Mean number of symbol comparisons for the Algorithm InsertionSort
We recall that the mean number $\widetilde{S}(Z)$ of symbol comparisons for an algorithm $\mathcal{A}$ is

$$
\widetilde{S}(Z)=\int_{\mathcal{T}}[\gamma(u, t)+1] \widetilde{\pi}_{Z}(u, t) d u d t
$$

where

$$
\mathcal{T}:=\{(u, t), \quad 0 \leq u \leq t \leq 1\} \text { is the unit triangle }
$$

$$
\gamma(u, t):=\text { coincidence between } M(u) \text { and } M(t)
$$

$$
\widetilde{\pi}_{Z}(u, t) d u d t:=\text { Mean number of key-comparisons between } M\left(u^{\prime}\right)
$$

$$
\text { and } M\left(t^{\prime}\right) \text { with } u^{\prime} \in[u, u+d u] \text { and } t^{\prime} \in[t-d t, t]
$$ performed by the algorithm $\mathcal{A}$.

An (easy) alternative expression for $\widetilde{S}(Z)$

$$
\widetilde{S}(Z)=\sum_{w \in \Sigma^{\star}} \int_{\mathcal{T}_{w}} \widetilde{\pi}_{Z}(u, t) d u d t
$$

It involves the fundamental triangles and separates the rôles of the source and the algorithm.

Question 1. Compute $\widetilde{\pi}_{Z}(u, t)$ for the algorithm InsertionSort.
Does $\widetilde{\pi}_{Z}(u, t)$ depend on the pair $(u, t)$ ? Such an algorithm is called an isotropic algorithm.

Question 2. Compute the mean number of symbol comparisons $\widetilde{S}(Z)$ for InsertionSort (in the Poisson model).

Question 3. Compute the mean number of symbol comparisons $S(n)$ for InsertionSort (in the Bernoulli model),

- first for a general source,
- then for a general memoryless source with probabilities $\left(p_{1}, p_{2}, \ldots, p_{r}\right)$.


## Mean Path Length for a BST with repeated keys.

Consider an ordered alphabet $\sigma=\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ and consider a slice $s$ formed with $N_{i}$ symbols equals to $a_{i}$ and a total number of symbols $N$.

Question 1. Prove that the path length $\delta_{A}$ of the BST built on the slice $s$ equals

$$
\left.\delta_{A}=\sum_{i \in \Sigma} N_{i} \sum_{j \neq i} \mathbf{1}_{\left[a_{j}\right.} \text { ancestor of } a_{i} \text { in bst }\right]
$$

Question 2. Denote by $\underline{\delta}_{A}$ the parameter defined by

$$
\underline{\delta}_{A}(s):=\frac{1}{N!} \sum_{\tau \in \mathfrak{G}_{N}} \delta_{A}(\tau(s))
$$

where $\mathfrak{S}_{N}$ is the set of permutations on $[1 . . N]$.
Prove that the expectations of $\delta_{A}$ and $\underline{\delta}_{A}$ are the same in the Poisson model $\mathcal{P}_{z}$ and prove the equality

$$
\underline{\delta}_{A}=2 \sum_{i \in \Sigma} N_{i} \sum_{i<j} \frac{N_{j}}{N_{[i, j]}}=2 \sum_{i \in \Sigma} \sum_{i<j} \frac{N_{i} N_{j}}{N_{i}+N_{j}+N_{] i, j[ }}
$$

Question 3. Prove that the expectation of $\delta_{A}$ in the Poisson model $\mathcal{P}_{z}$ is

$$
\widetilde{\mathbb{E}}_{z}\left[\delta_{A}\right]=2 \sum_{\substack{(i, j) \in \Sigma^{2} \\ i<j}} \frac{p_{i} p_{j}}{P_{[i, j]}^{2}}\left[e^{-z P_{[i, j]}}-1+z P_{[i, j]}\right]
$$

Question 4. Compute the mean path length of a BST with repeated keys in the Bernoulli model and prove the equality

$$
\mathbb{E}_{n}\left[\delta_{A}\right]=2 \sum_{\substack{(i, j) \in \Sigma^{2} \\ i<j}} \frac{p_{i} p_{j}}{P_{[i, j]}} n \log n
$$

