Average Long-Lived Memoryless Consensus: The Three-Value Case

Eric Rémila

Université de Lyon LIP (umr 5668 CNRS - Université Lyon 1- ENS de Lyon) Université de St-Etienne (IUT Roanne)

Joint work with

Ivan Rapaport

(DIM, CMM (umi 2807 CNRS), Universidad de Chile)

Partially supported by Programs Fondecyt 1090156, Basal-CMM, Instituto Milenio ICDB, Ecos C09E04 and IXXI (Institut des Systèmes Complexes -Complex System Institute, Lyon)

UNIVERSITE DE LYON

The sponsor page

What qualities are requested for a collective decision, called *consensus*?

- *Representativity*: the consensus corresponds to a sufficient number of individual opinions,
- *Stability*: the consensus is robust to small individual opinion variations.

Problem: the two qualities above are often incompatible. What can we do in in the real life ?

UNIVERSITE DEL YON

General framework.

- We have *n* individuals,
- Each individual is given a set of k possible opinions in the set $\mathbb{Z}_k = \{0, 1, 2, ..., k 1\}$,
- A global input state s is therefore an n-uple of V = (Z_k)ⁿ; and i_s denotes the occurrence number of i in s.
- The input graph (V, E), is the unordered graph where two states are neighbors when they only differ in a unique individual.
- A memoryless consensus function f is a function from V to \mathbb{Z}_k .

UNIVERSITE DE LYON

• The function f is anonymous if f(s) only depends on $0_s, 1_s, \dots, (k-1)_s$, and not on the place of values.

Representativity:

• We fix a threshold t such that if f(s) = i, then $i_s > t$.

Remark: we need to have:

n > k t,

in order to be able to satisfy the threshold condition in any case.

Stability: criterion for a consensus function *f*:

• we use a uniform random walk $S_0, S_1, S_2...$ on S. we define:

$$X_p = card\{j \in \mathbb{N}, 0 \leq j$$

$$instability(f) = lim_{p \to \infty}(\mathbb{E}(\frac{X_p}{p}))$$

UNIVERSITE DE LYON

Problem: find a consensus function satisfying representativity, with the lowest instability.

Proposition: Let E_f be the set of unordered pairs of neighboring states $\{s, s'\}$ such that $f(s) \neq f(s')$.

For any memoryless consensus function f, *instability*(f) is well defined, and we have:

instability(f) =
$$\frac{card(E_f)}{card(E)} = \frac{2 card(E_f)}{n(k-1)k^n}$$

Remark: To minimize instability, it suffices to minimize $card(E_f)$!!!

The consensus problem: second simplification

We assume that f is anonymous. In this case,

- States which are equal, up to permutation, can be merged.
- Edges follow the merging process. Each new edge e' receives a weight w(e'), corresponding to the number of merged previous edges.

Let V', E' and E'_f be the respective images of V, E and E_f obtained by merging. We have:

instability(f) =
$$\frac{\sum_{e' \in E'_f} w(e')}{\sum_{e' \in E'} w(e')} = \frac{2 \sum_{e' \in E'_f} w(e')}{n(k-1)k^n}$$

Remark: To minimize instability, it suffices to minimize

$$\sum_{e' \in E'_{f}} w(e').$$
UNIVERSITE DE LYON

, E') is simpler than $(V, E).$

Useful since (V'

Examples

The case when k = 2

The merged graph (V', E') is a line. Up to symmetry, there exists a unique optimal anonymous strategies.

Proposition: Up to symmetry, there exists a unique optimal anonymous strategy, defined by: .

•
$$f(s) = 0$$
 if $0_s > t$,

• f(s) = 1 Otherwise.

n-t

Proposition: (Alea 2009, Sirocco 2008) This strategy is optimal, even among non anonymous functions.

The case when k = 3

After merging, the graph is a "triangle of triangles".

Weight properties:

- the edge weights of a same small yellow triangle are equal,
- following a straight line from the boundary to the center, weights are increasing.

The main result

Theorem: up to symmetry, the unique optimal strategy is:

•
$$f(s) = 2$$
 if $2_s > t$,
• $f(s) = 1$ if $2_s \le t$ and $1_s > t$,
• $f(s) = 0$ otherwise.

We first compare the strategy f with any other solution f' forming three connected domains.

Lemma 1: We can construct a "increasing weight" injective mapping between bicolored edges of f and bicolored edges of f'.

We first compare the strategy f with any other solution f' only forming three connected domains.

UNIVERSITE DE LYON

Lemma 2: for any function f'', there exists a function solution f' only forming three connected domains.

- Is the strategy optimal among (potentially non anonymous) memoryless function?
- Can the result be extended when there is more than 3 states?
- What happens if a memory is added? We hope that we have the optimal strategy with memory (not yet checked and written. May be next year ?).

UNIVERSITE DE LYON

Questions ?

