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Why Lattice Paths?

Applications in many areas of science

• probability theory (branching processes, games of chance, . . . )
• operations research (queueing theory, . . . )
• discrete mathematics (permutations, trees, words, urns, . . . )
• statistical physics (Ising model, . . . )
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Why Computer Algebra?

Because we like it!
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Context: enumeration of lattice walks

. Nearest-neighbor walks in the quarter plane N2; admissible steps

S ⊆ {↙, ←, ↖, ↑, ↗, →, ↘, ↓}.

. S-walks = walks in N2 starting at (0, 0) and using steps in S.

. fS(n; i , j) = number of S-walks ending at (i , j) and consisting of
exactly n steps. Complete generating function

FS(t; x , y) =
∞∑

n=0

( ∞∑
i ,j=0

fS(n; i , j)x i y j
)

tn ∈ Q[x , y ][[t]].

Questions: Given S, what can be said about FS(t; x , y)?
Structure? (algebraic / holonomic) Explicit form? Asymptotics?

FS(t; 0, 0) ; counts S-walks returning to the origin (excursions);
FS(t; 1, 1) ; counts S-walks with prescribed length;

FS(t; 1, 0) ; counts S-walks ending on the horizontal axis.
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Small step sets in the quarter plane

S ⊆ {−1, 0, 1}2 \ {(0, 0)} There are 28 such sets.

Some of these 28 = 256 step sets are:

trivial, simple,
intrinsic to

the half plane, symmetrical.

Finally, there remain 79 inherently different cases!
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Two important cases: Kreweras and Gessel walks

S = {↓,←,↗} FS(t; x , y) ≡ K (t; x , y)

S = {↗,↙,←,→} FS(t; x , y) ≡ G (t; x , y)
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Example: A Kreweras excursion.
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Important classes of univariate power series

algebraic

hypergeom

Holonomic series

Holonomic : S(t) ∈ Q[[t]] satisfying a linear differential equation
with polynomial coefficients cr (t)S (r)(t) + · · ·+ c0(t)S(t) = 0.

Algebraic : S(t) ∈ Q[[t]] root of a polynomial P ∈ Q[t, T ].

Hypergeometric : S(t) =
∑

n sntn such that sn+1

sn
∈ Q(n). E.g.

2F1

(
a b

c

∣∣∣∣ t

)
=
∞∑

n=0

(a)n(b)n

(c)n

tn

n!
, (a)n = a(a + 1) · · · (a + n− 1).
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Important classes of multivariate power series

algebraic series

Holonomic series

S ∈ Q[[x , y , t]] is holonomic if the set of all partial derivatives of S
spans a finite-dimensional vector space over Q(x , y , t).

S ∈ Q[[x , y , t]] is algebraic if it is the root of a P ∈ Q[x , y , t, T ].
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Main results (I): algebraicity of Gessel walks

Theorem [Kreweras 1965; 100 pages combinatorial proof!]

K (t; 0, 0) = 3F2

(
1/3 2/3 1

3/2 2

∣∣∣∣ 27 t3

)
=
∞∑

n=0

4n
(3n

n

)
(n + 1)(2n + 1)

t3n.

Theorem [Gessel’s conjecture; Kauers, Koutschan, Zeilberger 2009]

G (t; 0, 0) = 3F2

(
5/6 1/2 1

5/3 2

∣∣∣∣ 16t2

)
=
∞∑

n=0

(5/6)n(1/2)n

(5/3)n(2)n
(4t)2n.

Question: What about K (t; x , y) and G (t; x , y)?

Theorem [Gessel’86, Bousquet-Mélou’05] K (t; x , y) is algebraic.

. G (t; x , y) had been conjectured to be non-holonomic.

Theorem [B. & Kauers’10] G (t; x , y) is holonomic, even algebraic.

. Computer-driven discovery and proof; no human proof yet.
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Main results (II): Explicit form for G (t; x , y)

Theorem Let V = 1 + 4t2 + 36t4 + 396t6 + · · · be a root of

(V − 1)(1 + 3/V )3 = (16t)2,

let U = 1 + 2t2 + 16t4 + 2xt5 + 2(x2 + 83)t6 + · · · be a root of

x(V − 1)(V + 1)U3 − 2V (3x + 5xV − 8Vt)U2

−xV (V 2 − 24V − 9)U + 2V 2(xV − 9x − 8Vt) = 0,

let W = t2 + (y + 8)t4 + 2(y 2 + 8y + 41)t6 + · · · be a root of

y(1− V )W 3 + y(V + 3)W 2 − (V + 3)W + V − 1 = 0.

Then G (t; x , y) is equal to

64(U(V +1)−2V )V 3/2

x(U2−V (U2−8U+9−V ))2 − y(W−1)4(1−Wy)V−3/2

t(y+1)(1−W )(W 2y+1)2

(1 + y + x2y + x2y 2)t − xy
− 1

tx(y + 1)
.

. Computer-driven discovery and proof; no human proof yet.
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Main results (II): Explicit form for G (t; 0, 0)

Theorem Let V = 1 + 4t2 + 36t4 + 396t6 + · · · be a root of

(V − 1)(1 + 3/V )3 = (16t)2.

Then G (t; 0, 0) is equal to

V 2 + 6V − 3

4V 3/2
− 1

2t2
.
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Main results (II): Explicit form for G (t; 0, 0)

Theorem Let V = 1 + 4t2 + 36t4 + 396t6 + · · · be a root of

(V − 1)(1 + 3/V )3 = (16t)2.

Then G (t; 0, 0) is equal to

V 2 + 6V − 3
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− 1

2t2
.
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Main results (III): Experimental classification of walks
with holonomic FS(t; 1, 1) [B. & Kauers 2009]

OEIS Tag Sample step set Equation sizes OEIS Tag Sample step set Equation sizes

A000012 · · ·· ·· ·•
1, 0 1, 1 1, 1 A000079 · · ·· ··••

1, 0 1, 1 1, 1

A001405 · · ·· ·•·•
2, 1 2, 3 2, 2 A000244 · · ·· •·••

1, 0 1, 1 1, 1

A001006 · ·•• ··•·
2, 1 2, 3 2, 2 A005773 · · ·· ·•••

2, 1 2, 3 2, 2

A126087 · · ·• ·•·•
3, 1 2, 5 2, 2 A151255 •· ·· ••· ·

6, 8 4, 16 –

A151265 ·•·• ·· ·•
6, 4 4, 9 6, 8 A151266 · ·•• ·· ·•

7, 10 5, 16 –

A151278 •· ·· •·•·
7, 4 4, 12 6, 8 A151281 · · ·· ••·•

3, 1 2, 5 2, 2

A005558 · ·•• ••· ·
2, 3 3, 5 – A005566 ·•·• •·•·

2, 2 3, 4 –

A018224 •·•· ·•·•
2, 3 3, 5 – A060899 · · ·• ••·•

2, 1 2, 3 2, 2

A060900 •· ·• •· ·•
2, 3 3, 5 8, 9 A128386 •· ·• ·•·•

3, 1 2, 5 2, 2

A129637 · · ·· ••••
3, 1 2, 5 2, 2 A151261 •· ·• ••· ·

5, 8 4, 15 –

A151282 · · ·• ·•••
3, 1 2, 5 2, 2 A151291 · ·•• •· ·•

6, 10 5, 15 –

A151275 •·•• ·•·•
9, 18 5, 24 – A151287 •·•• •·•·

7, 11 5, 19 –

A151292 •· ·• ·•••
3, 1 2, 5 2, 2 A151302 •·•· ·•••

9, 18 5, 24 –

A151307 ·•·• ••·•
8, 15 5, 20 – A151318 · · ·• ••••

2, 1 2, 3 2, 2

A129400 ·••• •••·
2, 1 2, 3 2, 2 A151297 ••·• •••·

7, 11 5, 18 –

A151312 •·•• ••·•
4, 5 3, 8 – A151323 ••·• •·••

2, 1 2, 3 4, 4

A151326 ·•·• ••••
7, 14 5, 18 – A151314 •••• ·•••

9, 18 5, 24 –

A151329 •·•• ••••
9, 18 5, 24 – A151331 •••• ••••

3, 4 3, 6 –

Equation sizes = {order, degree}(rec, diffeq, algeq).

. Computer-driven; confirmed by human proofs in [Bousquet-Mélou & Mishna, 2010].
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Experimental classification of walks with holonomic FS(t; 1, 1)
OEIS Tag Steps Equation sizes Asymptotics OEIS Tag Steps Equation sizes Asymptotics

A000012 · · ·· ·· · •
1, 0 1, 1 1, 1 1 A000079 · · ·· ·· ••

1, 0 1, 1 1, 1 2n

A001405 · · ·· ·• · •
2, 1 2, 3 2, 2

√
2

Γ( 1
2

)

2n√
n

A000244 · · ·· •· ••
1, 0 1, 1 1, 1 3n

A001006 · · •• ·· • ·
2, 1 2, 3 2, 2

3
√

3

2Γ( 1
2

)

3n

n3/2
A005773 · · ·· ·•••

2, 1 2, 3 2, 2

√
3

Γ( 1
2

)

3n√
n

A126087 · · ·• ·• · •
3, 1 2, 5 2, 2

12
√

2

Γ( 1
2

)

23n/2

n3/2
A151255 • · ·· •• · ·

6, 8 4, 16 –
24

√
2

π

23n/2

n2

A151265 · • ·• ·· · •
6, 4 4, 9 6, 8

2
√

2

Γ( 1
4

)

3n

n3/4
A151266 · · •• ·· · •

7, 10 5, 16 –

√
3

2Γ( 1
2

)

3n√
n

A151278 • · ·· •· • ·
7, 4 4, 12 6, 8

3
√

3√
2Γ( 1

4
)

3n

n3/4
A151281 · · ·· •• · •

3, 1 2, 5 2, 2
1

2
3n

A005558 · · •• •• · ·
2, 3 3, 5 –

8

π

4n

n2
A005566 · • ·• •· • ·

2, 2 3, 4 –
4

π

4n

n

A018224 • · •· ·• · •
2, 3 3, 5 –

2

π

4n

n
A060899 · · ·• •• · •

2, 1 2, 3 2, 2

√
2

Γ( 1
2

)

4n√
n

A060900 • · ·• •· · •
2, 3 3, 5 8, 9

4
√

3

3Γ( 1
3

)

4n

n2/3
A128386 • · ·• ·• · •

3, 1 2, 5 2, 2
6
√

2

Γ( 1
2

)

2n3n/2

n3/2

A129637 · · ·· ••••
3, 1 2, 5 2, 2

1

2
4n A151261 • · ·• •• · ·

5, 8 4, 15 –
12

√
3

π

2n3n/2

n2

A151282 · · ·• ·•••
3, 1 2, 5 2, 2

A2B3/2

23/4Γ( 1
2

)

Bn

n3/2
A151291 · · •• •· · •

6, 10 5, 15 –
4

3Γ( 1
2

)

4n√
n

A151275 • · •• ·• · •
9, 18 5, 24 –

12
√

30

π

(
√

24)n

n2
A151287 • · •• •· • ·

7, 11 5, 19 –

√
8A7/2

π

(2A)n

n2

A151292 • · ·• ·•••
3, 1 2, 5 2, 2

4
√

3C2D3/2

8Γ( 1
2

)

Dn

n3/2
A151302 • · •· ·•••

9, 18 5, 24 –

√
5

3
√

2Γ( 1
2

)

5n√
n

A151307 · • ·• •• · •
8, 15 5, 20 –

√
5

2
√

2Γ( 1
2

)

5n√
n

A151318 · · ·• ••••
2, 1 2, 3 2, 2

p
5/2

Γ( 1
2

)

5n√
n

A129400 · ••• ••• ·
2, 1 2, 3 2, 2

3
√

3

2Γ( 1
2

)

6n

n3/2
A151297 •• ·• ••• ·

7, 11 5, 18 –

√
3C7/2

2π

(2C)n

n2

A151312 • · •• •• · •
4, 5 3, 8 –

√
6

π

6n

n
A151323 •• ·• •· ••

2, 1 2, 3 4, 4

√
2 33/4

Γ( 1
4

)

6n

n3/4

A151326 · • ·• ••••
7, 14 5, 18 –

2
√

3

3Γ( 1
2

)

6n√
n

A151314 •••• ·•••
9, 18 5, 24 –

EF 7/2

5
√

95π

(2F )n

n2

A151329 • · •• ••••
9, 18 5, 24 –

p
7/3

3Γ( 1
2

)

7n√
n

A151331 •••• ••••
3, 4 3, 6 –

8

3π

8n

n

. Computer-driven; recent human proofs of asymptotics by [Fayolle & Raschel, 2012]. 16/54



The group of a walk: an example

The characteristic polynomial χS = x +
1

x
+ y +

1

y

is left

invariant under

ψ(x , y) =

(
x ,

1

y

)
, φ(x , y) =

(
1

x
, y

)
,

and thus under any element of the group〈
ψ,φ

〉
=

{
(x , y),

(
x ,

1

y

)
,

(
1

x
,

1

y

)
,

(
1

x
, y

)}
.
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The group of a walk: the general case

The polynomial χS :=
∑

(i ,j)∈S
x i y j =

1∑
i=−1

Bi (y)x i =
1∑

j=−1

Aj (x)y j

is left invariant under

ψ(x , y) =

(
x ,

A−1(x)

A+1(x)

1

y

)
, φ(x , y) =

(
B−1(y)

B+1(y)

1

x
, y

)
,

and thus under any element of the group

GS :=
〈
ψ,φ

〉
.
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Examples of groups of walks

Order 4,

order 6, order 8, order ∞.
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Order 4, order 6, order 8, order ∞.
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The 79 cases: finite and infinite groups

79 step sets

23 admit a finite group
[Mishna’07]

56 have an infinite group
[Bousquet-Mélou-Mishna’10]

all are holonomic
19 transcendental
[Gessel-Zeilberger’92]

[Bousquet-Mélou’02]

4 are algebraic
(3 Kreweras-type + Gessel)

[B.-Kauers’10]

−→ all non-holonomic
• [Mishna-Rechnitzer’07] and

[Melczer-Mishna’12] for 5 singular cases

• [Kurkova-Raschel’12] and

[B.-Raschel-Salvy’12] for all others
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The 23 cases with a finite group

(i) 16 with a vertical symmetry , and group isomorphic to D2
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(ii) 5 with a diagonal or an anti-diagonal symmetry , and group
isomorphic to D3
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(iii) 2 with group isomorphic to D4
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In red, cases with algebraic generating functions

(ii)+(iii): zero drift
∑
s∈S

s
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Main results (IV): explicit expressions

for the 19 holonomic transcendental cases

Theorem [B.-Chyzak-Van Hoeij-Kauers-Pech, 2011]

Let S be one of the 19 step sets with finite group GS, and such
that the generating series F = FS(t; x , y) is not algebraic.
Then F is expressible using iterated integrals of 2F1 expressions.

Example (King walks in the quarter plane, A025595)

F

�	
�@I
?
6
@R
-��

(t; 1, 1) =
1

t

∫ t

0

1

(1 + 4x)3
· 2F1

(
3
2

3
2

2

∣∣∣∣ 16x(1 + x)

(1 + 4x)2

)
dx

= 1 + 3t + 18t2 + 105t3 + 684t4 + 4550t5 + 31340t6 + 219555t7 + · · ·

. Computer-driven discovery and proof; no human proof yet.

. Proof uses creative telescoping, ODE factorization, ODE solving.
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Main results (V): algorithmic proof of non-holonomy

for the 51 non-singular cases with infinite group

Theorem [B.-Rachel-Salvy, 2012]

Let S be one of the 51 step sets with infinite group GS, and such
that the excursions series FS(t; 0, 0) is not equal to 1.
Then FS(t; 0, 0), and in particular FS(t; x , y), are non-holonomic.

. Algorithmic, computer-driven, proof . Uses Gröbner basis
computations, polynomial factorization, cyclotomy testing.
. Based on two ingredients: asymptotics + irrationality.

. [Kurkova & Raschel 2012] Alternative proof of FS(t; x , y) is
non-holonomic. No human proof yet for FS(t; 0, 0) non-holonomic .

23/54



Main results (V): algorithmic proof of non-holonomy

for the 51 non-singular cases with infinite group

Theorem [B.-Rachel-Salvy, 2012]

Let S be one of the 51 step sets with infinite group GS, and such
that the excursions series FS(t; 0, 0) is not equal to 1.
Then FS(t; 0, 0), and in particular FS(t; x , y), are non-holonomic.

. Algorithmic, computer-driven, proof . Uses Gröbner basis
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The 56 cases with infinite group
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In blue, non-singular cases, solved by [B., Raschel & Salvy, 2012]
In red, singular cases, solved by [Melczer & Mishna 2012]

24/54



Summary – classification of 2D non-singular walks

The Big Theorem Let S be one of the 74 non-singular step sets.
The following assertions are equivalent:

(1) The full generating series FS(t; x , y) is holonomic

(2) the excursions generating series FS(t; 0, 0) is holonomic

(3) the excursions seq. [tn] FS(t; 0, 0) is ∼ K · ρn · nα, with α ∈ Q
(4) the group GS is finite (and |GS| = 2 ·min{` ∈ N? | `

α+1 ∈ Z})
(5) the step set S has either an axial symmetry, or a zero drift

Moreover, under (1)–(5), FS(t; x , y) is algebraic if and only if the

step set S has positive covariance
∑

(i ,j)∈S
ij −

∑
(i ,j)∈S

i ·
∑

(i ,j)∈S
j > 0

In this case, FS(t; x , y) is expressible using nested radicals. If not,
FS(t; x , y) is expressible using iterated integrals of 2F1 expressions.
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Main methods

(1) for proving non-holonomy

(1a) Infinite number of singularities, or lacunary
(1b) Asymptotics

(2) for proving holonomy

(2a) Diagonals, or positive parts, of rational functions
(2b) Guess’n’Prove

. All methods are algorithmic.
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Methodology for proving algebraicity
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Methodology for proving algebraicity

Experimental mathematics –Guess’n’Prove– approach:

(S1) high order expansion of the generating series FS(t; x , y);

(S2) guessing candidates for minimal polynomials of FS(t; x , 0)
and FS(t; 0, y), based on Hermite-Padé approximation;

(S3) rigorous certification of the minimal polynomials, based on
(exact) polynomial computations.
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Step (S1): high order series expansions

fS(n; i , j) satisfies the recurrence with constant coefficients

fS(n + 1; i , j) =
∑

(u,v)∈S
fS(n; i − u, j − v) for n, i , j ≥ 0

+ init. cond. fS(0; i , j) = δ0,i ,j and fS(n;−1, j) = fS(n; i ,−1) = 0.

Example: for the Kreweras walks,

k(n + 1; i , j) = k(n; i + 1, j)

+ k(n; i , j + 1)

+ k(n; i − 1, j − 1)

. Recurrence is used to compute FS(t; x , y) mod tN for large N.

K(t; x , y) = 1 + xyt + (x2y2 + y + x)t2 + (x3y3 + 2xy2 + 2x2y + 2)t3

+ (x4y4 + 3x2y3 + 3x3y2 + 2y2 + 6xy + 2x2)t4

+ (x5y5 + 4x3y4 + 4x4y3 + 5xy3 + 12x2y2 + 5x3y + 8y + 8x)t5 + · · ·
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Step (S1): high order series expansions

fS(n; i , j) satisfies the recurrence with constant coefficients
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∑

(u,v)∈S
fS(n; i − u, j − v) for n, i , j ≥ 0

+ init. cond. fS(0; i , j) = δ0,i ,j and fS(n;−1, j) = fS(n; i ,−1) = 0.

Example: for the Kreweras walks,
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Step (S2): guessing equations for FS(t; x , y), a first idea

In terms of generating series, the recurrence on k(n; i , j) reads(
xy − (x + y + x2y 2)t

)
K (t; x , y)

= xy − xt K (t; x , 0)− yt K (t; 0, y) (KerEq)

. This kernel equation can be seen as a multivariate analogue of

(1− t − t2) ·
∑
n≥0

`ntn = 1, where `n are the Fibonacci numbers.

. A similar kernel equation holds for FS(t; x , y), for any S-walk.

Corollary. FS(t; x , y) is holonomic (resp. algebraic) if and only if
FS(t; x , 0) and FS(t; 0, y) are both holonomic (resp. algebraic).

.Crucial simplification: equations for G (t; x , y) are huge (≈30Gb)

30/54



Step (S2): guessing equations for FS(t; x , 0)& FS(t; 0, y)

Task 1: Given the first N terms of S = FS(t; x , 0) ∈ Q[x ][[t]],
search for a differential equation satisfied by S at precision N:

Lx ,0(S) = cr (x , t)·∂
r S

∂tr
+· · ·+c1(x , t)·∂S

∂t
+c0(x , t)·S = 0 mod tN .

Task 2: Search for an algebraic equation Px ,0(S) = 0 mod tN .

I Both tasks amount to linear algebra in size N over Q(x).

I In practice, we use modular Hermite-Padé approximation
(Beckermann-Labahn algorithm) combined with (rational)
evaluation-interpolation and rational number reconstruction.

I Fast (FFT-based) arithmetic in Fp[t] and Fp[t]〈 t
∂t 〉.
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Step (S2): guessing equations for G (t; x , 0) and G (t; 0, y)

Using N = 1200 terms of G (t; x , y), we guessed candidates

IPx ,0 in Z[x , t, T ] of tridegree (32, 43, 24), 21 digits coefficients

IP0,y in Z[y , t, T ] of tridegree (40, 44, 24), 23 digits coefficients

such that

Px ,0(x , t, G (t; x , 0)) = P0,y (y , t, G (t; 0, y)) = 0 mod t1200.

. We actually first guessed differential equations†, then computed
their p-curvatures to empirically certify them. This led to suspect
the algebraicity of G (t; x , 0) and G (t; 0, y), using a conjecture of
Grothendieck (on differential equations modulo p) as an oracle.

. Guessing Px ,0 by undetermined coefficients would require solving
a dense linear system of size ≈ 100 000, and ≈1000 digits entries!

†of order 11, and bidegree (96, 78) for G(t; x , 0), and (68, 28) for G(t; 0, y)
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Step (S3): warm-up – Gessel excursions are algebraic

Theorem G (t; 0, 0) =
∞∑

n=0

(5/6)n(1/2)n

(5/3)n(2)n
(4t)2n is algebraic .

Proof: Guess a polynomial P(t, T ) in Q[t, T ], then prove that P
admits the power series g(t) = G (

√
t; 0, 0) =

∑∞
n=0 gntn as a root.

1. Such a P can be guessed from the first 100 terms of g(t).
2. Implicit function theorem: ∃! root r(t) ∈ Q[[t]] of P.
3. r(t)=

∑∞
n=0 rntn being algebraic, it is holonomic, and so is (rn):

(n + 2)(3n + 5)rn+1 − 4(6n + 5)(2n + 1)rn = 0, r0 = 1

⇒ solution rn = (5/6)n(1/2)n

(5/3)n(2)n
42n = gn, thus g(t) = r(t) is algebraic.
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Step (S3): rigorous proof for Kreweras walks

1. Setting y0 =
x−t−
√

x2−2tx+t2(1−4x3)

2tx2 = t + 1
x t2 + x3+1

x2 t3 + · · ·
in the kernel equation

︸ ︷︷ ︸
!

= 0

(xy − (x + y + x2y 2)t)K (t; x , y) = xy − xtK (t; x , 0)− ytK (t; 0, y)

shows that U = K (t; x , 0) satisfies the reduced kernel equation

x · y0 − x · t · U(t, x) = y0 · t · U(t, y0) (RKerEq)

2. U = K (t; x , 0) is the unique solution in Q[[x , t]] of (RKerEq).

3. The guessed candidate Px ,0 has one solution H(t, x) in Q[[x , t]].

4. Resultant computations + verification of initial terms
=⇒ U = H(t, x) also satisfies (RKerEq).

5. Uniqueness: H(t, x) = K (t; x , 0) =⇒ K (t; x , 0) is algebraic!
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Algebraicity of Kreweras walks: our Maple proof in a nutshell
[bostan@inria ~]$ maple

|\^/| Maple 17 (APPLE UNIVERSAL OSX)

._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2013

\ MAPLE / All rights reserved. Maple is a trademark of

<____ ____> Waterloo Maple Inc.

| Type ? for help.

# HIGH ORDER EXPANSION (S1)

> st,bu:=time(),kernelopts(bytesused):

> f:=proc(n,i,j)

option remember;

if i<0 or j<0 or n<0 then 0

elif n=0 then if i=0 and j=0 then 1 else 0 fi

else f(n-1,i-1,j-1)+f(n-1,i,j+1)+f(n-1,i+1,j) fi

end:

> S:=series(add(add(f(k,i,0)*x^i,i=0..k)*t^k,k=0..80),t,80):

# GUESSING (S2)

> libname:=".",libname:gfun:-version();

3.62

> gfun:-seriestoalgeq(S,Fx(t)):

> P:=collect(numer(subs(Fx(t)=T,%[1])),T):

# RIGOROUS PROOF (S3)

> ker := (T,t,x) -> (x+T+x^2*T^2)*t-x*T:

> pol := unapply(P,T,t,x):

> p1 := resultant(pol(z-T,t,x),ker(t*z,t,x),z):

> p2 := subs(T=x*T,resultant(numer(pol(T/z,t,z)),ker(z,t,x),z)):

> normal(primpart(p1,T)/primpart(p2,T));

1

# time (in sec) and memory consumption (in Mb)

> trunc(time()-st),trunc((kernelopts(bytesused)-bu)/1000^2);

7, 618
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Step (S3): rigorous proof for Gessel walks

Same philosophy, but several complications:
I stepset diagonal symmetry is lost: G (t; x , y) 6= G (t; y , x);
I G (t; 0, 0) occurs in (KerEq);
I equations are ≈ 5 000 times bigger.

−→ replace (RKerEq) by a system of 2 reduced kernel equations.

−→ fast algorithms needed (e.g., [B.-Flajolet-Salvy-Schost’06] for
computations with algebraic series).
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Holonomy via the finite group
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Holonomy via the finite group: an example

The polynomial χS =
∑

(i ,j)∈S x i y j = x + 1
x + y + 1

y

is left invariant under
(
x , y
)
,
(

1
x , y
)
,
(

1
x , 1

y

)
,
(
x , 1

y

)
.

The same holds for J(t; x , y) =
∑

(i ,j)∈S x i y j − 1/t.

J(t; x , y)x y tF (t ; x , y) = tx F (t ; x , 0) + ty F (t ; 0, y)− x y

−J(t; x , y) 1
x y tF (t ; 1

x , y) = −t 1
x F (t ; 1

x , 0)− ty F (t ; 0, y) + 1
x y

J(t; x , y) 1
x

1
y tF (t ; 1

x , 1
y ) = t 1

x F (t ; 1
x , 0) + t 1

y F (t ; 0, 1
y )− 1

x
1
y

−J(t; x , y)x 1
y tF (t ; x , 1

y ) = −tx F (t; x , 0)− t 1
y F (t; 0, 1

y ) + x 1
y

Summing up yields:∑
θ∈GS

(−1)θθ
[
xyt F (t; x , y)

]
=

−xy +
1

x
y− 1

x

1

y
+x

1

y

J(t; x , y)
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x F (t ; 1

x , 0)− ty F (t ; 0, y) + 1
x y

J(t; x , y) 1
x

1
y tF (t ; 1

x , 1
y ) = t 1

x F (t ; 1
x , 0) + t 1

y F (t ; 0, 1
y )− 1

x
1
y

−J(t; x , y)x 1
y tF (t ; x , 1

y ) = −tx F (t; x , 0)− t 1
y F (t; 0, 1

y ) + x 1
y

Summing up yields:∑
θ∈GS

(−1)θθ
[
xyt F (t; x , y)

]
=

−xy +
1

x
y− 1

x

1

y
+x

1

y

J(t; x , y)
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y tF (t ; x , 1

y ) = −tx F (t; x , 0)− t 1
y F (t ; 0, 1

y ) + x 1
y

Summing up yields:

[x>][y>]
∑
θ∈GS

(−1)θθ
[
xyt F (t; x , y)

]
=[x>][y>]

−xy +
1

x
y− 1

x

1

y
+x

1

y

J(t; x , y)

41/54



Holonomy via the finite group: an example
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x F (t ; 1
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y

Summing up yields:

xyt F (t; x , y) = [x>][y>]

−xy +
1

x
y− 1

x

1

y
+x

1

y

J(t; x , y)
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The 19 transcendental holonomic cases

Theorem [Bousquet-Mélou & Mishna, 2009]
Let S be one of the 19 step sets with finite group GS, and such
that the generating series F = FS(t; x , y) is not algebraic. Then:

xyt F (t; x , y) = [x>][y>]

∑
θ∈GS

(−1)θ · θ
(
xy
)

J(t; x , y)

In particular, F (t; x , y) is holonomic.

Proof : Use [Lipshitz’88] for positive parts of holonomic series.

If F (t; x , y), as a formal series in t, has its coefficients in Q(x)[y , 1
y

], then [y>]F (t; x , y) is algebraic. If in addition

[y>]F (t; x , y) as a formal series in t, has its coefficients in Q[x , 1
x

, y ], then [x>][y>]F (t; x , y) is holonomic.

. Constructive proof, but it leads to a highly inefficient algorithm.
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Explicit expressions for the 19 holonomic cases

Theorem [B.-Chyzak-Van Hoeij-Kauers-Pech, 2011]

Let S be one of the 19 step sets with finite group GS, and such
that the generating series F = FS(t; x , y) is not algebraic.
Then F is expressible using iterated integrals of 2F1 expressions.

Sketch of the approach

1. (BM&M) If R =
∑
θ

(−1)θ θ(xy)
J(t;x ,y)

, then F = Resu (Resv H), for H = R(t;1/u,1/v)
(1−xu)(1−yv)

.

2. If P ∈ Q(x , y)[t]〈∂t〉 and U, V ∈ Q(x , y , u, v , t) such that L(H) = ∂uU + ∂v V ,
then L(F (t; x , y)) = 0 −→ Chyzak’s creative telescoping for finding L.

3. Factor L as L(2) · L(1)
1 · · · L

(1)
t , then solve L(2) in terms of 2F1s, and deduce F .
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Proofs of non-holonomy
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A historical example

Knight walks: S = {(−1, 2), (2,−1)}

am,n =


0 if m < 0 or n < 0

1 if m = n = 1

am+1,n−2 + am−2,n+1 otherwise

Theorem [Bousquet-Mélou & Petkovsek’03] The generating series

F (x , y) =
∑

m,n≥0

am,nxmy n is not holonomic.

. Key argument: F (x , 0) has infinitely many singularities.
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A historical example

am,n =

{
am+1,n−2 + am−2,n+1 − am−1,n−1 if m, n ≥ 2

−δ(m,n),(1,1) if m ≤ 1 or n ≤ 1

The series F (x , y) =
∑

m,n≥2 am,nxm−2y n−2 satisfies

(x−y 2)(y−x2)F (x , y)=xy−G (x)−G (y), for G (x)=
∑
m≥2

am,2xm+1

=⇒ x3 − G (x)− G (x2) = 0 =⇒ G (x) =
∑
i≥0

(−1)i x3·2i

. G is lacunary, thus it is not holonomic, and so is F . 47/54



Algorithmic proof of non-holonomy
[B., Raschel & Salvy 2012]

Two ingredients:
1. Asymptotics of excursions:

[tn] FS(t; 0, 0) ∼ K · ρn · nα,

where

I α = −1− π/ arccos(−c)

I c and ρ are algebraic numbers depending on S

(implied by a recent probability result [Denisov & Wachtel 2011])

2. If FS(t; 0, 0) is holonomic, then it is a G-function, and α ∈ Q
(implied by deep number theory results [Chudnovsky-André-Katz])
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48/54



Algorithmic proof of non-holonomy
[B., Raschel & Salvy 2012]

Two ingredients:
1. Asymptotics of excursions:

[tn] FS(t; 0, 0) ∼ K · ρn · nα,

where

I α = −1− π/ arccos(−c)

I c and ρ are algebraic numbers depending on S

(implied by a recent probability result [Denisov & Wachtel 2011])

2. If FS(t; 0, 0) is holonomic, then it is a G-function, and α ∈ Q
(implied by deep number theory results [Chudnovsky-André-Katz])

48/54



Algorithmic proof of non-holonomy
[B., Raschel & Salvy 2012]

Irrationality of arccos(c)/π is proven algorithmically in two steps:

(S1) determine the minimal polynomial, µc , of c

(S2) prove that the numerator of µc

(
x2+1

2x

)
contains no

cyclotomic polynomial factor.

. The algorithm proves that F (t; 0, 0) is non holonomic (and thus
so is F (t; x , y)) for the 51 non-singular walks with infinite group.
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The algorithm on the example

S = �?@R
�-@6�

> S:=[[-1,0],[0,1],[1,0],[1,-1],[0,-1]]:

> chi:=add(x^s[1]*y^s[2],s=S);

χ :=
1

x
+

1

y
+ x + y +

x

y

> chi_x:=numer(diff(chi,x));chi_y:=numer(diff(chi,y));

χx := x2 + x2y − y , χy := y2 − x − 1.

> G:=Groebner[Basis]([chi_x,chi_y, numer(t^2-

diff(chi,x,y)^2/diff(chi,x,x)/diff(chi,y,y))],lexdeg([x,y],[t])):

> p:=factor(op(remove(has,G,{x,y})));

p := (4t2 + 1)(8t3 + 8t2 + 6t + 1)(8t3 − 8t2 + 6t − 1).

The polynomial p has only two real roots, ±c. Numerical evaluation of c identifies its
minimal polynomial as µc = 8t3 + 8t2 + 6t + 1

mu_c:=8*t^3+8*t^2+6*t+1:

R:=expand(x^3*subs(t=(x^2+1)/x/2, mu_c),sort);

R(x) = x6 + 2x5 + 6x4 + 5x3 + 6x2 + 2x + 1.

> irreduc(R),numtheory[iscyclotomic](R,x);

true, false
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Summary

, 2D classification of F (t; 0, 0) and F (t; x , y) is fully completed
, robust algorithmic methods:

• Guess’n’Prove approach based on modern CA algorithms
• Creative Telescoping for integration of rational functions

, Brute-force and/or use of naive algorithms = hopeless.
E.g. size of algebraic equations for G (t; x , y) ≈ 30Gb.

, Remarkable properties discovered experimentally. E.g.:
all algebraic cases have solvable Galois groups

G(t; 1, 1) = − 3

6t
+

√
3

6t

√√√√U(t) +

√
16t(2t + 3) + 2

(1− 4t)2U(t)
− U(t)2 + 3

where U(t) =
√

1 + 4t1/3(4t + 1)1/3/(4t − 1)4/3.

/ lack of “purely human” proofs for many results. E.g.:
non-holonomy of F (t; 0, 0) and 2F1s expressions for F (t; x , y)

/ still missing a unified proof of: finite group ↔ holonomic
/ open: is F (t; 1, 1) non-holonomic in the 51 non-singular cases

with infinite group?
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Extensions

1. Longer 2D steps [B., Bousquet-Mélou & Melczer, in progress]

• 680 step sets with one large step, 643 proven non holonomic,
32 of 37 have differential equations guessed.

• 5910 step sets with two large steps, 5754 proven non
holonomic, 69 of 156 have differential equations guessed.

2. 3D walks [B., Bousquet-Mélou, Kauers & Melczer, in progress]

• 83 682 with 5 steps or less: B. and Kauers (2009) conjectured
(up to equivalence) 35 holonomic steps. Now proved.

• With 6 steps, 96 new holonomic cases: guessed, then proved.

• New phenomenon (empirically discovered, no proof yet): ∃ step
sets (3D Kreweras) with finite group and non-holonomic GF?!
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Thanks for your attention!
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