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The classical framework for sorting and searching.

The main sorting algorithms or searching algorithms

e.g., QuickSort, BST-Search, InsertionSort,...

deal with n (distinct) keys U1, U2, . . . , Un of the same ordered set Ω.

They perform comparisons and exchanges between keys.

The unit cost is the key–comparison.

The behaviour of the algorithm (wrt to key–comparisons)

only depends on the relative order between the keys.

It is sufficient to restrict to the case when Ω = [1..n].
The input set is then Sn, with uniform probability.

Then, the analysis of all these algorithms is very well known,

with respect to the number of key–comparisons performed

in the worst-case, or in the average case.



Here, realistic analysis of the two algorithms QuickSort and QuickSelect

QuickSort (n, A): sorts the array A

Choose a pivot;

(k,A−, A+) := Partition(A);
QuickSort (k − 1, A−);
QuickSort (n− k,A+).

QuickSelect (n, m,A): returns the value of the element of rank m in A.

Choose a pivot;

(k,A−, A+) := Partition(A);
If m = k then QuickSelect := pivot

else if m < k then QuickSelect (k − 1,m,A−)
else QuickSelect (n− k, m− k,A+);



Known results for QuickSort and QuickSelect for various values of rank m

about the mean number K(n) of key–comparisons

QuickSort (n) sorts K(n) ∼ 2n log n

QuickMin(n) minimum m = 1 K(n) ∼ 2n

QuickMax(n) maximum m = n K(n) ∼ 2n

QuickRand(n) m ∈ [1..n]R K(n) ∼ 3n

QuickQuantα(n) α–quantile m = $αn% K(n) ∼ κ(α) n

QuickMed(n) median m = $n/2% K(n) ∼ 2(1 + log 2)n

On the right,

the function κ : α &→ 2 [1 + h(α)]

where h(·) is the entropy function

h(α) = α| log α|+ (1− α)| log(1− α)|



A more realistic framework for sorting.

Keys are viewed as words. The domain Ω of keys is a subset of Σ∞,

Σ∞ = {the infinite words on some ordered alphabet Σ}.

The words are compared [wrt the lexicographic order].

The realistic unit cost is now the symbol–comparison.

The realistic cost of the comparison between two words A and B,

A = a1 a2 a3 . . . ai . . . and B = b1 b2 b3 . . . bi . . .

equals k + 1, where k is the length of their largest common prefix

k := max{i; ∀j ≤ i, aj = bj}= the coincidence



We are interested in this new cost for each algorithm:

the number of symbol–comparisons ... and its mean value S(n) (for n words)

How is S(n) compared to K(n)? That is the question....

An initial question asked by Sedgewick in 2000...

... In order to also compare with other text algorithms.

Two data structures for sorting a set of words

— the trie, for dictionary algorithms

— the binary search tree (BST) closely related to QuickSort



The Trie structure

A finite set X = {X1, X2, . . . , Xn} formed with n words.

The tree Trie (X ) built on X is defined by the three rules:

– If |X | = 0, Trie (X ) = ∅
– If |X | = 1, X = {X}, Trie (X ) is a leaf labeled by X.

– If |X | ≥ 2, then Trie (X ) is formed with

– an internal node

– and n subtries Trie (X \m1), . . . , Trie (X \mr)
where X \m := {words of X that begin with m, stripped of m}.

If X \m ,= ∅, the edge: internal node → Trie (X \m) has label m.



The trie structure – An example : A trie built on a set of words.

A = abbbbbaaabab B = abbbbbbaabaa C = baabbbabbbba D =bbbababbbaab E = bbabbaababbb

F = abbbbbbbbabb G = bbaabbabbaba H = ababbbabbbab I = bbbaabbbbbbb J = abaabbbbaabb

K = bbbabbbbbbaa L = aaaabbabaaba M = bbbaaabbbbbb N = abbbbbbabbaa O = abbabababbbb P = bbabbbaaaabb

 







 









 





































 











 















Study of Tries – Various implementations – The array–trie

Size? Path-length of the array-trie?



Study of Tries – Various implementations –The list–trie

Path-length of the list-trie?



Study of Tries – Various implementations –The bst–trie or the ternary search trie

Path-length of the bst-trie?



The BST (binary search tree) built on the same sequence of words

A = abbbbbaaabab B = abbbbbbaabaa C = baabbbabbbba D =bbbababbbaab E = bbabbaababbb

F = abbbbbbbbabb G = bbaabbabbaba H = ababbbabbbab I = bbbaabbbbbbb J = abaabbbbaabb

K = bbbabbbbbbaa L = aaaabbabaaba M = bbbaaabbbbbb N = abbbbbbabbaa O = abbabababbbb P = bbabbbaaaabb









 

 



 









What is the symbol-path-length of a BST ?

An example : The cost of the insertion of the key F into the BST

F =abbbbbbb

Number of symbol comparisons

needed = 16

= 7 for comparing to A

+ 8 for comparing to B

+ 1 for comparing to C
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The parametrization of a general source

A general source S produces infinite words

on an ordered alphabet Σ := {a1, . . . , ar}.
For w ∈ Σ", pw := probability that a word begins with the prefix w.

The set {pw, w ∈ Σ"} defines the source S. We assume

πk := sup{pw, w ∈ Σk}→ 0 for k →∞

For each length k, we consider the pw’s for w ∈ Σk,

sorted with respect to the lexicographic order on Σk.

We define two other probabilities

p(−)
w :=

∑

α∈Σk,
α<w

pα, p(+)
w :=

∑

α∈Σk,
α>w

pα.

Then, for any X ∈ Σ∞,

lim
w→X

p(−)
w = 1− lim

w→X
p(+)

w := P (X)



Consider the set L(S) ⊂ Σ∞ the set of infinite words emitted by S.

The function P : L(S) → [0, 1] is strictly increasing .....

outside a denumerable exceptional set

E := {X ∈ L(S); ∃Y ∈ L(S) with Y ,= X, P (X) = P (Y )}

Outside this exceptional set, each infinite word X is written as

X = M(u) with M : [0, 1] → L(S).

The map M provides a parametrization of the source S.

Via the mapping M ,

[Drawing in S wrt the pw’s] ≡ [Uniform drawing in [0, 1]]

For any finite prefix w ∈ Σ",

the set {u, M(u) begins with w} is an interval with endpoints p(−)
w , p(+)

w .

This is the fundamental interval of w. Its length equals pw.



For any finite prefix w ∈ Σ",

the set {u, M(u) begins with w} is an interval with endpoints p(−)
w , p(+)

w .

This is the fundamental interval of w. Its length equals pw.

Instances of fundamental intervals for two memoryless sources.

Memoryless source on {a, b} Memoryless source on {a, b, c}
pa = 1/2, pb = 1/2 pa = 1/2, pb = 1/6, pc = 1/3



Natural instances of sources: Dynamical sources

With a shift map T : I → I and an encoding map τ : I → Σ,

the emitted word is M(x) = (τx, τTx, τT 2x, . . . τT kx, . . .)

xT xT x2 T x3

A dynamical system, with Σ = {a, b, c} and a word M(x) = (c, b, a, c . . .).



Memoryless sources or Markov chains.
= Dynamical sources with affine branches....



The dynamical framework leads to more general sources.

The position and the curvature of branches entail correlation between symbols

Example : the Continued Fraction source



A main analytical object related to any source:

the Dirichlet series of probabilities, Λ(s) :=
∑

w∈Σ"

ps
w

Memoryless sources, with probabilities (pi)

Λ(s) =
1

1− λ(s)
with λ(s) =

r∑

i=1

ps
i

Markov chains, defined by – the vector R of initial probabilities (ri)
– and the transition matrix P := (pi,j)

Λ(s) =t 1(I − P (s))−1R(s) with P (s) = (ps
i,j), R(s) = (rs

i ).

A general dynamical source

Λ(s) closely related to (I −Hs)−1

where Hs is the (secant) transfer operator of the dynamical system.
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What is already known about the mean number of symbol-comparisons?

The Trie structure is very well-studied, but only for particular sources:

the so–called simple sources: memoryless or Markov chains

and only for the array–trie.

The number of symbols comparaisons used in QuickSort, and QuickSelect,

is already studied by Janson, Fill, Nakama (’06), but only

– in the case of memoryless sources,

– for QuickSort, QuickMin, QuickMax, QuickRand

Here, we study the mean number of symbol-comparisons,

for a general source and a general algorithm/structure of the class.

– There are precise restrictive hypotheses on the source,

and sufficient conditions under which these hypotheses hold.

– We provide a closed form for the constants of the analysis,

for any source of the previous type.

– We use different methods, with limited computation...



Case of Trie(n) [CFV 01]

Theorem 1. For any Λ–tame source,

the mean size R(n) and the mean path length C(n) of an array–trie

built on n words independently drawn from the source satisfy

R(n) ∼ 1
hS

n C(n) ∼ 1
hS

n log n.

and involve the entropy hS of the source S, defined as

hS := lim
k→∞



−1
k

∑

w∈Σk

pw log pw



 ,

where pw is the probability that a word begins with prefix w.



Case of Trie(n) [CFV 01]

Theorem 2. For any Λ–tame stationary source,

– the mean path-length L(n) of a list–trie

– the mean path length A(n) of an bst–trie

built on n words independently drawn from the source satisfy

L(n) ∼ KL(S)
hS

n A(n) ∼ KA(S)
hS

n log n.

and involve the entropy hS , together with constants

KL(S) =
∑

i∈Σ

P[>i] KA(S) = 2
∑

i,j∈Σ
i<j

pipj

P[i,j]

where pi is the probability that a word begins with symbol i

and P[i,j] :=
∑j

k=i pk.



Case of QuickSort(n) or BST(n) [CFFV 08]

Theorem 3. For any Λ–tame source,

the mean number B(n) of symbol comparisons used by QuickSort(n)
(or the mean number of symbols comparisons used to built the BST)

on n words of the source satisfies

B(n) ∼ 1
hS

n log2 n.

and involves the entropy hS of the source S, defined as

hS := lim
k→∞



−1
k

∑

w∈Σk

pw log pw



 ,

where pw is the probability that a word begins with prefix w.

Compared to K(n) ∼ 2n log n, there is an extra factor equal to 1/(2hS) log n

Compared to C(n) ∼ (1/hS)n log n, there is an extra factor of log n.



Case of QuickQuantα(n) [CFFV 09]

Theorem 4. For any Π–tame source,

the mean number of symbol comparisons used by QuickQuantα(n)
satisfies

Q(n)(α) ∼ ρS(α)n ρS(α) =
∑

w∈Σ"

pw L

(
|α− µw|

pw

)
.

µw =
1
2

h
p(+)

w + p(−)
w

i
= the middle of the fundamental interval

The function L is an even function given by L(y) = 2[1 + H(y)],

H(y) =

8
><

>:

−(y+ log y+ + y− log y−), if 0 ≤ y < 1/2

0, if y = 1/2

y+(log |y+|− log |y−|), if y > 1/2.

H(y) is a modified entropy function expressed with y+ := (1/2) + y, y− = (1/2)− y.



Some particular cases for the constant ρS(α).

Constants for QuickMin (α = 0 → ε = +) and QuickMax (α = 1 → ε = −)

c(ε)
S := 2

∑

w∈Σ"

pw

[
1− p(ε)

w

pw
log

(
1 +

pw

p(ε)
w

)]
.

Constant for QuickRand cS =
∫ 1

0
ρS(α)dα

cS =
∑

w∈Σ"

p2
w



2 +
1
pw

+
∑

ε=±



log

(
1 +

p(ε)
w

pw

)
−

(
p(ε)

w

pw

)2

log

(
1 +

pw

p(ε)
w

)





 ,



The constants of the analysis for the binary source.

hB = log 2, c(+)
B = c(−)

B = c(ε)
B

c(ε)
B = 4 + 2

∑

$≥0

1
2$

+ 2
∑

$≥0

1
2$

2#−1∑

k=1

[
1− k log

(
1 +

1
k

)]

cB =
14
3

+ 2
∞∑

$=0

1
22$

2#−1∑

k=1

[
k + 1 + log(k + 1)− k2 log

(
1 +

1
k

)]

Numerically, c(ε)
B = 5.27937......, cB = 8.20731......

To be compared to the constants of the number of key–comparisons

κ = 2 or κ = 3



The curve α &→ ρ(α) is a fractal deformation of α &→ κ(α)
κ(α) the constant of the number of key–comparisons in QuickQuantα

The plot of α #→ κ(α)

..... To be compared

to the plots of α #→ ρ(α)

for four memoryless sources

– three unbiased, r = 2, 3, 4

– one biased (1/3, 2/3)



What about the function α &→ ρS(α)?
In the case where S = the unbiased memoryless source with r symbols.

ρS is denoted by ρr.

If r is odd, ρr is maximum at α = 1/2 (case of QuickMed)

If r is even, this is not true. For which value of α, ρr(α) is maximum?

Is ρr differentiable? Is it Hölder?

When r →∞, ρr(α) → 2[1 + h(α)]
= the constant which intervenes in the mean number of key–comparisons.

( h(.) is the entropy function)
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Three main steps for the analysis

of the mean number S(n) of symbol comparisons

(1) First step (algebraic).

The Poisson model PZ deals with a variable number N of keys:

N is a random variable which follows a Poisson law of parameter Z.

We first obtain nice expressions for the mean number S̃(Z) ....

(2) Second step (algebraic).

It is then possible to return to the model where the number of keys is fixed.

We obtain a nice exact formula for S(n) ....

from which it is not easy to obtain the asymptotics...

(3) Third step (analytic).

Then, the Rice formula provides the asymptotics of S(n) ( n →∞),

as soon as the source is “tame”

Λ–tame for QuickSort and Tries , Π–tame for QuickSelect



The three steps of the analysis

Mean Value AlgDePo Mean Value
in the Poisson model =⇒ in the Bernoulli model

Mellin

11112

11112 Rice

Asymptotic Mean Value AnDePo Asymptotic Mean Value
in the Poisson model =⇒ in the Bernoulli model

Two possible ways from the exact mean value in the Poisson model.

to the asymptotic mean value in the Bernoulli model.



Dealing with the Poisson Model Pz

– The number N of keys is drawn according to the Poisson law

Pr[N = n] = e−z zn

n!
,

– Then, the N words are independently drawn from the source.

or : N reals are uniformly and independently chosen in the unit interval

Two nice properties of the Poisson model.

about the number N[a,b] of words M(v) with v ∈ [a, b]

(i) N[a,b] follows a Poisson law of parameter z(b− a).

(ii) For [a, b]∩[c, d] = ∅, the variables N[a,b] and N[c,d] are independent.



Study of Tries in the Poisson model

 







 









 





































 











 















Study of Tries in the Poisson model

Main parameter on a node nw labelled with prefix w:

Nw := the number of keys which begin with prefix w.

Nw := the number of keys which go through the node nw

The size, and the path length of a plain trie (array-trie) equal

R =
∑

w∈Σ"

1[Nw≥2] C =
∑

w∈Σ"

1[Nw≥2] ·Nw,

In the Pz model, the cardinality Nw follow a Poisson law of parameter zpw

The mean size and the mean path-length are

R̃(z) =
∑

w∈Σ"

1− (1 + zpw)e−zpw C̃(z) =
∑

w∈Σ"

zpw[1− e−zpw ].



Study of Tries in the Poisson model. Other implementations

The array–trie



Study of Tries in the Poisson model. Other implementations

The list–trie



Study of Tries in the Poisson model. Other implementations

The bst–trie or the ternary search trie



Vertical (infinite) words versus horizontal finite slices.

In a node nw with label w,

– the symbols of the slice are produced

by a memoryless source

with probabilities

pm|w =
pw.m

pw

– the number of symbols follows

a Poisson law with parameter zpw



The path-length inside a node depends on the data structure in the slice.

Ni := the number of symbols of the slice equal to ai.

N[i,j] := the number of symbols z with val(z) ∈ [ai, aj ]

For the list-trie (L), or the bst-trie (A), the path-length in a slice is

δL =
∑

i∈Σ

Ni

∑

j<i

1[Nj≥1] δA =
∑

i∈Σ

Ni

∑

j &=i

1[aj ancestor of ai in bst]

aj is ancestor of ai (with j < i) iff

∃x ∈ Σ, val(x) = aj , ord(x) = min{ord(z), val(z) ∈ [ai, aj ]}

=⇒ Pr [ aj ancestor of ai in bst] =
2Nj

N[i,j]

=⇒ δA = 2
∑

(i,j)∈Σ2

i<j

NiNj

N[i,j]
= 2

∑

(i,j)∈Σ2

i<j

NiNj

Ni + Nj + N]i,j[



Mean values of parameters in a slice

Assume that :

– the number of symbols follow a Poisson law Pz

– the symbols are independently emitted with pi := Pr[ai]

E[δL,Pz,B] =
∑

j∈Σ

z P[>j] (1− e−zpj ),

E[δA,Pz,B] = 2
∑

(i,j)∈Σ2

i<j

pi pj

P[i,j]
2

[
e−zP[i,j] − 1 + zP[i,j]

]
,

where P[i,j] =
∑j

k=i pk and P[>j] =
∑

k>j pk.

In each node, these computations are applied with

z replaced by zpw and pi replaced by
pw·i
pw



Mean trie costs in the Poisson Model

relative to the size of a trie, path length of an array-trie,

path length of a list trie, path length of a bst-trie:

R̃(z) =
∑

w∈Σ∗

[
1− (1 + zpw)e−zpw

]
,

C̃(z) =
∑

w∈Σ∗

zpw

[
1− e−zpw

]

L̃(z) =
∑

w∈Σ∗

∑

i∈Σ

z Pw·[>i] (1− e−zpw·i)

Ã(z) = 2
∑

w∈Σ∗

∑

(i,j)∈Σ2

i<j

pw·i pw·j

Pw·[i,j]
2

[
e−zPw·[i,j] − 1 + zPw·[i,j]

]
,

where Pw·[i,j] =
∑j

k=i pw·k, and Pw·[>j] =
∑

k>j pw·k.
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The mean number S̃(Z) of symbol comparisons for an algorithm A is

S̃(Z) =
∫

T
[γ(u, t) + 1] π̃Z(u, t) du dt

where T := {(u, t), 0 ≤ u ≤ t ≤ 1} is the unit triangle

γ(u, t):= coincidence between M(u) and M(t)
π̃Z(u, t) du dt := Mean number of key-comparisons between M(u′)

and M(t′) with u′ ∈ [u, u + du] and t′ ∈ [t− dt, t]
performed by the algorithm A.

An (easy) alternative expression for S̃(Z)

S̃(Z) =
∑

w∈Σ"

∫

Tw

π̃Z(u, t) du dt

It involves the fundamental triangles

and separates the rôles of the source and the algorithm.



Instances of fundamental triangles.

On the left: On the right :

memoryless source on {a, b} memoryless source on {a, b, c}
pa = 1/2, pb = 1/2 pa = 1/2, pb = 1/6, pc = 1/3



Study of the key probability π̃Z(u, t) of QuickX (X= Sort or X= Quantα.)

Related question : When does QuickX compare two keys M(u) and M(t)?

In QuickSort, M(u) and M(t) are compared

iff the first pivot chosen in {M(v), v ∈ [u, t]} is M(u) or M(t)

In QuickMin, M(u) and M(t) are compared

iff the first pivot chosen in {M(v), v ∈ [0, t]} is M(u) or M(t)

In QuickMax, M(u) and M(t) are compared

iff the first pivot chosen in {M(v), v ∈ [u, 1]} is M(u) or M(t)

And for QuickQuantα? Not so easy!

The idea is to compare QuickQuant

with a dual algorithm, the QuickVal algorithm.



A parenthesis – Presentation of QuickVal

The QuickVal algorithm is the dual algorithm of QuickSelect,

QuickVal (n, a, A). : returns the rank of the element a in B = A ∪ {a}
B := A ∪ {a}
QV (n, a, B);

QV (n, a, B).
Choose a pivot in B;

(k,B−, B+) := Partition(B);
If a = pivot then QV := k

else if a < pivot then QV := QV (k − 1, a, B−)
else QV := k+ QV (n− k, a,B+);

QuickValα:= the algorithm where the key of interest is the word M(α)



Comparison between QuickValα and QuickQuantα

QuickValα:= the algorithm where the key of interest is the word M(α)

There are two facts

– Since the rank of M(α) amongst n keys is close to αn (for n →∞),

the probabilistic behaviours of the two algorithms are close

– The QuickValα algorithm is easy to deal with since

M(u) and M(t) are compared in QuickValα

iff the first pivot chosen in {M(v), v ∈ [x, y]} is M(u) or M(t).

Here, the interval [x, y] is the smallest interval that contains u, t and α.

this means : x = min(α, u), y = max(α, t)



The three domains for the definition of the interval [x, y],
the smallest interval that contains u, t,α

!
!

!
!

!
!

!
!

!
!

!
!

!
!!

(0, 0)

(1, 1)

(α, α)!
(II)

(I)(III)

[x(u, t), y(u, t)] :=






[α, t] if u > α (I) ∼ QuickMin

[u, α] if t < α (II) ∼ QuickMax

[u, t] if u < α < t (III) ∼ QuickSort



In summary, the algorithm QuickX with X= Sort or X= Valα,

compares two words M(u) and M(t)
iff M(u) or M(t) is chosen as the first pivot in {M(v), v ∈ [x, y]} with

[x, y] = [u, t] (QuickSort), [x, y] = [min(α, u),max(α, t)] (QuickValα)

In the Poisson model, π̃Z(u, t) du dt = Zdu · Zdt · ẼZ

[
2

2 + N[x,y]

]

π̃Z(u, t) = 2 Z2 f1(Z(y − x)) with f1(θ) := θ−2 [e−θ − 1 + θ]

With f0(θ) = θ(1− e−θ), f1(θ) := θ−2 [e−θ − 1 + θ],

Final expressions of the mean cost for Trie and QuickX in the PZ model

C̃(z) =
∑

w∈Σ"

f0(zpw) S̃(z) = 2z2
∑

w∈Σ"

∫

Tw

f1(z(y − x)) dudt,
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Return to the model where the number n of keys is fixed.

Expanding f0, f1, f0(θ) = θ[1− e−θ], f1(θ) := θ−2 [e−θ − 1 + θ],

and using the transfer between the two models
Sn

n!
= [Zn]

(
eZ · S̃Z

)

there is an exact formula for Sn

Sn = 2
n∑

k=2

(−1)k

(
n

k

)
+(k)

which involves the series + at integer values k.

The series +(s) is of Dirichlet type, and depends both

– on the algorithm (via the function f0 or f1 and interval [x, y])
– on the source (via the fundamental triangles Tw)



In the three cases, an exact formula for Sn ....

Sn =
n∑

k=2

(−1)k

(
n

k

)
+(k)

...which involves the series + at integer values k.

For the mean path length (Trie or BST),

+(s) is closely related to the Dirichlet series of the probabilities,

+C(s) = sΛ(s) +B(s) = 2
Λ(s)

s(s− 1)
where Λ(s) :=

∑

w∈Σ"

ps
w

For QuickVal, the expression is more involved,

+V (s) = 2
∑

w∈Σ"

∫

Tw

(y − x)s−2 du dt
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– Description of the main results.

– Exact analysis in the Poisson model : the Trie

– Exact analysis in the Poisson model : QuickSort and QuickSelect.

– Exact analysis in the Bernoulli model

– Asymptotic analysis : different types of sources.



Asymptotic analysis.

Then, the residue formula transforms the sum into an integral:

Sn =
n∑

k=2

(−1)k

(
n

k

)
+(k) =

1
2iπ

∫ d+i∞

d−i∞
+(s)

n! (−1)n+1

s(s− 1) . . . (s− n)
ds,

with 1 < d < 2.

We shift the integral on the left,

and (usually) the first singularities occur at 4s = 1.

What is the behaviour of +(s) near 4s = 1?

We compare it to other Dirichlet series:

– For Trie, BST, – For QuickVal,

+C(s),+B(s) are related to Λ(s). +V (s) is related to Π(s).

Λ(s) :=
∑

w∈Σ"

ps
w, Π(s) =

∑

k≥0

πs
k.

pw = Pr [a word begins with w], πk = sup {pw; w ∈ Σk}



Study of QuickVal and QuickQuant

A function is “tame” in a region R
if it is analytic and of polynomial growth for |s|→∞

A source S is Π–tame if Π(s) is tame on {4s > 1− δ} with δ > 0.

A sufficient condition is πk ≤ Ak−γ with γ > 1. Then δ = 1−(1/γ)
Most of the “natural” sources are Π–tame !

In this case,

(1) +(s) is also tame in {4s > 1− δ}.
(2) The function α &→ ρS(α) is Hölder of exponent δ

(1) ⇒ analysis of QuickVal

(2) ⇒ analysis of QuickQuant

A nice expression for ρS(α) =
∑

w∈Σ"

∫

Tw

[max(α, t)−min(α, u)]−1dudt



Study of the mean path length of Trie and BST

+T (s) = sΛ(s), +B(s) = 2
Λ(s)

s(s− 1)
where Λ(s) :=

∑

w∈Σ"

ps
w

For any (natural) source, Λ(s) has a singularity at s = 1.

A source is Λ–tame if

(1) the dominant singularity of Λ(s) is located at s = 1,
this is a simple pôle, whose residue equals 1/hS .

In this case, there is, at s = 1

a double pôle for
+C(s)
s− 1

, a triple pôle for
+B(s)
s− 1

(2) Λ(s) is tame on the left of the line 4s = 1
(useful for shifting on the left...)



Different possible regions on the left of 4s = 1 where Λ(s) is tame.

Situation 1 Situation 2 Situation 3

Hyperbolic region Vertical strip Vertical strip with holes

For which (simple) sources do these different situations occur?

For memoryless sources relative to P = (p1, p2, . . . , pr)

– S2 is impossible

– S3 occurs when all the ratios log pi/log pj are rational

– S1 with a frontier of the form σ = 1−A/tα occurs

if there exists a ratio log pi/log pj which badly approximable by rationals.



Different possible regions on the left of 4s = 1 where Λ(s) is tame.

Situation 1 Situation 2 Situation 3

Hyperbolic region Vertical strip Vertical strip with holes

Arithmetic condition Geometric condition Periodicity condition

For which sources do these different situations occur?

For dynamical sources, we provide sufficient conditions under which these behaviours hold.

– S3 never occurs except if the source is conjugated to a simple source.

– S2 occurs when all the branches are not too often of the same geometric form

– S1 occurs if a extension of the following condition holds:

there exists a ratio log pi/log pj which badly approximable by rationals.



Conclusions.

— For any Λ–tame source, the mean path-lengths of Trie and BST are

C(n) ∼ 1
hS

n log n (Trie), B(n) ∼ 1
hS

n log2 n (BST)

— It is easy to adapt our results to the intermittent sources, which emits

“long” sequences of the same symbols. In this case,

C(n) = Θ(n log2 n). (Trie) B(n) = Θ(n log3 n), (BST)

— For any reasonable source, Q(n) = Θ(n) (QuickQuant).



Long term research projects...

— Revisit the complexity results of the main classical algorithms,

and take into account the number of symbol-comparisons...

instead of the number of key-comparisons.

— Provide a sharp “analytic” classification of sources:

Transfer probabilistic properties of sources into analytical properties of Λ(s).


