 1)

z0 singularity of M(z , u) for u ∼ 1
y0 = y(z0)

G3(z0, y0, u0) = 0,
∂G3

∂u
G3(z0, y0, u0) = 0

Theorem [Drmota MN]
If ∂2G3/∂u2G3(z0, y0, u0) = 0 then

[znuk ]M(z , u)

[zn]y(z)
→ pk as n→∞

pk ∼ c · k1/2u−k
0



Planar maps

(g1M(z , u) + g2)
2 = g3

G3 = 1−2 u−2 u2z+u2+6 u3z+u4z2−4 u4z+
(
4u4z2 − 4u3z2

)
y(z)

z0 = 1/12 y0 = 4/3 u0 = 6/5

∂2G3

∂u2
G3(1/12, 4/3, 6/5) = 0

Corollary
The limit distribution (pk) of the degree of the root face has tail

pk ∼ c · k1/2(5/6)k



2-connected maps

M(z) =
∑

BkzkM(z)2k = B(zM(z)2)

M(z , u) =
∑

n,k

Bn,kukM(z , u)kM(z)2n−k = B

(
zM(z)2,

uM(z , u)

M(z)

)

Set x = zM(z)2, w = uM(z , u)/M(z)
Elimination gives a quadratic equation for B(x ,w)

G3 = 3w2x2 − x − 3wyx + y2/2

x0 = 4/27 y0 = 4/3 w0 = 3/2

∂2G3

∂u2
G3(4/27, 4/3, 3/2) = 0



Bipartite maps

Very similar to general maps for degree of root face
By duality: degree of root vertex for Eulerian maps

Degree of root vertex in bipartite maps has the same distribution
as degree of root face:

|Bipartite maps of size n and deg(root face) = 2k|

= |Bipartite maps of size n and deg(root vertex) = k|

Take a bipartite map M colored B and W
Add a red (R) vertex inside each face, and make it adjacent to all
the vertices in the face
Obtain an Eulerian triangulation T , which is 3-colorable



Idea of the proof

G (z , u(z), y(z)) = 0 Gu(z , u(z), y(z)) = 0

Consider Gu(z , u(z), y(z)) = 0 with z , u as independent variables
and y = Y (z , u) unknown function

Then solve G (z , u,Y (z , u) = 0

u(z) = g1(z) + g2(z)
√

1− z/z0

y(z) = h1(z) + h2(z)(1− z/z0)
3/2

This explains the usual estimates for maps

[zn]y(z) ∼ c · n−5/2z−n
0



From
(g1M(z , u) + g2)

2 = g3

We get

M(z , u) =

√
G3(z , u, y(z))− G2(z , u, y(z))

G1(z , u, y(z))

Essential contribution comes from
√

G3(z , u, y(z))
Expanding G3 and estimating coefficients using Cauchy’s formula

[znuk ]M(z , u) ∼ d · n−5/2z−n
0 k1/2u−k

0

uniformly for k ≤ C log n



Maximum degree

pk = P(deg(root) = k)

Expected number of vertices of degree k is ∼ pkn

Since pk ' qk q < 1
it is natural to expect that pkn is negligible when

k =
log n

log 1/q

∆n = maximum degree in maps of size n
Gao Wormald 2000

E (∆n) ∼
log n

log(6/5)

Precise limit distribution for ∆n



Maps on surfaces

Sg orientable surface of genus g

Maps in Sg must be 2-cellular

v − n + f = 2− 2g

The number of maps is (Bender Canfield 1986)

Mn(g) ∼ tg n5(g−1)/212n

Gao Richmond 1994
Distribution of the degree of the root independent of genus



Planar graphs and graphs on surfaces

Graphs not embedded and labelled at vertices

! Generating functions not algebraic

! G (x , y) =
∑

Gn,kyk xn

n!
x vertices, y edges

! Necessary to go from rooted graphs to unrooted graphs

! If g > 0 further complications because 3-connected graphs do
not have a unique embedding in Sg

Giménez Noy Rué 2009
Main structural parameters for planar graphs as for planar maps

Chapuy Fusy Giménez Mohar MN 2010
Main structural parameters for graphs of genus g do not depend
on the genus


