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Introduction & Motivations
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Decision and optimization problems

Decision and optimization problems play central key rôle in CS
(cf. [GAREY, JOHNSON 79] , [AUSIELLO et al. 03] )

1 A decision problem is a question in some formal system with a
yes/no answer : INPUT : an instance I and a property P.

OUTPUT : yes or no I satisfies P.

2 An optimization problem is the problem of finding the best
solution from all feasible solutions.

In this talk, we consider two such problems :
2-XORSAT and MAX-2-XORSAT.
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SAT-like problems

Random k -SAT formulas (k > 2) are subject to phase transition
phenomena [FRIEDGUT, BOURGAIN 1999] .

Main research tasks include
1 Localization of the threshold (ex. 3-SAT 4.2. . . ?

3-XORSAT 0.91. . . [DUBOIS, MANDLER 03)] )

2 Nature of the phenomena : sharp/coarse.
[CREIGNOU, DAUDÉ 2000++] .

3 Details inside the window of transition
(ex. 2-SAT [BOLLOBÀS, BORGS, KIM, WILSON 01] )

4 Space of solutions (ex. [ACHLIOPTAS, NAOR, PERES 07] or
[MONASSON et al. 07] )
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SAT-like problems : localization of 2-SAT’s threshold

An instance : (v1 ∨ v2) ∧ (¬v1 ∨ v3) ∧ (¬v1 ∨ ¬v2)

A solution : SAT with (v1 = 1,v2 = 0,v3 = 1).
Localization of the threshold : n variables, m = c × n clauses
randomly picked from the set of 4

(n
2

)
clauses.

c < 1 Proba SAT→ 1, c > 1 Proba SAT→ 0.
Underlying combinatorial structures : directed graphs.

Write x ∨ y as

{
¬x = 1 =⇒ y = 1
¬y = 1 =⇒ x = 1

Characterization : SAT iff no directed path between x and ¬x
(and vice-versa).
Proof. First and second moments method [GOERDT 92, DE LA

VEGA 92, CHVÀTAL, REED 92] .
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2-XORSAT / MAX-2-XORSAT

Main motivations
Since the empirical results ( [KIRKPATRICK, SELMAN 90] about
k -SAT, rigorous results are quite limited!
What are the contributions of ENUMERATIVE/ANALYTIC
COMBINATORICS to SAT/CSP-like problems?
MONASSON (2007) inferred that (statistical physics) :

lim
n→+∞

ncritical exponent × Proba
[
2XORSAT(n,

n
2

)
]

= O(1) ,

where “critical exponent” = 1/12 .
We will show that “critical exponent” = 1/12 and will explicit the
hidden constant behind the O(1).
We will quantify the MAXIMUM number of satisfiable clauses in
random formula.
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The 2-XORSAT phase transition
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Random 2-XORSAT

Ex :
x1 ⊕ x2 = 1, x2 ⊕ x3 = 0, x1 ⊕ x3 = 0, x3 ⊕ x4 = 1, · · · .
General form : AX = C where A has m rows and 2 columns and
C is a m-dimensional 0/1 vector.
Distribution : uniform. We pick m clauses of the form
xi ⊕ xj = ε ∈ {0, 1} from the set of n(n − 1) clauses.
Underlying structures : graphs with weighted edges

x ⊕ y = ε⇐⇒ edges of weight ε ∈ {0, 1}.

Characterisation :
SAT iff no elementary cycle of odd weight.
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SAT iff no elementary cycle of odd weight


x1 ⊕ x2 = 1
x2 ⊕ x3 = 0
x1 ⊕ x3 = 0
x3 ⊕ x4 = 1
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UNSAT⇐= Fix a cycle of odd weight ...

SAT⇐= No cycles of odd weight. DFS affectation based proof.
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Main ideas of our approach

A basic scheme
1 Enumeration of “SAT”-graphs (graphs without cycles of odd

weight) by means of generating functions.

2 Use the obtained results with analytic combinatorics to compute :

Prob. SAT =
Nbr of configurations without cycles of odd weight

Nbr total of configurations
.
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Taste of our results : the whole window

0,8

0,4

0

1

0,6

0,2

c

0,2 0,80,60,40

p(n,cn)
def
= Proba [2-XOR with n variables ,cn clauses ] is SAT

for n = 1000 , n = 2000 and the theoretical function : ec/2(1− 2c)1/4.
Vlady Ravelomanana Random (MAX)–2–XORSAT phase transitions 22-03-2010 12 / 43



Taste of our results: rescaling the critical window

1,6

0,8

1,2

0,4

0
2 4-2 0-4

Rescaling at the point “zero”, i.e c = 1/2 : n = 1000 , n = 2000 and
limn→∞ n1/12×︸ ︷︷ ︸ p(n,n/2 + µn2/3) as a function of µ.
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Enumerating graphs of 2-XORSAT.

We will enumerate the connected graphs without cycles of
odd weight according to two parameters: number of vertices n and
number of edges n + `. ` def

= excess.
Let

C`(z) =
∑
n>0

cn,n+`
zn

n!
.

What are the series C`?

Th.

C`(z) =
1
2

W`(2z)

with W` = Exponential generating functions of connected graphs
WRIGHT (1977).
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Enumerations: trees and unicyclic components

Rooted and unrooted trees (excess = −1)

T (z) = ze2T (z) =
∑
n>0

(2n)n−1 zn

n!
, C−1(z) = T − T 2 .

Unicyclic components (excess = 0)
1 Number of labellings of a smooth cycle (i.e. without vertices of

degree 1) using n > 2 vertices :

2nn!

2n
.

2 Thus, the EGF of smooth unicyclic components

C̃0(z) = −1
4

log (1− 2z)− z/2− z2/2 .

3 Substituting each vertex with a full rooted tree, we get

C0(z) = −1
4

log (1− 2T )− T/2− T 2/2 .

What about multicyclic components? (excess > 0)
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Enumerations: connected multicyclic components

1
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On a connected “SAT”-graph with n vertices and n + ` edges, the
edges of a spanning tree can be colored in 2n−1 ways. The colors of
the other edges are “determined”.
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Enumerations: general multicyclic components

Let Fr (z) be the EGF of all complex weighted labelled graphs
(connected or not), with a positive total excess1 r and without cycles
of odd weight (“SAT-graph”).

X
r≥0

Fr (z) = exp

 X
k≥1

Wk (2z)

2

!

and for any r ≥ 1

rFr (z) =
rX

k=1

k
Wk (2z)

2
Fr−k (z) , F0(z) = 1 .

Since Wk (x) � wk
(1−T (x))3k [WRIGHT 80] , we also have Fk (x) � fk

(1−T (2x))3k with
2rfr =

Pr
k=1 kwk fr−k , r > 0.

1total excess of the random graphs def
= nbr of edges + number of trees −

number of vertices
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The Random 2-XORSAT Transition

Th.
The probability that a random formula with n variables and m clauses is SAT satisfies
the following :

(i) Sub-critical phase : As 0 < n − 2m� n2/3,

Pr(n,m) = em/2n
“

1− 2
m
n

”1/4
+ O

„
n2

(n− 2m)3

«
.

(ii) Critical phase : As m = n
2 + µn2/3, µ ∈ R fixed

lim
n→∞

n1/12 Pr
“

n,
n
2

(1 + µn−1/3)
”

= Ψ(µ) ,

where Ψ can be expressed in terms of the Airy function.

(iii) Super-critical phase : As m = n
2 + µn2/3 with µ = o(n1/12)

Pr
“

n,
n
2

(1 + µn−1/3)
”

= Poly(n, µ) e−
µ3
6 .
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Proof of (i) : the sub-critical phase

1 As 0 < n − 2m� n2/3, the probability that a Erdős-Rényi random
graph G(n,m) has NO MULTICYCLIC COMPONENTS is

1−O
„

n2

(n− 2m)3

« 
if m = cn with lim sup c < 1/2, BigOh = O(1/n)

if m = n
2 − µ(n)n2/3, BigOh = O(1/µ3)

2 Then, the probability that the graph associated to random
2-XORSAT formula is SAT (conditionally that there is no
multicyclic components) is given by

n!`n(n−1)
m

´ ˆzn˜ C−1(z)n−m

(n −m)!| {z }
unrooted trees

× eC0(z)| {z }
set of even weighted
unicyclic components
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Saddle-point method for random 2-XORSAT sub-critical phase

m ≤ n
2
− µn2/3, 1� µ

1 Cauchy integral formula leads to

coeff(n,m) × 1
2πi

I
e−T (2z)/4−T (2z)2/8

(1− T (2z))1/4

„
T (2z)

2
− T (2z)2

4

«n−m
dz

zn+1

2 “Lagrangian” substitution u = T (2z).
3

coeff(n,m) × 1
2πi

I
g(u) exp (nh(u))du

4 h(u) = u− m
n log u +

`
1− m

n

´
log (2− u).

Saddle-points at u0 = 2m/n < 1 and u1 = 1.
h′′(1) = 2m/n − 1 < 0 and h′′(2m/n) = n(n−2m)

4m(n−m)
> 0.

Saddle-point method applies on circular path |z| = 2m/n · · ·
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Proof of (ii) : Inside the critical phase (1/2)

m =
n
2
± µn2/3, |µ| = O(n1/12)

Some MULTICYCLIC COMPONENTS (can) appear and the general
formula for the integral becomes

1

coeff(n,m, r) × 1
2πi

I
e−T (2z)/4−T (2z)2/8

(1− T (2z))1/4+3r

„
T (2z)

2
− T (2z)2

4

«n−m+r
dz

zn+1

2

coeff(n,m, r)en × 1
2πi

I
gr (u) exp (nh(u))du

3 h(u) = u− 1− m
n log u +

`
1− m

n

´
log (2− u).

Saddle-points at u0 = 2m/n = 1 + 2µn−1/3 and u1 = 1.
BUT at the critical point m = 2n (µ = 0), we have u0 = u1 = 1 with triple zero
h(1) = h′(1) = h′′(1) = 0.
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Airy function and the critical window of transition

Integral representation on the complex plane
The Airy function is given by

Ai(z) =
1

2πi

Z
C

exp
„

t3

3
− zt

«
dt ,

where the integral is over a path C starting at the point at infinity with argument −π/3
and ending at the point at infinity with argument π/3.

Well suited for our purpose (see also [FLAJOLET, KNUTH, PITTEL 89] ,
[JANSON, KNUTH, ŁUZCAK, PITTEL 93] , [FLAJOLET, SALVY, SCHAEFFER 02] ,
[BANDERIER, FLAJOLET, SCHAEFFER, SORIA 01] )!
Integrating on a path z = e−(α+it)n−1/3

, we get

e−µ
3/6−n

22m−n−2r ×
1

2πi

I
e−T (2z)/4−T (2z)2/8

(1− T (2z))1/4+3r

„
T (2z)

2
− T (2z)2

4

«n−m+r
dz

zn+1

∼ e−3/8 A(1/4 + 3r , µ) nr−7/12 ,

where A(y , µ) =
e−µ

3/6

3(y+1)/3

X
k≥0

“
1
2 32/3µ

”k

k ! Γ ((y + 1− 2k)/3)
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Proof of (ii) : Inside the critical phase (2/2)

Define pr (n, m) = Proba to have SAT-graph of excess r . The proba.
that a random formula is given by p(n,m) =

∑
r≥0 pr (n, m) .

The proof of part (ii) can now be completed by means of the following
facts

1 Using the Airy stuff, we compute for fixed r

n1/12 × pr (n, m) ∼
√

2π e1/4fr
2r A(3r + 1/4, µ) .

2 Bounding the magnitude of the integral, it can be proved that there
exist R, C, ε > 0 such that for all r ≥ R and all n:

n1/12 pr (n, m) ≤ C e−ε r .

(dominated convergence theorem applies).
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Continuity between the sub-critical and critical phases

Remark

On the first hand, writing m = n
2 − µn2/3 the probability is about :

em/2n
„

1− 2m
n

«1/4

∼ e1/4 µ1/4 n−1/12 .

On the other hand, the Airy stuff are valid for m = n
2 + µn2/3,

|µ| = O(n1/12). Using

A(r , µ) = 1√
2π |µ|y−1/2

(
1− 3y2+3y−1

6|µ|3 + O(|µ|−6)

)
as µ→ −∞ we

get

X
r

pr (n, m) ∼ n−1/12

 
∞X

r=0

√
2π e1/4fr

2r A(3r + 1/4, µ)

!
∼ e1/4 µ1/4 n−1/12 .
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Proof of (iii) : the supercritical phase

For the case (iii) of the theorem, we use

A(y , µ) =
e−µ

3/6

2y/2µ1−y/2

„
1

Γ(y/2)
+

4µ−3/2

3
√

2 Γ(y/2− 3/2)
+ O(µ−2)

«
.
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Random MAX-2-XORSAT
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Context

MAX-2-XORSAT is an NP-optimization problem (NPO). The
corresponding decision problem is in NP (deciding if the size of
the MAX is k ...).

MAX/MIN problems are interesting (and difficult) in randomness
context.

PREVIOUS WORKS : [COPPERSMITH, GAMARNIK, HAJIAGHAYI, SORKIN 04]
Expectations of the Maximum number of satisfiable clauses in
MAX-2-SAT and MAX-CUT for the subcritical phases. Bounds of
these expectations for some cases (namely for the critical and
supercritical phases of random graphs)!

OUR WORK :
Quantification of the Minimum number of clauses to remove in
order to get satisfiable formula.

REMARK. Computing the Minimum is harder than the
Maximum.
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MAX-CUT ∼ MAX-2-XORSAT (i)

1

1

1

1

1

1
0

0

0

0

MAX−CUTCUT
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MAX-CUT ∼ MAX-2-XORSAT (ii)

MAX−2−XORSAT

1

1

1 1

1

1

1

1

1 0

1

01

0

MAX−CUT

Graph
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Th. (1/2)
Let Xn,m be the minimum number of clauses UNSAT in a random 2-XOR formula with
n variables and m clauses. We have :

(i) Sub-critical phase : If lim sup m
n < 1/2 then

Xn,m
dist.−→ Poisson

0@ log n− 3 log
“

n−2m
n2/3

”
− 3
“

1− 2m
n

”
12

1A .

If m = n
2 (1− µn−1/3), 1� µ� n1/3 then

P

 
Xn,m −

1
4

log(µn−1/3) ≤ x

r
1
4

log(µn−1/3)

!
→ 1√

2π

Z x

−∞
e−u2/2du

(ii) Critical phase : If m = n
2 (1 + O(1)n−1/3) then

P

 
Xn,m −

1
12

log(n) ≤ x

r
1
12

log(n)

!
→ 1√

2π

Z x

−∞
e−u2/2du
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Th. (2/2)

(iii) Supercritical phase : If m = n
2 + µ

2 n2/3 with µ = o(n1/3)

12 Xn,m
2(2m−n)3

n2 + log n− 3 logµ
dist.−→ 1 .

(iv) If m = n
2 (1 + ε) then

8(1 + ε)

n(ε2 − σ2)
Xn,m

dist.−→ 1 ,

where σ is the solution of (1 + ε)e−ε = (1− σ)eσ.

Vlady Ravelomanana Random (MAX)–2–XORSAT phase transitions 22-03-2010 31 / 43



Notations

Xn,m : minimum number of UNSAT clauses in random formula with
n variables and m clauses.

Yn,m : minimum number of clauses to suppress in unicyclic
components.

Zn,m : minimum number of clauses to suppress in multicyclic
components.

Xn,m = Yn,m + Zn,m .
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Proof of the sub-critical phase

In the sub-critical random graphs, we know that Zn,m = Op(1).
if m = cn, c ∈]0, 1

2 [ ∀R fixed, we have

Pr (Yn,m = R) = e−α(c) α(c)R

R!

(
1 + O

( 1
n

))
.

If m = n
2 (1− µn−1/3) with µ→∞ but µ = o(n1/3), we get

∀ R ≤ 4β(n)

Pr (Yn,m = R) = e−β(n) β(n)R

R!

(
1 + O

(
1
µ3

))
.

There are R0, C, ε > 0, s. t. ∀R > R0

Pr (Yn,m = R) ≤ Ce−εR .

with

β(n) = 1
12 log(n)− 1

4 log(µ)− 1
4 + 1

4µn−1/3, α(c) = −1
4 log(1− 2c)− c

2
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Super-critical phase

Lemma. As `→∞, the probability that the number of edges to
suppress in order to obtain a (weighted) connected graph without
cycles of odd weight from a (weighted) connected graph of excess ` is
larger than

`

4
− o(`)

is at least
1− e−O(`) − e−4c(`)2+ 1

2 log(`)

where c(`)2 � log(`)

To prove this lemma, we need another one!
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Lower bound of the probability (super-critical phase)

Let Cs,` be the EGFs of connected components of EXCESS ` and
where EXACTLY s edges have to be suppressed to obtain
components without cycles of odd weight.

Lemma. For all s ≥ 0, we have

Cs,`(z) ≺
2s∑
i=s

(
`+ 1

i

)
C0,`(z) + Bs,`(z) .

Idea of the proof.

a

b

c

d

a

b

c

d

1

2

3

4
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SAT=>UNSAT

a

b

c

d

a

b

c

d

a

b

c

d

Vlady Ravelomanana Random (MAX)–2–XORSAT phase transitions 22-03-2010 36 / 43



Upper-bound of the probability (super-critical phase)

Lemma. If in a connected component of excess ` we have to
suppress at least s edges to obtain a SAT-graph then this component
has at most s fundamental and distinct cycles of odd weight.
Idea of the proof. Immediate.
As a crucial consequence, such a connected component has a
cactus (as a subgraph) with at most s cycles of odd weight.

Example.
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Counting cactii

Lemma. Let Ξ̃s(z) be the EGF of smooth cactii (Husimi trees) with s
cycles, we have :

∂zΞ̃s + (s − 1)Ξ̃s =
1
2

s−1∑
i=1

(∂zΞ̃i) (∂zΞ̃s−i) (∂(P)− P) +
s−1∑
k=1

zk ∂k

∂zk ∂zΞ̃1

×
∑

`1+2`2+···+(s−1)`s−1=s−1
`1+`2+···+`s−1=k ,`i∈N

(
∂zΞ̃1

)`1
`1!

· · ·

(
∂zΞ̃s−1

)`s−1

`s−1!

(
1
z

+
P
z2

)k

, with P ≡ P(z) = z2

1−z .

Vlady Ravelomanana Random (MAX)–2–XORSAT phase transitions 22-03-2010 38 / 43



Counting cactii (...)

Lemma. We have

Ξs(z) � ξs

(1− t(z))3s−3 , s > 1

where (ξs)s>1 satisfies ξ2 = 1
8 , ξ3 = 1

12 and for s ≥ 3, we have :

3(s− 1)ξs =
3
2

(s− 2)ξs−1 +
9
2

s−2∑
i=2

(i− 1)(s− i− 1)ξiξs−i+

1
2

s−1∑
k=1

k!

 ∑
`1+2`2+···+(s−1)`s−1=s−1

`1+`2+···+`s−1=k

(1
2

)`1
`1!

(3ξ2)`2

`2!
· · · (3(s− 2)ξs−1)`s−1

`s−1!



Lemma. As s →∞,

ξs =
1
6

(
3
2

)s−1 3s/2
√

2πs3(s− 1)

(
1 + O

(
1
s

))
.
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Graphs and cactii

Corollary. The number of connected component of excess ` obtained
by adding edges from cactii with s cycles can be neglected if
s > `

2 + O
(

`
log(`)

)
.

Idea of the proof.
Pick a cactus with s cycles.
Add (`− s) edges to obtain a connected component of excess `.
The number of such constructions can be bounded by
pointing/depointing the last added edge.
The ratio of the number these objects over the number of all
connected components of excess ` is exponentially small as
s > `

2 + O(`/ log `).
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Main steps of the proof for the super-critical phase

a) On connected components of excess ` the number of edges to
suppress lies w.h.p. between

`

4
−O(`2/3) ≤ ]suppressions ≤ `

4
+ O

(
`

log `

)
.

b) For our purpose we have two facts :
Fact 1 : The number of unicyclic components in the super-critical
phase is decreasing from O(log n) (something Gaussian) to O(1)
(something Poisson) ...
Fact 2 : [PITTEL, WORMALD 05] have quantified the excess of
the giant component of Erdős-Rényi random graph in the
super-critical phase. Combining these two facts with a) completes
the proof of the theorem.
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Conclusion and perspectives
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Conclusion and perspectives

Enumerative/Analytic approaches of

1 a decision problem and its phase transition

2 an NP-optimization problem.

Similar methods on other problems such as

1 bipartiteness (or 2-COL).

2 MAX-2-COL, MAX-CUT, MIN-VERTEX-COVER, MIN-BISECTION
(all are hard optimization problems related to bipartiteness/2-COL).

3 2-QXORSAT (quantified formula).

4 planarity, MAXIMUM PLANAR SUBGRAPH (cf. courses ALEA’10
[FUSY, NOY] )
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