INFORMATION THEORY: MODELS, ALGORITHMS, ANALYSIS

REALISTIC ANALYSIS
 OF SORTING AND SEARCHING ALGORITHMS

Brigitte Vallée
GREYC Laboratory
(CNRS and University of Caen, France)

Mini-course based on joint works with
Julien Clément, Jim Fill and Philippe Flajolet

Journées du GT Alea 2010

Plan of the talk.

- Motivations : Realistic analyses of Sorting and Searching algorithms.
- A general model of source
- Description of the main results
- Exact analysis in the Poisson model : the Trie
- Exact analysis in the Poisson model: QuickSort and QuickSelect .
- Exact analyses in the Bernoulli model
- Asymptotic analysis: different types of sources.

Plan of the talk.

- Motivations: Realistic analyses of Sorting and Searching algorithms.
- A general model of source
- Description of the main results
- Exact analysis in the Poisson model : the Trie
- Exact analysis in the Poisson model : QuickSort and QuickSelect
- Exact analysis in the Bernoulli model
- Asymptotic analysis : different types of sources.

The classical framework for sorting and searching.

The main sorting algorithms or searching algorithms
e.g., QuickSort, BST-Search, InsertionSort,...
deal with n (distinct) keys $U_{1}, U_{2}, \ldots, U_{n}$ of the same ordered set Ω.
They perform comparisons and exchanges between keys.
The unit cost is the key-comparison.
The behaviour of the algorithm (wrt to key-comparisons) only depends on the relative order between the keys. It is sufficient to restrict to the case when $\Omega=[1 . . n]$.

The input set is then \mathfrak{S}_{n}, with uniform probability.
Then, the analysis of all these algorithms is very well known, with respect to the number of key-comparisons performed in the worst-case, or in the average case.

Here, realistic analysis of the two algorithms QuickSort and QuickSelect

QuickSort (n, A): sorts the array A
Choose a pivot;
$\left(k, A_{-}, A_{+}\right):=\operatorname{Partition}(A)$;
QuickSort ($k-1, A_{-}$);
QuickSort ($n-k, A_{+}$).

QuickSelect (n, m, A) : returns the value of the element of rank m in A.
Choose a pivot;
$\left(k, A_{-}, A_{+}\right):=\operatorname{Partition}(A)$;
If $m=k$ then QuickSelect := pivot
else if $m<k$ then QuickSelect $\left(k-1, m, A_{-}\right)$
else QuickSelect ($n-k, m-k, A_{+}$);

Known results for QuickSort and QuickSelect for various values of rank m about the mean number $K(n)$ of key-comparisons

QuickSort (n)	sorts		$K(n) \sim 2 n \log n$
QuickMin (n)	minimum	$m=1$	$K(n) \sim 2 n$
QuickMax (n)	maximum	$m=n$	$K(n) \sim 2 n$
QuickRand (n)		$m \in[1 . . n]_{\mathcal{R}}$	$K(n) \sim 3 n$
QuickQuant ${ }_{\alpha}(n)$	α-quantile	$m=\lfloor\alpha n\rfloor$	$K(n) \sim \kappa(\alpha) n$
QuickMed (n)	median	$m=\lfloor n / 2\rfloor$	$K(n) \sim 2(1+\log 2) n$

On the right, the function $\kappa: \alpha \mapsto 2[1+h(\alpha)]$ where $h(\cdot)$ is the entropy function

$$
h(\alpha)=\alpha|\log \alpha|+(1-\alpha)|\log (1-\alpha)|
$$

A more realistic framework for sorting.
Keys are viewed as words. The domain Ω of keys is a subset of Σ^{∞}, $\Sigma^{\infty}=\{$ the infinite words on some ordered alphabet $\Sigma\}$.

The words are compared [wrt the lexicographic order].
The realistic unit cost is now the symbol-comparison.
The realistic cost of the comparison between two words A and B,

$$
A=a_{1} a_{2} a_{3} \ldots a_{i} \ldots \quad \text { and } \quad B=b_{1} b_{2} b_{3} \ldots b_{i} \ldots
$$

equals $k+1$, where k is the length of their largest common prefix $k:=\max \left\{i ; \quad \forall j \leq i, \quad a_{j}=b_{j}\right\}=$ the coincidence

$a b a \underline{b} b b \ldots$

$a b a \underline{a} b a . .$.
coincidence=3; \#comparisons=4.

We are interested in this new cost for each algorithm: the number of symbol-comparisons ... and its mean value $S(n)$ (for n words)

How is $S(n)$ compared to $K(n)$? That is the question....
An initial question asked by Sedgewick in 2000...
... In order to also compare with other text algorithms.

Two data structures for sorting a set of words

- the trie, for dictionary algorithms
- the binary search tree (BST) closely related to QuickSort

The Trie structure

A finite set $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ formed with n words.
The tree $\operatorname{Trie}(\mathcal{X})$ built on \mathcal{X} is defined by the three rules:

- If $|\mathcal{X}|=0$, $\operatorname{Trie}(\mathcal{X})=\emptyset$
- If $|\mathcal{X}|=1, \mathcal{X}=\{X\}$, $\operatorname{Trie}(\mathcal{X})$ is a leaf labeled by X.
- If $|\mathcal{X}| \geq 2$, then $\operatorname{Trie}(\mathcal{X})$ is formed with
- an internal node
- and n subtries $\operatorname{Trie}\left(\mathcal{X} \backslash m_{1}\right), \ldots$, Trie $\left(\mathcal{X} \backslash m_{r}\right)$ where $\mathcal{X} \backslash m:=\{$ words of \mathcal{X} that begin with m, stripped of $m\}$.
If $\mathcal{X} \backslash m \neq \emptyset$, the edge: internal node $\rightarrow \operatorname{Trie}(\mathcal{X} \backslash m)$ has label m.

The trie structure - An example : A trie built on a set of words.

$$
\begin{array}{cllll}
\text { A }=\text { abbbbbaaabab } & \mathrm{B}=\text { abbbbbbaabaa } & \mathrm{C}=\text { baabbbabbbba } & \mathrm{D}=\text { bbbababbbaab } & \mathrm{E}=\text { bbabbaababbb } \\
\mathrm{F}=\text { abbbbbbbbabb } & \mathrm{G}=\text { bbaabbabbaba } & \mathrm{H}=\text { ababbbabbbab } & \mathrm{I}=\text { bbbaabbbbbbb } & \mathrm{J}=\text { abaabbbbaabb }
\end{array}
$$

$\mathrm{K}=$ bbbabbbbbbaa $\mathrm{L}=$ aaaabbabaaba $\quad \mathrm{M}=$ bbbaaabbbbbb $\quad \mathrm{N}=$ abbbbbbabbaa $\quad \mathrm{O}=$ abbabababbbb $\mathrm{P}=$ bbabbbaaaabb

Study of Tries - Various implementations - The array-trie Size? Path-length of the array-trie?

Study of Tries - Various implementations -The list-trie Path-length of the list-trie?

Study of Tries - Various implementations -The bst-trie or the ternary search trie Path-length of the bst-trie?

The BST (binary search tree) built on the same sequence of words

A $=$ abbbbbaaabab	$\mathrm{B}=$ abbbbbbaabaa	$\mathrm{C}=$ baabbbabbbba	$\mathrm{D}=$ bbbababbbaab	$\mathrm{E}=$ bbabbaababbb
$\mathrm{F}=$ abbbbbbbbabb	$\mathrm{G}=$ bbaabbabbaba	$\mathrm{H}=$ ababbbabbbab	$\mathrm{I}=$ bbbaabbbbbbb $\quad \mathrm{J}=$ abaabbbbaabb	
$\mathrm{K}=$ bbbabbbbbbaa	$\mathrm{L}=$ aaaabbabaaba	$\mathrm{M}=$ bbbaaabbbbbb	$\mathrm{N}=$ abbbbbbabbaa	$\mathrm{O}=$ abbabababbbb
$\mathrm{P}=$ bbabbbaaabb				

What is the symbol-path-length of a BST ?
An example : The cost of the insertion of the key F into the BST

$$
F=a b b b b b b b
$$

Number of symbol comparisons
needed $=16$
$=7$ for comparing to A
+8 for comparing to B
+1 for comparing to C

Plan of the talk.

- Motivations: Realistic analyses of Sorting and Searching algorithms.
- A general model of source
- Description of the main results
- Exact analysis in the Poisson model : the Trie
- Exact analysis in the Poisson model : QuickSort and QuickSelect .
- Exact analysis in the Bernoulli model
- Asymptotic analysis: different types of sources.

A general source \mathcal{S} produces infinite words

$$
\text { on an ordered alphabet } \Sigma:=\left\{a_{1}, \ldots, a_{r}\right\} \text {. }
$$

For $w \in \Sigma^{\star}, p_{w}:=$ probability that a word begins with the prefix w.
The set $\left\{p_{w}, w \in \Sigma^{\star}\right\}$ defines the source \mathcal{S}. We assume

$$
\pi_{k}:=\sup \left\{p_{w}, \quad w \in \Sigma^{k}\right\} \rightarrow 0 \quad \text { for } k \rightarrow \infty
$$

For each length k, we consider the p_{w} 's for $w \in \Sigma^{k}$, sorted with respect to the lexicographic order on Σ^{k}.

We define two other probabilities

$$
p_{w}^{(-)}:=\sum_{\substack{\alpha \in \Sigma^{k}, \alpha<w}} p_{\alpha}, \quad p_{w}^{(+)}:=\sum_{\substack{\alpha \in \Sigma^{k}, \alpha>w}} p_{\alpha} .
$$

Then, for any $X \in \Sigma^{\infty}$,

$$
\lim _{w \rightarrow X} p_{w}^{(-)}=1-\lim _{w \rightarrow X} p_{w}^{(+)}:=P(X)
$$

Consider the set $\mathcal{L}(\mathcal{S}) \subset \Sigma^{\infty}$ the set of infinite words emitted by \mathcal{S}.
The function $P: \mathcal{L}(\mathcal{S}) \rightarrow[0,1]$ is strictly increasing outside a denumerable exceptional set
$\mathcal{E}:=\{X \in \mathcal{L}(\mathcal{S}) ; \quad \exists Y \in \mathcal{L}(\mathcal{S}) \quad$ with $\quad Y \neq X, \quad P(X)=P(Y)\}$
Outside this exceptional set, each infinite word X is written as

$$
X=M(u) \text { with } M:[0,1] \rightarrow \mathcal{L}(\mathcal{S}) .
$$

The map M provides a parametrization of the source \mathcal{S}. Via the mapping M,
[Drawing in \mathcal{S} wrt the $p_{w}{ }^{\prime} \mathrm{s}$] \equiv [Uniform drawing in $[0,1]$]

For any finite prefix $w \in \Sigma^{\star}$,
the set $\{u, M(u)$ begins with $w\}$ is an interval with endpoints $p_{w}^{(-)}, p_{w}^{(+)}$.
This is the fundamental interval of w. Its length equals p_{w}.

For any finite prefix $w \in \Sigma^{\star}$, the set $\{u, M(u)$ begins with $w\}$ is an interval with endpoints $p_{w}^{(-)}, p_{w}^{(+)}$. This is the fundamental interval of w. Its length equals p_{w}.

Instances of fundamental intervals for two memoryless sources.

Memoryless source on $\{a, b\}$ $p_{a}=1 / 2, p_{b}=1 / 2$

Memoryless source on $\{a, b, c\}$ $p_{a}=1 / 2, p_{b}=1 / 6, p_{c}=1 / 3$

Natural instances of sources: Dynamical sources

With a shift map $T: \mathcal{I} \rightarrow \mathcal{I}$ and an encoding map $\tau: \mathcal{I} \rightarrow \Sigma$, the emitted word is $M(x)=\left(\tau x, \tau T x, \tau T^{2} x, \ldots \tau T^{k} x, \ldots\right)$

A dynamical system, with $\Sigma=\{a, b, c\}$ and a word $M(x)=(c, b, a, c \ldots)$.

Memoryless sources or Markov chains.
$=$ Dynamical sources with affine branches....

The dynamical framework leads to more general sources.

The position and the curvature of branches entail correlation between symbols Example : the Continued Fraction source

A main analytical object related to any source: the Dirichlet series of probabilities, $\quad \Lambda(s):=\sum_{w \in \Sigma^{\star}} p_{w}^{s}$

Memoryless sources, with probabilities $\left(p_{i}\right)$

$$
\Lambda(s)=\frac{1}{1-\lambda(s)} \quad \text { with } \quad \lambda(s)=\sum_{i=1}^{r} p_{i}^{s}
$$

Markov chains, defined by - the vector R of initial probabilities $\left(r_{i}\right)$

$$
\text { - and the transition matrix } P:=\left(p_{i, j}\right)
$$

$$
\Lambda(s)={ }^{t} \mathbf{1}(I-P(s))^{-1} R(s) \quad \text { with } \quad P(s)=\left(p_{i, j}^{s}\right), \quad R(s)=\left(r_{i}^{s}\right)
$$

A general dynamical source
$\Lambda(s)$ closely related to $\left(I-\mathbf{H}_{s}\right)^{-1}$
where \mathbf{H}_{s} is the (secant) transfer operator of the dynamical system.

Plan of the talk.

- Motivations: Realistic analyses of Sorting and Searching algorithms.
- A general model of source
- Description of the main results.
- Exact analysis in the Poisson model : the Trie
- Exact analysis in the Poisson model : QuickSort and QuickSelect .
- Exact analysis in the Bernoulli model
- Asymptotic analysis : different types of sources.

What is already known about the mean number of symbol-comparisons?

The Trie structure is very well-studied, but only for particular sources: the so-called simple sources: memoryless or Markov chains and only for the array-trie.

The number of symbols comparaisons used in QuickSort, and QuickSelect, is already studied by Janson, Fill, Nakama ('06), but only

- in the case of memoryless sources,
- for QuickSort, QuickMin, QuickMax, QuickRand

Here, we study the mean number of symbol-comparisons, for a general source and a general algorithm/structure of the class.

- There are precise restrictive hypotheses on the source, and sufficient conditions under which these hypotheses hold.
- We provide a closed form for the constants of the analysis, for any source of the previous type.
- We use different methods, with limited computation...

Case of Trie(n) [CFV 01]

Theorem 1. For any Λ-tame source,
the mean size $R(n)$ and the mean path length $C(n)$ of an array-trie built on n words independently drawn from the source satisfy

$$
R(n) \sim \frac{1}{h_{\mathcal{S}}} n \quad C(n) \sim \frac{1}{h_{\mathcal{S}}} n \log n .
$$

and involve the entropy $h_{\mathcal{S}}$ of the source \mathcal{S}, defined as

$$
h_{\mathcal{S}}:=\lim _{k \rightarrow \infty}\left[\frac{-1}{k} \sum_{w \in \Sigma^{k}} p_{w} \log p_{w}\right],
$$

where p_{w} is the probability that a word begins with prefix w.

Case of Trie(n) [CFV 01]

Theorem 2. For any Λ-tame stationary source,

- the mean path-length $L(n)$ of a list-trie
- the mean path length $A(n)$ of an bst-trie
built on n words independently drawn from the source satisfy

$$
L(n) \sim \frac{K_{L}(\mathcal{S})}{h_{\mathcal{S}}} n \quad A(n) \sim \frac{K_{A}(\mathcal{S})}{h_{\mathcal{S}}} n \log n .
$$

and involve the entropy $h_{\mathcal{S}}$, together with constants

$$
K_{L}(\mathcal{S})=\sum_{i \in \Sigma} P_{[>i]} \quad K_{A}(\mathcal{S})=2 \sum_{\substack{i, j \in \Sigma \\ i<j}} \frac{p_{i} p_{j}}{P_{[i, j]}}
$$

where p_{i} is the probability that a word begins with symbol i

$$
\text { and } P_{[i, j]}:=\sum_{k=i}^{j} p_{k} \text {. }
$$

Case of QuickSort (n) or $\operatorname{BST}(n)$ [CFFV 08]

Theorem 3. For any Λ-tame source, the mean number $B(n)$ of symbol comparisons used by QuickSort (n) (or the mean number of symbols comparisons used to built the BST) on n words of the source satisfies

$$
B(n) \sim \frac{1}{h_{\mathcal{S}}} n \log ^{2} n
$$

and involves the entropy $h_{\mathcal{S}}$ of the source \mathcal{S}, defined as

$$
h_{\mathcal{S}}:=\lim _{k \rightarrow \infty}\left[\frac{-1}{k} \sum_{w \in \Sigma^{k}} p_{w} \log p_{w}\right],
$$

where p_{w} is the probability that a word begins with prefix w.

Compared to $K(n) \sim 2 n \log n$, there is an extra factor equal to $1 /\left(2 h_{\mathcal{S}}\right) \log n$
Compared to $C(n) \sim\left(1 / h_{\mathcal{S}}\right) n \log n$, there is an extra factor of $\log n$.

Case of QuickQuant ${ }_{\alpha}(n)$ [CFFV 09]

Theorem 4. For any Π-tame source,
the mean number of symbol comparisons used by QuickQuant ${ }_{\alpha}(n)$ satisfies

$$
Q(n)^{(\alpha)} \sim \rho_{\mathcal{S}}(\alpha) n \quad \rho_{\mathcal{S}}(\alpha)=\sum_{w \in \Sigma^{\star}} p_{w} L\left(\frac{\left|\alpha-\mu_{w}\right|}{p_{w}}\right)
$$

$\mu_{w}=\frac{1}{2}\left[p_{w}^{(+)}+p_{w}^{(-)}\right]=$the middle of the fundamental interval
The function L is an even function given by $L(y)=2[1+H(y)]$,

$$
H(y)=\left\{\begin{array}{cl}
-\left(y^{+} \log y^{+}+y^{-} \log y^{-}\right), & \text {if } 0 \leq y<1 / 2 \\
0, & \text { if } y=1 / 2 \\
y^{+}\left(\log \left|y^{+}\right|-\log \left|y^{-}\right|\right), & \text {if } y>1 / 2
\end{array}\right.
$$

$H(y)$ is a modified entropy function expressed with $y^{+}:=(1 / 2)+y, y^{-}=(1 / 2)-y$.

Some particular cases for the constant $\rho_{\mathcal{S}}(\alpha)$.
Constants for QuickMin $(\alpha=0 \rightarrow \epsilon=+)$ and QuickMax $(\alpha=1 \rightarrow \epsilon=-)$

$$
c_{\mathcal{S}}^{(\epsilon)}:=2 \sum_{w \in \Sigma^{\star}} p_{w}\left[1-\frac{p_{w}^{(\epsilon)}}{p_{w}} \log \left(1+\frac{p_{w}}{p_{w}^{(\epsilon)}}\right)\right] .
$$

Constant for QuickRand $\underline{c}_{\mathcal{S}}=\int_{0}^{1} \rho_{\mathcal{S}}(\alpha) d \alpha$

$$
\underline{c}_{\mathcal{S}}=\sum_{w \in \Sigma^{\star}} p_{w}^{2}\left[2+\frac{1}{p_{w}}+\sum_{\epsilon= \pm}\left[\log \left(1+\frac{p_{w}^{(\epsilon)}}{p_{w}}\right)-\left(\frac{p_{w}^{(\epsilon)}}{p_{w}}\right)^{2} \log \left(1+\frac{p_{w}}{p_{w}^{(\epsilon)}}\right)\right]\right]
$$

The constants of the analysis for the binary source.

$$
\begin{gathered}
h_{\mathcal{B}}=\log 2, \quad c_{\mathcal{B}}^{(+)}=c_{\mathcal{B}}^{(-)}=c_{\mathcal{B}}^{(\epsilon)} \\
c_{\mathcal{B}}^{(\epsilon)}=4+2 \sum_{\ell \geq 0} \frac{1}{2^{\ell}}+2 \sum_{\ell \geq 0} \frac{1}{2^{\ell}} \sum_{k=1}^{2^{\ell}-1}\left[1-k \log \left(1+\frac{1}{k}\right)\right] \\
\underline{c}_{\mathcal{B}}=\frac{14}{3}+2 \sum_{\ell=0}^{\infty} \frac{1}{2^{2 \ell}} \sum_{k=1}^{2^{\ell}-1}\left[k+1+\log (k+1)-k^{2} \log \left(1+\frac{1}{k}\right)\right]
\end{gathered}
$$

Numerically, $\quad c_{\mathcal{B}}^{(\epsilon)}=5.27937 \ldots \ldots, \quad c_{\mathcal{B}}=8.20731 \ldots \ldots$
To be compared to the constants of the number of key-comparisons

$$
\kappa=2 \quad \text { or } \quad \kappa=3
$$

The curve $\alpha \mapsto \rho(\alpha)$ is a fractal deformation of $\alpha \mapsto \kappa(\alpha)$ $\kappa(\alpha)$ the constant of the number of key-comparisons in QuickQuant ${ }_{\alpha}$

The plot of $\alpha \mapsto \kappa(\alpha)$

..... To be compared to the plots of $\alpha \mapsto \rho(\alpha)$ for four memoryless sources

- three unbiased, $r=2,3,4$
- one biased (1/3, 2/3)

What about the function $\alpha \mapsto \rho_{\mathcal{S}}(\alpha)$?

In the case where $\mathcal{S}=$ the unbiased memoryless source with r symbols.

$$
\rho_{\mathcal{S}} \text { is denoted by } \rho_{r} \text {. }
$$

If r is odd, ρ_{r} is maximum at $\alpha=1 / 2$ (case of QuickMed)
If r is even, this is not true. For which value of $\alpha, \rho_{r}(\alpha)$ is maximum?

Is ρ_{r} differentiable? Is it Hölder?

$$
\text { When } r \rightarrow \infty, \rho_{r}(\alpha) \rightarrow 2[1+h(\alpha)]
$$

$=$ the constant which intervenes in the mean number of key-comparisons.
($h($.$) is the entropy function)$

Plan of the talk.

- Motivations: Realistic analyses of Sorting and Searching algorithms.
- A general model of source
- Description of the main results.
- Exact analysis in the Poisson model : the Trie
- Exact analysis in the Poisson model : QuickSort and QuickSelect .
- Exact analysis in the Bernoulli model
- Asymptotic analysis: different types of sources.

Three main steps for the analysis of the mean number $S(n)$ of symbol comparisons
(1) First step (algebraic).

The Poisson model \mathcal{P}_{Z} deals with a variable number N of keys:
N is a random variable which follows a Poisson law of parameter Z. We first obtain nice expressions for the mean number $\widetilde{S}(Z) \ldots$.
(2) Second step (algebraic).

It is then possible to return to the model where the number of keys is fixed.
We obtain a nice exact formula for $S(n)$....
from which it is not easy to obtain the asymptotics...
(3) Third step (analytic).

Then, the Rice formula provides the asymptotics of $S(n)(n \rightarrow \infty)$, as soon as the source is "tame"
Λ-tame for QuickSort and Tries, Π-tame for QuickSelect

The three steps of the analysis

Mean Value
in the Poisson model

Asymptotic Mean Value in the Poisson model
AlgDePo
\Longrightarrow

Mean Value in the Bernoulli model

Rice

AnDePo
\Longrightarrow

Asymptotic Mean Value in the Bernoulli model

Two possible ways from the exact mean value in the Poisson model. to the asymptotic mean value in the Bernoulli model.

Dealing with the Poisson Model \mathcal{P}_{z}

- The number N of keys is drawn according to the Poisson law

$$
\operatorname{Pr}[N=n]=e^{-z} \frac{z^{n}}{n!},
$$

- Then, the N words are independently drawn from the source.
or : N reals are uniformly and independently chosen in the unit interval
Two nice properties of the Poisson model. about the number $N_{[a, b]}$ of words $M(v)$ with $v \in[a, b]$
(i) $N_{[a, b]}$ follows a Poisson law of parameter $z(b-a)$.
(ii) For $[a, b] \cap[c, d]=\emptyset$, the variables $N_{[a, b]}$ and $N_{[c, d]}$ are independent.

Study of Tries in the Poisson model

Study of Tries in the Poisson model

Main parameter on a node n_{w} labelled with prefix w :
$N_{w}:=$ the number of keys which begin with prefix w.
$N_{w}:=$ the number of keys which go through the node n_{w}

The size, and the path length of a plain trie (array-trie) equal

$$
R=\sum_{w \in \Sigma^{\star}} \mathbf{1}_{\left[N_{w} \geq 2\right]} \quad C=\sum_{w \in \Sigma^{\star}} \mathbf{1}_{\left[N_{w} \geq 2\right]} \cdot N_{w}
$$

In the \mathcal{P}_{z} model, the cardinality N_{w} follow a Poisson law of parameter $z p_{w}$
The mean size and the mean path-length are

$$
\widetilde{R}(z)=\sum_{w \in \Sigma^{\star}} 1-\left(1+z p_{w}\right) e^{-z p_{w}} \quad \widetilde{C}(z)=\sum_{w \in \Sigma^{\star}} z p_{w}\left[1-e^{-z p_{w}}\right]
$$

Study of Tries in the Poisson model. Other implementations The array-trie

Study of Tries in the Poisson model. Other implementations The list-trie

Study of Tries in the Poisson model. Other implementations The bst-trie or the ternary search trie

Vertical (infinite) words versus horizontal finite slices.

In a node n_{w} with label w,

- the symbols of the slice are produced by a memoryless source with probabilities

$$
p_{m \mid w}=\frac{p_{w \cdot m}}{p_{w}}
$$

- the number of symbols follows
a Poisson law with parameter $z p_{w}$

The path-length inside a node depends on the data structure in the slice.

$N_{i}:=$ the number of symbols of the slice equal to a_{i}.

$N_{[i, j]}:=$ the number of symbols z with $\operatorname{val}(z) \in\left[a_{i}, a_{j}\right]$
For the list-trie (L), or the bst-trie (A), the path-length in a slice is

$$
\begin{gathered}
\left.\delta_{L}=\sum_{i \in \Sigma} N_{i} \sum_{j<i} \mathbf{1}_{\left[N_{j} \geq 1\right]} \quad \delta_{A}=\sum_{i \in \Sigma} N_{i} \sum_{j \neq i} 1_{\left[a_{j}\right.} \text { ancestor of } a_{i} \text { in bst }\right] \\
\exists x \in \Sigma, \quad \operatorname{aval}(x)=a_{j} \text { is ancestor of } a_{i}(\text { with } j<i) \text { iff } \\
\Longrightarrow \quad \operatorname{ord}(x)=\min \left\{\operatorname{ord}(z), \quad \operatorname{val}(z) \in\left[a_{i}, a_{j}\right]\right\} \\
\Longrightarrow \quad a_{j}=2 \sum_{\substack{(i, j) \in \Sigma^{2} \\
i<j}} \frac{N_{i} N_{j}}{N_{[i, j]}}=2 \sum_{\substack{i, j) \in \Sigma^{2} \\
i<j}} \frac{N_{i} N_{j}}{N_{i}+N_{j}+N_{] i, j[}}
\end{gathered}
$$

Mean values of parameters in a slice

Assume that:

- the number of symbols follow a Poisson law \mathcal{P}_{z}
- the symbols are independently emitted with $p_{i}:=\operatorname{Pr}\left[a_{i}\right]$

$$
\begin{aligned}
\mathbb{E}\left[\delta_{L}, \mathcal{P}_{z}, \mathcal{B}\right] & =\sum_{j \in \Sigma} z P_{[>j]}\left(1-e^{-z p_{j}}\right), \\
\mathbb{E}\left[\delta_{A}, \mathcal{P}_{z}, \mathcal{B}\right] & =2 \sum_{\substack{(i, j) \in \Sigma^{2} \\
i<j}} \frac{p_{i} p_{j}}{P_{[i, j]}^{2}}\left[e^{-z P_{[i, j]}}-1+z P_{[i, j]}\right], \\
\text { where } P_{[i, j]} & =\sum_{k=i}^{j} p_{k} \text { and } P_{[>j]}=\sum_{k>j} p_{k} .
\end{aligned}
$$

In each node, these computations are applied with
z replaced by $z p_{w}$ and p_{i} replaced by $\frac{p_{w \cdot i}}{p_{w}}$

Mean trie costs in the Poisson Model

relative to the size of a trie, path length of an array-trie, path length of a list trie, path length of a bst-trie:

$$
\begin{aligned}
& \widetilde{R}(z)=\sum_{w \in \Sigma^{*}}\left[1-\left(1+z p_{w}\right) e^{-z p_{w}}\right], \\
& \widetilde{C}(z)=\sum_{w \in \Sigma^{*}} z p_{w}\left[1-e^{-z p_{w}}\right] \\
& \widetilde{L}(z)=\sum_{w \in \Sigma^{*}} \sum_{i \in \Sigma} z P_{w \cdot[>i]}\left(1-e^{-z p_{w} \cdot i}\right) \\
& \widetilde{A}(z)=2 \sum_{w \in \Sigma^{*}} \sum_{\substack{(i, j) \in \Sigma^{2} \\
i<j}} \frac{p_{w \cdot i} p_{w \cdot j}}{P_{w \cdot[i, j]}^{2}}\left[e^{-z P_{w \cdot[i, j]}}-1+z P_{w \cdot[i, j]}\right], \\
& \text { where } P_{w \cdot[i, j]}=\sum_{k=i}^{j} p_{w \cdot k}, \text { and } P_{w \cdot[>j]}=\sum_{k>j} p_{w \cdot k} .
\end{aligned}
$$

Plan of the talk.

- Motivations: Realistic analyses of Sorting and Searching algorithms.
- A general model of source
- Description of the main results.
- Exact analysis in the Poisson model : the Trie
- Exact analysis in the Poisson model : QuickSort and QuickSelect.
- Exact analysis in the Bernoulli model
- Asymptotic analysis : different types of sources.

The mean number $\widetilde{S}(Z)$ of symbol comparisons for an algorithm \mathcal{A} is

$$
\widetilde{S}(Z)=\int_{\mathcal{T}}[\gamma(u, t)+1] \widetilde{\pi}_{Z}(u, t) d u d t
$$

where

$$
\mathcal{T}:=\{(u, t), \quad 0 \leq u \leq t \leq 1\} \text { is the unit triangle }
$$

$$
\gamma(u, t):=\text { coincidence between } M(u) \text { and } M(t)
$$

$$
\begin{aligned}
\widetilde{\pi}_{Z}(u, t) d u d t: & =\text { Mean number of key-comparisons between } M\left(u^{\prime}\right) \\
& \text { and } M\left(t^{\prime}\right) \text { with } u^{\prime} \in[u, u+d u] \text { and } t^{\prime} \in[t-d t, t] \\
& \text { performed by the algorithm } \mathcal{A} .
\end{aligned}
$$

An (easy) alternative expression for $\widetilde{S}(Z)$

$$
\widetilde{S}(Z)=\sum_{w \in \Sigma^{\star}} \int_{\mathcal{T}_{w}} \widetilde{\pi}_{Z}(u, t) d u d t
$$

It involves the fundamental triangles and separates the rôles of the source and the algorithm.

Instances of fundamental triangles.

On the left: memoryless source on $\{a, b\}$
$p_{a}=1 / 2, p_{b}=1 / 2$

On the right :
memoryless source on $\{a, b, c\}$
$p_{a}=1 / 2, p_{b}=1 / 6, p_{c}=1 / 3$

Study of the key probability $\widetilde{\pi}_{Z}(u, t)$ of QuickX $\quad\left(\mathrm{X}=\right.$ Sort or $\mathrm{X}=$ Quant $\left._{\alpha}.\right)$
Related question: When does QuickX compare two keys $M(u)$ and $M(t)$?
In QuickSort, $\quad M(u)$ and $M(t)$ are compared
iff the first pivot chosen in $\{M(v), v \in[u, t]\}$ is $M(u)$ or $M(t)$
In QuickMin, $M(u)$ and $M(t)$ are compared
iff the first pivot chosen in $\{M(v), v \in[0, t]\}$ is $M(u)$ or $M(t)$
In QuickMax, $M(u)$ and $M(t)$ are compared
iff the first pivot chosen in $\{M(v), v \in[u, 1]\}$ is $M(u)$ or $M(t)$

And for QuickQuant ${ }_{\alpha}$? Not so easy!
The idea is to compare QuickQuant with a dual algorithm, the QuickVal algorithm.

A parenthesis - Presentation of QuickVal
The QuickVal algorithm is the dual algorithm of QuickSelect,

QuickVal (n, a, A). : returns the rank of the element a in $B=A \cup\{a\}$
$B:=A \cup\{a\}$
QV (n, a, B);

QV (n, a, B).
Choose a pivot in B;
$\left(k, B_{-}, B_{+}\right):=\operatorname{Partition}(B)$;
If $a=$ pivot then QV $:=k$

$$
\begin{array}{r}
\text { else if } a<\text { pivot then QV }:=\mathrm{QV}\left(k-1, a, B_{-}\right) \\
\\
\text {else QV }:=k+\mathrm{QV}\left(n-k, a, B_{+}\right) ;
\end{array}
$$

QuickVal ${ }_{\alpha}:=$ the algorithm where the key of interest is the word $M(\alpha)$

Comparison between QuickVal ${ }_{\alpha}$ and QuickQuant ${ }_{\alpha}$ QuickVal $_{\alpha}:=$ the algorithm where the key of interest is the word $M(\alpha)$

There are two facts

- Since the rank of $M(\alpha)$ amongst n keys is close to αn (for $n \rightarrow \infty$), the probabilistic behaviours of the two algorithms are close
- The QuickVal ${ }_{\alpha}$ algorithm is easy to deal with since

$$
M(u) \text { and } M(t) \text { are compared in QuickVal }{ }_{\alpha}
$$

iff the first pivot chosen in $\{M(v), v \in[x, y]\}$ is $M(u)$ or $M(t)$.
Here, the interval $[x, y]$ is the smallest interval that contains u, t and α.

$$
\text { this means : } x=\min (\alpha, u), \quad y=\max (\alpha, t)
$$

The three domains for the definition of the interval $[x, y]$, the smallest interval that contains u, t, α

$$
[x(u, t), y(u, t)]:=\left\{\begin{array}{llll}
{[\alpha, t]} & \text { if } u>\alpha & (I) & \sim \text { QuickMin } \\
{[u, \alpha]} & \text { if } t<\alpha & (I I) & \sim \text { QuickMax } \\
{[u, t]} & \text { if } u<\alpha<t & (I I I) & \sim \text { QuickSort }
\end{array}\right.
$$

In summary, the algorithm QuickX with $\mathrm{X}=$ Sort or $\mathrm{X}=\mathrm{Val}_{\alpha}$, compares two words $M(u)$ and $M(t)$
iff $M(u)$ or $M(t)$ is chosen as the first pivot in $\{M(v), v \in[x, y]\}$ with
$[x, y]=[u, t]$ (QuickSort),$\quad[x, y]=[\min (\alpha, u), \max (\alpha, t)]\left(\right.$ QuickVal $\left._{\alpha}\right)$

In the Poisson model,

$$
\widetilde{\pi}_{Z}(u, t) d u d t=Z d u \cdot Z d t \cdot \widetilde{\mathbb{E}}_{Z}\left[\frac{2}{2+N_{[x, y]}}\right]
$$

$$
\widetilde{\pi}_{Z}(u, t)=2 Z^{2} f_{1}(Z(y-x)) \quad \text { with } \quad f_{1}(\theta):=\theta^{-2}\left[e^{-\theta}-1+\theta\right]
$$

With $f_{0}(\theta)=\theta\left(1-e^{-\theta}\right), \quad f_{1}(\theta):=\theta^{-2}\left[e^{-\theta}-1+\theta\right]$,
Final expressions of the mean cost for Trie and QuickX in the \mathcal{P}_{Z} model

$$
\widetilde{C}(z)=\sum_{w \in \Sigma^{\star}} f_{0}\left(z p_{w}\right) \quad \widetilde{S}(z)=2 z^{2} \sum_{w \in \Sigma^{\star}} \int_{\mathcal{T}_{w}} f_{1}(z(y-x)) d u d t
$$

Plan of the talk.

- Motivations: Realistic analyses of Sorting and Searching algorithms.
- A general model of source
- Description of the main results.
- Exact analysis in the Poisson model : the Trie
- Exact analysis in the Poisson model : QuickSort and QuickSelect.
- Exact analysis in the Bernoulli model
- Asymptotic analysis: different types of sources.

Return to the model where the number n of keys is fixed.

Expanding $f_{0}, f_{1}, \quad f_{0}(\theta)=\theta\left[1-e^{-\theta}\right], \quad f_{1}(\theta):=\theta^{-2}\left[e^{-\theta}-1+\theta\right]$, and using the transfer between the two models $\quad \frac{S_{n}}{n!}=\left[Z^{n}\right]\left(e^{Z} \cdot \widetilde{S}_{Z}\right)$ there is an exact formula for S_{n}

$$
S_{n}=2 \sum_{k=2}^{n}(-1)^{k}\binom{n}{k} \varpi(k)
$$

which involves the series ϖ at integer values k.
The series $\varpi(s)$ is of Dirichlet type, and depends both

- on the algorithm (via the function f_{0} or f_{1} and interval $[x, y]$)
- on the source (via the fundamental triangles \mathcal{T}_{w})

In the three cases, an exact formula for $S_{n} \ldots$.

$$
S_{n}=\sum_{k=2}^{n}(-1)^{k}\binom{n}{k} \varpi(k)
$$

... which involves the series ϖ at integer values k.
For the mean path length (Trie or BST),
$\varpi(s)$ is closely related to the Dirichlet series of the probabilities,

$$
\varpi_{C}(s)=s \Lambda(s) \quad \varpi_{B}(s)=2 \frac{\Lambda(s)}{s(s-1)} \quad \text { where } \quad \Lambda(s):=\sum_{w \in \Sigma^{\star}} p_{w}^{s}
$$

For QuickVal, the expression is more involved,

$$
\varpi_{V}(s)=2 \sum_{w \in \Sigma^{\star}} \int_{\mathcal{T}_{w}}(y-x)^{s-2} d u d t
$$

Plan of the talk.

- Motivations: Realistic analyses of Sorting and Searching algorithms.
- A general model of source
- Description of the main results.
- Exact analysis in the Poisson model : the Trie
- Exact analysis in the Poisson model : QuickSort and QuickSelect.
- Exact analysis in the Bernoulli model
- Asymptotic analysis: different types of sources.

Asymptotic analysis.
Then, the residue formula transforms the sum into an integral:

$$
S_{n}=\sum_{k=2}^{n}(-1)^{k}\binom{n}{k} \varpi(k)=\frac{1}{2 i \pi} \int_{d-i \infty}^{d+i \infty} \varpi(s) \frac{n!(-1)^{n+1}}{s(s-1) \ldots(s-n)} d s
$$

with $1<d<2$.
We shift the integral on the left, and (usually) the first singularities occur at $\Re s=1$.

What is the behaviour of $\varpi(s)$ near $\Re s=1$?
We compare it to other Dirichlet series:

$$
\begin{array}{cc}
- \text { For Trie, BST, } & \text { - For QuickVal, } \\
\varpi_{C}(s), \varpi_{B}(s) \text { are related to } \Lambda(s) . & \varpi_{V}(s) \text { is related to } \Pi(s) . \\
\Lambda(s):=\sum_{w \in \Sigma^{\star}} p_{w}^{s}, & \Pi(s)=\sum_{k \geq 0} \pi_{k}^{s} \\
p_{w}=\operatorname{Pr}[\text { a word begins with } w], & \pi_{k}=\sup \left\{p_{w} ; w \in \Sigma^{k}\right\}
\end{array}
$$

A function is "tame" in a region \mathcal{R}
if it is analytic and of polynomial growth for $|s| \rightarrow \infty$
A source S is Π-tame if $\Pi(s)$ is tame on $\{\Re s>1-\delta\}$ with $\delta>0$.
A sufficient condition is $\pi_{k} \leq A k^{-\gamma}$ with $\gamma>1$. Then $\delta=1-(1 / \gamma)$
Most of the "natural" sources are Π-tame!
In this case,
(1) $\varpi(s)$ is also tame in $\{\Re s>1-\delta\}$.
(2) The function $\alpha \mapsto \rho_{\mathcal{S}}(\alpha)$ is Hölder of exponent δ

(1) \Rightarrow analysis of QuickVal
(2) \Rightarrow analysis of QuickQuant

A nice expression for $\quad \rho_{\mathcal{S}}(\alpha)=\sum_{w \in \Sigma^{\star}} \int_{\mathcal{T}_{w}}[\max (\alpha, t)-\min (\alpha, u)]^{-1} d u d t$

Study of the mean path length of Trie and BST
$\varpi_{T}(s)=s \Lambda(s), \quad \varpi_{B}(s)=2 \frac{\Lambda(s)}{s(s-1)} \quad$ where $\quad \Lambda(s):=\sum_{w \in \Sigma^{\star}} p_{w}^{s}$
For any (natural) source, $\Lambda(s)$ has a singularity at $s=1$.

A source is Λ-tame if
(1) the dominant singularity of $\Lambda(s)$ is located at $s=1$, this is a simple pôle, whose residue equals $1 / h_{\mathcal{S}}$.

In this case, there is, at $s=1$
a double pôle for $\frac{\varpi_{C}(s)}{s-1}, \quad$ a triple pôle for $\quad \frac{\varpi_{B}(s)}{s-1}$
(2) $\Lambda(s)$ is tame on the left of the line $\Re s=1$
(useful for shifting on the left...)

Different possible regions on the left of $\Re s=1$ where $\Lambda(s)$ is tame.

Situation 1
Hyperbolic region

Situation 2
Vertical strip

Situation 3
Vertical strip with holes

For which (simple) sources do these different situations occur?

For memoryless sources relative to $\mathfrak{P}=\left(p_{1}, p_{2}, \ldots, p_{r}\right)$

- S2 is impossible
- S3 occurs when all the ratios $\log p_{i} / \log p_{j}$ are rational
- S1 with a frontier of the form $\sigma=1-A / t^{\alpha}$ occurs
if there exists a ratio $\log p_{i} / \log p_{j}$ which badly approximable by rationals.

Different possible regions on the left of $\Re s=1$ where $\Lambda(s)$ is tame.

Situation 1
Hyperbolic region
Arithmetic condition

Situation 2
Vertical strip
Geometric condition

Situation 3
Vertical strip with holes
Periodicity condition

For which sources do these different situations occur?
For dynamical sources, we provide sufficient conditions under which these behaviours hold.

- S3 never occurs except if the source is conjugated to a simple source.
- S2 occurs when all the branches are not too often of the same geometric form
- S1 occurs if a extension of the following condition holds: there exists a ratio $\log p_{i} / \log p_{j}$ which badly approximable by rationals.

Conclusions.

- For any Λ-tame source, the mean path-lengths of Trie and BST are

$$
\begin{equation*}
C(n) \sim \frac{1}{h_{\mathcal{S}}} n \log n \quad(\text { Trie }), \quad B(n) \sim \frac{1}{h_{\mathcal{S}}} n \log ^{2} n \tag{BST}
\end{equation*}
$$

- It is easy to adapt our results to the intermittent sources, which emits "long" sequences of the same symbols. In this case,

$$
\begin{equation*}
\left.C(n)=\Theta\left(n \log ^{2} n\right) . \quad \text { (Trie }\right) \quad B(n)=\Theta\left(n \log ^{3} n\right), \tag{BST}
\end{equation*}
$$

- For any reasonable source, $Q(n)=\Theta(n) \quad$ (QuickQuant).

Long term research projects...

- Revisit the complexity results of the main classical algorithms, and take into account the number of symbol-comparisons... instead of the number of key-comparisons.
— Provide a sharp "analytic" classification of sources:
Transfer probabilistic properties of sources into analytical properties of $\Lambda(s)$.

