Random 2-XORSAT/MAX-2-XORSAT and their phase transitions

Vlady Ravelomanana
LIAFA - UMR CNRS 7089 .
Université Denis Diderot.
vlad@liafa.jussieu.fr
joint work with
Hervé Daudé (LATP - Université de Provence)

\&
Vonjy Rasendrahasina (LIPN - Université de Paris-Nord)

Outline of the talk

- Introduction \& motivations.
- The 2-XORSAT phase transition.
- MAX-2-XORSAT.
- Conclusion and perspectives.

Introduction \& Motivations

Decision and optimization problems

- Decision and optimization problems play central key rôle in CS (cf. [GAREY, JOHNSON 79], [AUSIELLO et al. 03])
(1) A decision problem is a question in some formal system with a yes/no answer :

$$
\left\{\begin{array}{l}
\text { INPUT : an instance } \mathcal{I} \text { and a property } \mathcal{P} . \\
\text { OUTPUT : yes or no } \mathcal{I} \text { satisfies } \mathcal{P} .
\end{array}\right.
$$

(2) An optimization problem is the problem of finding the best solution from all feasible solutions.

- In this talk, we consider two such problems :

2-XORSAT and MAX-2-XORSAT.

SAT-like problems

- Random k-SAT formulas $(k>2)$ are subject to phase transition phenomena [Friedgut, Bourgain 1999].
- Main research tasks include
(1) Localization of the threshold (ex. 3-SAT 4.2...? 3-XORSAT 0.91... [DUBOIS, MANDLER 03)])
(2) Nature of the phenomena: sharp/coarse.
[CREIGnou, Daudé 2000++].
(3) Details inside the window of transition (ex. 2-SAT [BollobÀs, Borgs, Kim, Wilson 01])
(4) Space of solutions (ex. [Achlioptas, Naor, Peres 07] or [MONASSON et al. 07])

SAT-like problems : localization of 2-SAT's threshold

- An instance : $\left(\mathbf{v}_{1} \vee \mathbf{v}_{2}\right) \wedge\left(\neg \mathbf{v}_{1} \vee \mathbf{v}_{3}\right) \wedge\left(\neg \mathbf{v}_{1} \vee \neg \mathbf{v}_{2}\right)$
- A solution : SAT with $\left(\mathrm{v}_{1}=1, \mathrm{v}_{2}=0, \mathrm{v}_{3}=1\right)$.
- Localization of the threshold : n variables, $m=c \times n$ clauses randomly picked from the set of $4\binom{n}{2}$ clauses. $c<1$ Proba SAT $\rightarrow 1, c>1$ Proba SAT $\rightarrow 0$.
Underlying combinatorial structures : directed graphs.

$$
\text { Write } \quad x \vee y \quad \text { as } \quad\left\{\begin{array}{l}
\neg x=1 \Longrightarrow y=1 \\
\neg y=1 \Longrightarrow x=1
\end{array}\right.
$$

Characterization : SAT iff no directed path between x and $\neg x$ (and vice-versa).
Proof. First and second moments method [Goerdt 92, De la Vega 92, Chvàtal, Reed 92].

2-XORSAT / MAX-2-XORSAT

Main motivations

- Since the empirical results ([KiRKPATRICK, SELMAN 90] about k-SAT, rigorous results are quite limited!
- What are the contributions of Enumerative/Analytic Combinatorics to SAT/CSP-like problems?
- MONASSON (2007) inferred that (statistical physics) :

$$
\lim _{n \rightarrow+\infty} n^{\text {critical exponent }} \times \operatorname{Proba}\left[2 \operatorname{XORSAT}\left(n, \frac{n}{2}\right)\right]=O(1)
$$

where "critical exponent" $=1 / 12$.

- We will show that "critical exponent" $=1 / 12$ and will explicit the hidden constant behind the $O(1)$.
- We will quantify the MAXIMUM number of satisfiable clauses in random formula.

The 2-XORSAT phase transition

Random 2-XORSAT

- Ex: $x_{1} \oplus x_{2}=1, x_{2} \oplus x_{3}=0, x_{1} \oplus x_{3}=0, x_{3} \oplus x_{4}=1, \cdots$.
- General form : $A X=C$ where A has m rows and 2 columns and C is a m-dimensional $0 / 1$ vector.
- Distribution : uniform. We pick m clauses of the form $x_{i} \oplus x_{j}=\varepsilon \in\{0,1\}$ from the set of $n(n-1)$ clauses.
- Underlying structures: graphs with weighted edges
$x \oplus y=\varepsilon \Longleftrightarrow$ edges of weight $\varepsilon \in\{0,1\}$.

Characterisation :

SAT iff no elementary cycle of odd weight.

SAT iff no elementary cycle of odd weight

$$
\left\{\begin{array}{l}
x_{1} \oplus x_{2}=1 \\
x_{2} \oplus x_{3}=0 \\
x_{1} \oplus x_{3}=0 \\
x_{3} \oplus x_{4}=1
\end{array}\right.
$$

- UNSAT \Longleftarrow Fix a cycle of odd weight ...
- SAT \Longleftarrow No cycles of odd weight. DFS affectation based proof.

Main ideas of our approach

A basic scheme

(1) Enumeration of "SAT"-graphs (graphs without cycles of odd weight) by means of generating functions.
(2) Use the obtained results with analytic combinatorics to compute :

$$
\text { Prob. SAT }=\frac{\text { Nbr of configurations without cycles of odd weight }}{\text { Nbr total of configurations }} .
$$

Taste of our results : the whole window

$\mathbf{p}(\mathbf{n}, \mathbf{c n}) \stackrel{\text { def }}{=}$ Proba [2-XOR with \mathbf{n} variables, $\mathbf{c n}$ clauses] is SAT for $n=1000, n=2000$ and the theoretical function : $\mathbf{e}^{\mathbf{c / 2}}(\mathbf{1}-\mathbf{2 c})^{\mathbf{1 / 4}}$.

Taste of our results: rescaling the critical window

Rescaling at the point "zero", i.e $c=1 / 2: n=1000, n=2000$ and $\lim _{n \rightarrow \infty} \underbrace{n^{1 / 12} \times} p\left(n, n / 2+\mu n^{2 / 3}\right)$ as a function of μ.

Enumerating graphs of 2-XORSAT.

We will enumerate the connected graphs without cycles of odd weight according to two parameters: number of vertices \mathbf{n} and number of edges $\mathbf{n}+\ell . \ell \stackrel{\text { def }}{=}$ excess.
Let

$$
C_{\ell}(z)=\sum_{n>0} c_{n, n+\ell} \frac{z^{n}}{n!}
$$

What are the series C_{ℓ} ?

Enumerating graphs of 2-XORSAT.

We will enumerate the connected graphs without cycles of odd weight according to two parameters: number of vertices \mathbf{n} and number of edges $\mathbf{n}+\ell . \ell \stackrel{\text { def }}{=}$ excess.
Let

$$
C_{\ell}(z)=\sum_{n>0} c_{n, n+\ell} \frac{z^{n}}{n!}
$$

What are the series C_{ℓ} ?

Th.

$$
C_{\ell}(z)=\frac{1}{2} W_{\ell}(2 z)
$$

with $W_{\ell}=$ Exponential generating functions of connected graphs WRIGHT (1977).

Enumerations: trees and unicyclic components

- Rooted and unrooted trees (excess $=-1$)

$$
T(z)=z e^{2 T(z)}=\sum_{n>0}(2 n)^{n-1} \frac{z^{n}}{n!}, \quad C_{-1}(z)=T-T^{2}
$$

- Unicyclic components (excess $=0$)
(1) Number of labellings of a smooth cycle (i.e. without vertices of degree 1) using $n>2$ vertices:

$$
\frac{2^{n} n!}{2 n}
$$

(2) Thus, the EGF of smooth unicyclic components

$$
\tilde{C}_{0}(z)=-\frac{1}{4} \log (1-2 z)-z / 2-z^{2} / 2
$$

(3) Substituting each vertex with a full rooted tree, we get

$$
C_{0}(z)=-\frac{1}{4} \log (1-2 T)-T / 2-T^{2} / 2
$$

- What about multicyclic components? (excess >0)

Enumerations: connected multicyclic components

On a connected "SAT"-graph with n vertices and $n+\ell$ edges, the edges of a spanning tree can be colored in 2^{n-1} ways. The colors of the other edges are "determined".

Enumerations: general multicyclic components

Let $F_{r}(z)$ be the EGF of all complex weighted labelled graphs (connected or not), with a positive total excess ${ }^{1} r$ and without cycles of odd weight ("SAT-graph").

$$
\sum_{r \geq 0} F_{r}(z)=\exp \left(\sum_{k \geq 1} \frac{W_{k}(2 z)}{2}\right)
$$

and for any $r \geq 1$

$$
r F_{r}(z)=\sum_{k=1}^{r} k \frac{W_{k}(2 z)}{2} F_{r-k}(z), \quad F_{0}(z)=1 .
$$

Since $W_{k}(x) \asymp \frac{W_{k}}{(1-T(x))^{3 k}}$ [WRIGHT 80], we also have $F_{k}(x) \asymp \frac{T_{k}}{(1-T(2 x))^{3 k}}$ with $2 r f_{r}=\sum_{k=1}^{r} k w_{k} f_{r-k}, \quad r>0$.
${ }^{1}$ total excess of the random graphs $\stackrel{\text { def }}{=}$ nbr of edges + number of trees number of vertices

The Random 2-XORSAT Transition

Th.

The probability that a random formula with n variables and m clauses is SAT satisfies the following :
(i) Sub-critical phase : As $0<n-2 m \ll n^{2 / 3}$,

$$
\operatorname{Pr}(n, m)=e^{m / 2 n}\left(1-2 \frac{m}{n}\right)^{1 / 4}+O\left(\frac{n^{2}}{(n-2 m)^{3}}\right)
$$

(ii) Critical phase : As $m=\frac{n}{2}+\mu n^{2 / 3}, \mu \in \mathbb{R}$ fixed

$$
\lim _{\mathbf{n} \rightarrow \infty} \mathbf{n}^{1 / 12} \operatorname{Pr}\left(\mathbf{n}, \frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{1}+\mu \mathbf{n}^{-1 / 3}\right)\right)=\Psi(\mu)
$$

where Ψ can be expressed in terms of the Airy function.
(iii) Super-critical phase : As $m=\frac{n}{2}+\mu n^{2 / 3}$ with $\mu=o\left(n^{1 / 12}\right)$

$$
\operatorname{Pr}\left(\mathbf{n}, \frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{1}+\mu \mathbf{n}^{-1 / \mathbf{3}}\right)\right)=\operatorname{Poly}(\mathbf{n}, \mu) \mathbf{e}^{-\frac{\mu^{3}}{6}}
$$

Proof of (i) : the sub-critical phase

(1) As $0<n-2 m \ll n^{2 / 3}$, the probability that a Erdős-Rényi random graph $\mathbb{G}(n, m)$ has NO MULTICYCLIC COMPONENTS is

$$
\mathbf{1}-\mathbf{O}\left(\frac{\mathbf{n}^{2}}{(\mathbf{n}-\mathbf{2 m})^{3}}\right)\left\{\begin{array}{l}
\text { if } m=c n \text { with } \lim \sup c<1 / 2, \text { BigOh }=O(1 / n) \\
\text { if } m=\frac{n}{2}-\mu(n) n^{2 / 3}, \text { BigOh }=O\left(1 / \mu^{3}\right)
\end{array}\right.
$$

(2) Then, the probability that the graph associated to random 2-XORSAT formula is SAT (conditionally that there is no multicyclic components) is given by

$$
\frac{\mathbf{n}!}{(\begin{array}{c}
\mathbf{n}\left(\begin{array}{c}
\mathbf{m}-\mathbf{1})
\end{array}\right)
\end{array}\left[\mathbf{z}^{\mathbf{n}}\right] \underbrace{\frac{C_{-1}(z)^{n-m}}{(n-m)!}}_{\text {unrooted trees }} \times \underbrace{e^{C_{0}(z)}}_{\begin{array}{c}
\text { set of even weighted } \\
\text { unicyclic components }
\end{array}}, \underbrace{(n-m)}}
$$

Saddle-point method for random 2-XORSAT sub-critical phase

$$
\mathbf{m} \leq \frac{\mathbf{n}}{\mathbf{2}}-\mu \mathbf{n}^{\mathbf{2} / \mathbf{3}}, \quad \mathbf{1} \ll \mu
$$

(1) Cauchy integral formula leads to

$$
\operatorname{coeff}(n, m) \times \frac{1}{2 \pi i} \oint \frac{e^{-T(2 z) / 4-T(2 z)^{2} / 8}}{(1-T(2 z))^{1 / 4}}\left(\frac{T(2 z)}{2}-\frac{T(2 z)^{2}}{4}\right)^{n-m} \frac{d z}{z^{n+1}}
$$

(2) "Lagrangian" substitution $u=T(2 z)$.
(3)

$$
\operatorname{coeff}(n, m) \times \frac{1}{2 \pi i} \oint g(u) \exp (n h(u)) d u
$$

(4) $\mathbf{h}(\mathbf{u})=\mathbf{u}-\frac{m}{n} \log \mathbf{u}+\left(\mathbf{1}-\frac{m}{n}\right) \log (\mathbf{2}-\mathbf{u})$.

Saddle-points at $\mathbf{u}_{0}=\mathbf{2 m} / \mathrm{n}<1$ and $\mathbf{u}_{1}=1$.
$h^{\prime \prime}(1)=2 m / n-1<0$ and $h^{\prime \prime}(2 m / n)=\frac{n(n-2 m)}{4 m(n-m)}>0$.
Saddle-point method applies on circular path $|z|=2 m / n \cdots$

Proof of (ii) : Inside the critical phase (1/2)

$$
\mathbf{m}=\frac{\mathbf{n}}{\mathbf{2}} \pm \mu \mathbf{n}^{2 / 3}, \quad|\mu|=\mathbf{O}\left(\mathbf{n}^{1 / 12}\right)
$$

Some MULTICYCLIC COMPONENTS (can) appear and the general formula for the integral becomes
(1)

$$
\operatorname{coeff}(n, m, r) \times \frac{1}{2 \pi i} \oint \frac{e^{-T(2 z) / 4-T(2 z)^{2} / 8}}{(1-T(2 z))^{1 / 4+3 r}}\left(\frac{T(2 z)}{2}-\frac{T(2 z)^{2}}{4}\right)^{n-m+r} \frac{d z}{z^{n+1}}
$$

(2)

$$
\operatorname{coeff}(n, m, r) e^{n} \times \frac{1}{2 \pi i} \oint g_{r}(u) \exp (n h(u)) d u
$$

(3) $\mathbf{h}(\mathbf{u})=\mathbf{u}-1-\frac{m}{n} \log \mathbf{u}+\left(1-\frac{m}{n}\right) \log (2-\mathbf{u})$.

Saddle-points at $u_{0}=2 m / n=1+2 \mu n^{-1 / 3}$ and $u_{1}=1$.
BUT at the critical point $m=2 n(\mu=0)$, we have $\mathrm{u}_{0}=\mathrm{u}_{1}=1$ with triple zero $h(1)=h^{\prime}(1)=h^{\prime \prime}(1)=0$.

Airy function and the critical window of transition

Integral representation on the complex plane

The Airy function is given by

$$
\operatorname{Ai}(z)=\frac{1}{2 \pi i} \int_{C} \exp \left(\frac{t^{3}}{3}-z t\right) d t
$$

where the integral is over a path C starting at the point at infinity with argument $-\pi / 3$ and ending at the point at infinity with argument $\pi / 3$.

Airy function and the critical window of transition

Integral representation on the complex plane

The Airy function is given by

$$
\operatorname{Ai}(z)=\frac{1}{2 \pi i} \int_{C} \exp \left(\frac{t^{3}}{3}-z t\right) d t
$$

where the integral is over a path C starting at the point at infinity with argument $-\pi / 3$ and ending at the point at infinity with argument $\pi / 3$.

Well suited for our purpose (see also [Flajolet, Knuth, Pittel 89], [Janson, Knuth, Łuzcak, Pittel 93], [Flajolet, Salvy, Schaeffer 02], [Banderier, Flajolet, Schaeffer, Soria 01])!
Integrating on a path $\mathbf{z}=\mathrm{e}^{-(\alpha+\mathrm{it}) \mathrm{n}^{-1 / 3}}$, we get

$$
\begin{aligned}
& \frac{e^{-\mu^{3} / 6-n}}{2^{2 m-n-2 r}} \times \frac{1}{2 \pi i} \oint \frac{e^{-T(2 z) / 4-T(2 z)^{2} / 8}}{(1-T(2 z))^{1 / 4+3 r}}\left(\frac{T(2 z)}{2}-\frac{T(2 z)^{2}}{4}\right)^{n-m+r} \frac{d z}{z^{n+1}} \\
& \sim e^{-3 / 8} A(1 / 4+3 r, \mu) n^{r-7 / 12}, \\
& \text { where } A(y, \mu)=\frac{e^{-\mu^{3} / 6}}{3(y+1) / 3} \sum_{k>0} \frac{\left(\frac{1}{2} 3^{2 / 3} \mu\right)^{k}}{k!\Gamma((y+1-2 k) / 3)}
\end{aligned}
$$

Proof of (ii) : Inside the critical phase (2/2)

Define $p_{r}(n, m)=$ Proba to have SAT-graph of excess r. The proba. that a random formula is given by $p(n, m)=\sum_{r>0} p_{r}(n, m)$.
The proof of part (ii) can now be completed by means of the following facts
(1) Using the Airy stuff, we compute for fixed r

$$
n^{1 / 12} \times p_{r}(n, m) \sim \frac{\sqrt{2 \pi} e^{1 / 4} f_{r}}{2^{r}} A(3 r+1 / 4, \mu)
$$

(2) Bounding the magnitude of the integral, it can be proved that there exist $R, C, \epsilon>0$ such that for all $r \geq R$ and all n :

$$
n^{1 / 12} p_{r}(n, m) \leq C e^{-\epsilon r .}
$$

(dominated convergence theorem applies).

Continuity between the sub-critical and critical phases

Remark

- On the first hand, writing $m=\frac{n}{2}-\mu n^{2 / 3}$ the probability is about :

$$
e^{m / 2 n}\left(1-\frac{2 m}{n}\right)^{1 / 4} \sim e^{1 / 4} \mu^{1 / 4} n^{-1 / 12}
$$

- On the other hand, the Airy stuff are valid for $m=\frac{n}{2}+\mu n^{2 / 3}$, $|\mu|=O\left(n^{1 / 12}\right)$. Using
$A(r, \mu)=\frac{1}{\sqrt{2 \pi}|\mu|^{y-1 / 2}}\left(1-\frac{3 y^{2}+3 y-1}{6|\mu|^{3}}+O\left(|\mu|^{-6}\right)\right)$ as $\mu \rightarrow-\infty$ we get

$$
\sum_{r} p_{r}(n, m) \sim n^{-1 / 12}\left(\sum_{r=0}^{\infty} \frac{\sqrt{2 \pi} e^{1 / 4} f_{r}}{2^{r}} A(3 r+1 / 4, \mu)\right) \sim e^{1 / 4} \mu^{1 / 4} n^{-1 / 12}
$$

Proof of (iii) : the supercritical phase

For the case (iii) of the theorem, we use

$$
A(y, \mu)=\frac{e^{-\mu^{3} / 6}}{2^{y / 2} \mu^{1-y / 2}}\left(\frac{1}{\Gamma(y / 2)}+\frac{4 \mu^{-3 / 2}}{3 \sqrt{2} \Gamma(y / 2-3 / 2)}+O\left(\mu^{-2}\right)\right) .
$$

Random MAX-2-XORSAT

Context

- MAX-2-XORSAT is an NP-optimization problem (NPO). The corresponding decision problem is in NP (deciding if the size of the MAX is $k \ldots$...).
- Max/Min problems are interesting (and difficult) in randomness context.
- Previous works : [Coppersmith, Gamarnik, Hajiaghayi, Sorkin 04] Expectations of the Maximum number of satisfiable clauses in MAX-2-SAT and MAX-CUT for the subcritical phases. Bounds of these expectations for some cases (namely for the critical and supercritical phases of random graphs)!
- Our work :

Quantification of the Minimum number of clauses to remove in order to get satisfiable formula.

MAX-CUT ~ MAX-2-XORSAT (i)

MAX-CUT ~ MAX-2-XORSAT (ii)

Graph \longrightarrow MAX-2-XORSAT

Th. (1/2)

Let $X_{n, m}$ be the minimum number of clauses UNSAT in a random 2-XOR formula with n variables and m clauses. We have :
(i) Sub-critical phase : If $\lim \sup \frac{m}{n}<1 / 2$ then

$$
X_{n, m} \xrightarrow{\text { dist. }} \text { Poisson }\left(\frac{\log n-3 \log \left(\frac{n-2 m}{n^{2 / 3}}\right)-3\left(1-\frac{2 m}{n}\right)}{12}\right) .
$$

If $m=\frac{n}{2}\left(1-\mu n^{-1 / 3}\right), 1 \ll \mu \ll n^{1 / 3}$ then

$$
\mathbb{P}\left(X_{n, m}-\frac{1}{4} \log \left(\mu n^{-1 / 3}\right) \leq x \sqrt{\frac{1}{4} \log \left(\mu n^{-1 / 3}\right)}\right) \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-u^{2} / 2} d u
$$

(ii) Critical phase : If $m=\frac{n}{2}\left(1+O(1) n^{-1 / 3}\right)$ then

$$
\mathbb{P}\left(X_{n, m}-\frac{1}{12} \log (n) \leq x \sqrt{\frac{1}{12} \log (n)}\right) \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-u^{2} / 2} d u
$$

Th. (2/2)

(iii) Supercritical phase : If $m=\frac{n}{2}+\frac{\mu}{2} n^{2 / 3}$ with $\mu=o\left(n^{1 / 3}\right)$

$$
\frac{12 X_{n, m}}{\frac{2(2 m-n)^{3}}{n^{2}}+\log n-3 \log \mu} \xrightarrow{\text { dist. }} \mathbf{1} .
$$

(iv) If $m=\frac{n}{2}(1+\varepsilon)$ then

$$
\frac{\mathbf{8}(\mathbf{1}+\varepsilon)}{\mathbf{n}\left(\varepsilon^{2}-\sigma^{2}\right)} \mathbf{X}_{\mathbf{n}, \mathbf{m}} \xrightarrow{\text { dist. }} \mathbf{1}
$$

where σ is the solution of $(1+\varepsilon) e^{-\varepsilon}=(1-\sigma) e^{\sigma}$.

Notations

- $\mathbf{X}_{\mathrm{n}, \mathrm{m}}$: minimum number of UNSAT clauses in random formula with n variables and m clauses.
- $\mathbf{Y}_{\mathrm{n}, \mathrm{m}}$: minimum number of clauses to suppress in unicyclic components.
- $\mathbf{Z}_{\mathrm{n}, \mathrm{m}}$: minimum number of clauses to suppress in multicyclic components.

$$
X_{n, m}=Y_{n, m}+Z_{n, m}
$$

Proof of the sub-critical phase

In the sub-critical random graphs, we know that $Z_{n, m}=O_{p}(1)$.

- if $m=c n, c \in] 0, \frac{1}{2}[\forall R$ fixed, we have

$$
\operatorname{Pr}\left(\mathbf{Y}_{\mathbf{n}, \mathbf{m}}=\mathbf{R}\right)=\mathbf{e}^{-\alpha(\mathbf{c}) \frac{\alpha\left(\mathbf{c} \mathbf{c}^{\mathbf{R}}\right.}{\mathbf{R !}}\left(\mathbf{1}+\mathbf{O}\left(\frac{\mathbf{1}}{\mathbf{n}}\right)\right) .}
$$

- If $m=\frac{n}{2}\left(1-\mu n^{-1 / 3}\right)$ with $\mu \rightarrow \infty$ but $\mu=o\left(n^{1 / 3}\right)$, we get $\forall R \leq 4 \beta(n)$

$$
\operatorname{Pr}\left(\mathbf{Y}_{\mathbf{n}, \mathbf{m}}=\mathbf{R}\right)=\mathbf{e}^{-\beta(\mathbf{n}) \frac{\beta(\mathbf{n})^{\mathbf{R}}}{\mathbf{R !}}\left(\mathbf{1}+\mathbf{O}\left(\frac{\mathbf{1}}{\mu^{3}}\right)\right)}
$$

- There are $R_{0}, C, \varepsilon>0$, s. t. $\forall R>R_{0}$

$$
\operatorname{Pr}\left(\mathbf{Y}_{\mathbf{n}, \mathbf{m}}=\mathbf{R}\right) \leq \mathbf{C} \mathbf{e}^{-\varepsilon \mathbf{R}} .
$$

with
$\beta(\mathbf{n})=\frac{1}{12} \log (\mathbf{n})-\frac{1}{4} \log (\mu)-\frac{1}{4}+\frac{1}{4} \mu \mathbf{n}^{-1 / 3}, \alpha(\mathbf{c})=-\frac{1}{4} \log (\mathbf{1}-\mathbf{2} \mathbf{c})-\frac{\mathbf{c}}{2}$

Super-critical phase

Lemma. As $\ell \rightarrow \infty$, the probability that the number of edges to suppress in order to obtain a (weighted) connected graph without cycles of odd weight from a (weighted) connected graph of excess ℓ is larger than

$$
\frac{\ell}{4}-\mathbf{o}(\ell)
$$

is at least

$$
\mathbf{1}-\mathbf{e}^{-\mathbf{O}(\ell)}-\mathbf{e}^{-4 \mathbf{c}(\ell)^{2}+\frac{1}{2} \log (\ell)}
$$

where $c(\ell)^{2} \gg \log (\ell)$

Super-critical phase

Lemma. As $\ell \rightarrow \infty$, the probability that the number of edges to suppress in order to obtain a (weighted) connected graph without cycles of odd weight from a (weighted) connected graph of excess ℓ is larger than

$$
\frac{\ell}{4}-o(\ell)
$$

is at least

$$
\mathbf{1}-\mathbf{e}^{-\mathbf{O}(\ell)}-\mathbf{e}^{-4 \mathbf{c}(\ell)^{2}+\frac{1}{2} \log (\ell)}
$$

where $c(\ell)^{2} \gg \log (\ell)$

To prove this lemma, we need another one!

Lower bound of the probability (super-critical phase)

Let $C_{s, \ell}$ be the EGFs of connected components of EXCESS ℓ and where EXACTLY s edges have to be suppressed to obtain components without cycles of odd weight.

Lemma. For all $s \geq 0$, we have

$$
\mathbf{C}_{\mathbf{s}, \ell}(\mathbf{z}) \prec \sum_{\mathbf{i}=\mathbf{s}}^{2 \mathbf{s}}\binom{\ell+\mathbf{1}}{\mathbf{i}} \mathbf{C}_{0, \ell}(\mathbf{z})+B_{s, \ell}(z) .
$$

Lower bound of the probability (super-critical phase)

Let $C_{s, \ell}$ be the EGFs of connected components of EXCESS ℓ and where EXACTLY s edges have to be suppressed to obtain components without cycles of odd weight.

Lemma. For all $s \geq 0$, we have

$$
\mathbf{C}_{\mathbf{s}, \ell}(\mathbf{z}) \prec \sum_{\mathbf{i}=\mathbf{s}}^{2 \mathbf{s}}\binom{\ell+\mathbf{1}}{\mathbf{i}} \mathbf{C}_{0, \ell}(\mathbf{z})+B_{s, \ell}(z) .
$$

Idea of the proof.

SAT $\Rightarrow>$ UNSAT

Upper-bound of the probability (super-critical phase)

Lemma. If in a connected component of excess ℓ we have to suppress at least s edges to obtain a SAT-graph then this component has at most s fundamental and distinct cycles of odd weight. Idea of the proof. Immediate.
As a crucial consequence, such a connected component has a cactus (as a subgraph) with at most s cycles of odd weight.

Upper-bound of the probability (super-critical phase)

Lemma. If in a connected component of excess ℓ we have to suppress at least s edges to obtain a SAT-graph then this component has at most s fundamental and distinct cycles of odd weight. Idea of the proof. Immediate.
As a crucial consequence, such a connected component has a cactus (as a subgraph) with at most s cycles of odd weight.

Example.

Counting cactii

Lemma. Let $\tilde{\overline{\bar{I}}}_{s}(z)$ be the EGF of smooth cactii (Husimi trees) with s cycles, we have :

$$
\begin{aligned}
& \partial_{z} \tilde{\overline{\bar{Z}}}_{s}+(s-1) \tilde{\overline{\bar{Z}}}_{s}=\frac{1}{2} \sum_{i=1}^{s-1}\left(\partial_{z} \tilde{\overline{\bar{Z}}}_{i}\right)\left(\partial_{z} \tilde{\overline{\bar{I}}}_{s-i}\right)(\partial(P)-P)+\sum_{k=1}^{s-1} z^{k} \frac{\partial^{k}}{\partial z^{k}} \partial_{z} \tilde{\overline{\bar{Z}}}_{1} \\
& \quad \times \sum_{\ell_{1}+2 \ell_{2}+\cdots+(s-1) \ell_{s-1}=s-1} \frac{\left(\partial_{z} \tilde{\overline{\bar{I}}}_{1}\right)^{\ell_{1}}}{\ell_{1}!} \cdots \frac{\left(\partial_{z} \tilde{\overline{\bar{Z}}}_{s-1}\right)^{\ell_{s-1}}}{\ell_{s-1}!}\left(\frac{1}{z}+\frac{P}{z^{2}}\right)^{k}
\end{aligned}
$$

, with $P \equiv P(z)=\frac{z^{2}}{1-z}$.

Counting cactii (...)

Lemma. We have

$$
\Xi_{s}(z) \preceq \frac{\xi_{s}}{(1-t(z))^{3 s-3}}, \quad s>1
$$

where $\left(\xi_{s}\right)_{s>1}$ satisfies $\xi_{2}=\frac{1}{8}, \xi_{3}=\frac{1}{12}$ and for $s \geq 3$, we have :

$$
\begin{gathered}
\mathbf{3}(\mathbf{s}-1) \xi_{\mathbf{s}}=\frac{\mathbf{3}}{\mathbf{2}}(\mathbf{s}-\mathbf{2}) \xi_{\mathbf{s}-1}+\frac{9}{2} \sum_{\mathbf{i}=\mathbf{2}}^{\mathbf{s - 2}}(\mathbf{i}-\mathbf{1})(\mathbf{s}-\mathbf{i}-\mathbf{1}) \xi_{\mathbf{i}} \xi_{\mathbf{s}-\mathbf{i}}+ \\
\frac{\mathbf{1}}{\mathbf{2}} \sum_{\mathbf{k}=\mathbf{s}-1}^{\mathbf{s}-\mathbf{k}!}\left(\begin{array}{c}
\sum_{\substack{\ell_{1}+2 \ell_{2}+\cdots+(s-1) \ell_{s-1}=s-1 \\
\ell_{1}+\ell_{2}+\cdots+\ell_{s-1}=k}} \frac{\left(\frac{1}{2}\right)^{\ell_{1}}}{\ell_{1}!} \frac{\left(\mathbf{3} \xi_{2}\right)^{\ell_{2}}}{\ell_{\mathbf{2}}!} \cdots \frac{\left(\mathbf{3}(\mathbf{s}-\mathbf{2}) \xi_{\mathbf{s}-1}\right)^{\ell_{\mathbf{s}-1}}}{\ell_{\mathbf{s}-1}!}
\end{array}\right)
\end{gathered}
$$

Counting cactii (...)

Lemma. We have

$$
\Xi_{s}(z) \preceq \frac{\xi_{s}}{(1-t(z))^{3 s-3}}, \quad s>1
$$

where $\left(\xi_{s}\right)_{s>1}$ satisfies $\xi_{2}=\frac{1}{8}, \xi_{3}=\frac{1}{12}$ and for $s \geq 3$, we have :

$$
\begin{gathered}
\mathbf{3}(\mathbf{s}-\mathbf{1}) \xi_{\mathbf{s}}=\frac{\mathbf{3}}{\mathbf{2}}(\mathbf{s}-\mathbf{2}) \xi_{\mathbf{s}-1}+\frac{\mathbf{9}}{\mathbf{2}} \sum_{\mathbf{i}=\mathbf{2}}^{\mathbf{s}-\mathbf{2}}(\mathbf{i}-\mathbf{1})(\mathbf{s}-\mathbf{i}-1) \xi_{i} \xi_{\mathbf{s}-\mathbf{i}}+ \\
\frac{1}{\mathbf{2}} \sum_{\mathbf{k}=1}^{\mathbf{s}-\mathbf{1}} \mathbf{k}!\left(\begin{array}{c}
\sum_{\substack{\ell_{1}+2 \ell_{2}+\cdots+(s-1) \ell_{s-1}=s-1 \\
\ell_{1}+\ell_{2}+\cdots+\ell_{s-1}=k}} \frac{\left(\frac{1}{2}\right)^{\ell_{1}}}{\ell_{1}!} \frac{\left(\mathbf{3} \xi_{2}\right)^{\ell_{2}}}{\ell_{2}!} \cdots \frac{\left(\mathbf{3}(\mathbf{s}-\mathbf{2}) \xi_{\mathbf{s}-1}\right)^{\ell_{\mathbf{s}-1}}}{\ell_{\mathbf{s}-1}!}
\end{array}\right)
\end{gathered}
$$

Lemma. As $s \rightarrow \infty$,

$$
\xi_{s}=\frac{1}{6}\left(\frac{3}{2}\right)^{s-1} \frac{3^{s / 2}}{\sqrt{2 \pi s^{3}}(s-1)}\left(1+O\left(\frac{1}{s}\right)\right) .
$$

Graphs and cactii

Corollary. The number of connected component of excess ℓ obtained by adding edges from cactii with s cycles can be neglected if $s>\frac{\ell}{2}+O\left(\frac{\ell}{\log (\ell)}\right)$.

Graphs and cactii

Corollary. The number of connected component of excess ℓ obtained by adding edges from cactii with s cycles can be neglected if $s>\frac{\ell}{2}+O\left(\frac{\ell}{\log (\ell)}\right)$.

Idea of the proof.

- Pick a cactus with s cycles.
- Add $(\ell-s)$ edges to obtain a connected component of excess ℓ. The number of such constructions can be bounded by pointing/depointing the last added edge.
- The ratio of the number these objects over the number of all connected components of excess ℓ is exponentially small as $s>\frac{\ell}{2}+O(\ell / \log \ell)$.

Main steps of the proof for the super-critical phase

a) On connected components of excess ℓ the number of edges to suppress lies w.h.p. between

$$
\frac{\ell}{4}-O\left(\ell^{2 / 3}\right) \leq \sharp \text { suppressions } \leq \frac{\ell}{4}+O\left(\frac{\ell}{\log \ell}\right) .
$$

b) For our purpose we have two facts:

Fact 1 : The number of unicyclic components in the super-critical phase is decreasing from $O(\log n)$ (something Gaussian) to $O(1)$ (something Poisson) ...
Fact 2 : [Pittel, Wormald 05] have quantified the excess of the giant component of Erdős-Rényi random graph in the super-critical phase. Combining these two facts with a) completes the proof of the theorem.

Conclusion and perspectives

Conclusion and perspectives

Enumerative/Analytic approaches of

(1) a decision problem and its phase transition
(2) an NP-optimization problem.

Conclusion and perspectives

Enumerative/Analytic approaches of

(1) a decision problem and its phase transition
(2) an NP-optimization problem.

Similar methods on other problems such as
(1) bipartiteness (or 2-COL).
(2) MAX-2-COL, MAX-CUT, MIN-VERTEX-COVER, MIN-BISECTION (all are hard optimization problems related to bipartiteness/2-COL).
(3) 2-QXORSAT (quantified formula).
(4) planarity, MAXIMUM PLANAR SUBGRAPH (cf. courses ALEA'10 [Fusy, Noy])

