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Why Lattice Paths?

Applications in many areas of science

probability theory (branching processes, games of chance, ...)
operations research (queueing theory, .. .)

discrete mathematics (permutations, trees, words, urns, .. .)
statistical physics (Ising model, ...)

Journal of Statistical Planning and Inference 140 (2010) 22372254

Contents lists available at ScienceDirect

Journal of Statistical Planning and Inference

journal homepage: www.elsevier.com/locate/jspi

A history and a survey of lattice path enumeration

Katherine Humphreys
‘Department of Mathematical Scences, Forida Atlantic Universiz, Boca Raton, FL 33431, USA

ARTICLE INEO ABSTRACT
Available online 21 January 2010 In celebration of the Sixth International Conference on Lattice Path Counting and
Keywords: Applications, it is beftting to review the history of lattice path enumeration and to
Lattice path survey how the topic has progressed thus far.

Reflection principle We start the history with early games of chance specifically the ruin problem which
Method of images later appears as the ballot problem. We discuss André's Reflection Principle and its

‘misnomer, its relation with the method of images and possible origins from physics and
Brownian motion, and the earliest evidence of lattice path techniques and solutions.
In the survey, we give representative articles on lattice path enumeration found in
the literature in the last 35 years by the lattice, step set, boundary, characteristics
counted, and solution method. Some of this work appears in the author's 2005
dissertation.
© 2010 Elsevier BV. All rights reserved.
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Why Computer Algebra?

Because we like it!

Modern Computer Algebra

ur Gathen and )i

- - Rk L.
|
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Available online at www.sciencedirect.com
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MATHEMATICS

Discrete Mathematics 306 (2006) 9921021

www.elsevier.com/locate/disc

Combinatorial aspects of continued fractions
P. Flajolet

IRIA, 78150 Rocquencourt, France

Abstract
‘We show that the universal continued fraction of the Stieltjes-Jacobi type is equivalent ic series of
in the plane. Th holds in the set of series in Using it, we derive di

proofs of continued fraction expansions for series involving known combinatorial quantities: the Catalan numbers, the Bell and

Suvlmg numbers, the tangen and sccant numbers, the Euler and Eulerian numbers. ... We also show combinatorial interpretations
f the elliptic functions, inverses of the Tehebycheff, Charlier, Hermite, Laguerre and Meixner

pulynumu.ls Other applications include cycles of binomial coefficients and inversion formulae. Most of the proofs follow from

direct geometrical correspondences between objects.

© 1980 Published by Elsevier B.V.

THE EVOLUTION OF TWO STACKS IN BOUNDED SPACE
AND
RANDOM WALKS IN A TRIANGLE

Philippe FLAJOLET
INRIA

Rocquencourt
78150 Le Chesnay (France)
ABSTRACT

We analyse a simple storage allocation scheme in which two stacks
grow and shrink inside a shared memory area. To that purpose, we
provide analytic expressions for the number of 2-dimensional random
walks in a triangle with two reflecting barriers and one absorbing bar-
rier.

We obtain ili and i of

parameters of that shared memory scheme, namely the sizes of the
stacks and the time until the system runs out of memory.

This provides a complete solution to an open problem posed by Knuth
in “The Art of Computer Programming", Vol. 1, 1968 [Ex. 2.2.2.13).
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Theoretical Computer Science 49 (1987) 283-309
North-Holland

ANALYTIC MODELS AND AMBIGUITY OF
CONTEXT-FREE LANGUAGES*

Philippe FLAJOLET
INRIA, Rocquencourt, 78150 Le Chesnay Cedex, France

Abstract. We establish that several classical context-free languages are inherently ambiguous by
proving that their counting generating funcuom when considered as analytic functions, exhibit
To that purpose, we survey some general
results on clementary analytic properties and enumerative uses of algebraic functions in relation
to formal languages. In particular, the paper contains a general density theorem for unambiguous

some istic form of

context-free languages.

Adv. Appl. Prob. 32,750-778 (2000)
Printed in Northern Ireland
© Applied Probability Trust 2000

283

THE FORMAL THEORY OF BIRTH-AND-DEATH
PROCESSES, LATTICE PATH COMBINATORICS
AND CONTINUED FRACTIONS

PHILIPPE FLAJOLET,* INRIA
FABRICE GUILLEMIN,** France Telecom

Abstract
Clasic works f Karlin and MeGregor and Jones and Magnus have eslahhsh:d ageneral
inued frac-
tions of the Suelljcs—lucobl type together with their associated onhogoml polyncnma.ls.

weighted lattice paths and continued fractions otherwise known from combinatorial
theory.  Given that sample paths of the embedded Markov chain of a birth-and-death
process are lattice paths, Laplace transft a number of transient

be obtained systematically in terms of a fundamental continued fraction and its family
of convergent polynomials. Applications include the analysis of evolutions in a strip,
uperossing and downcrossing times under flooring and ceiling conditions, as well as
time, area, or number of transitions while a geometric condition is satisfied.

Keywords: Lattice path combinatorics; continued fractions; orthogonal polynomials;
birth-and-death process; first passage time; excursions; transient characteristics.
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Theoretical
Computer Science

el
ELSEVIER ‘Theoretical Computer Science 281 (2002) 37-80

www.clsevier.com/locate/ics

Basic analytic combinatorics of
directed lattice paths

Cyril Banderier*, Philippe Flajolet
Algorithms Project, INRIA, Rocquencourt, 78150 Le Chesnay, France

Abstract

‘This paper develops a unified enumerative and asymptotic theory of directed two-dimensional
lattice paths in half-planes and quarter-planes. The lattice paths are specified by a finite st of
rules that are both time and space homogeneous, and have a privileged direction of increase.
(They are then essentially one-dimensional objects.) The theory relies on a specific “kemel
‘method” that provides an important decomposition of the algebraic generating functions involved,
as well as on a generic study of singularities of an associated algebraic curve. Consequences are
precise computable estimates for the number of lattice paths of a given length under various con-
straints (bridges, excursions, meanders) as well as a characterization of the limit laws associated
to several basic parameters of paths. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Lattce path; Analytic combinatorics; Kernel method; Singularity analysis; Generalized ballot
problem; Catalan numbers

Séminaire Lotharingien de Combinatoire 54 (2006), Article B54g

THE FERMAT CUBIC, ELLIPTIC FUNCTIONS, CONTINUED
FRACTIONS, AND A COMBINATORIAL EXCURSION

ERIC VAN FOSSEN CONRAD AND PHILIPPE FLAJOLET

Kindly dedicated to Gérard---Xavier Viennot on the occasion of his siatieth birthday.

AssTRACT. Eliptic functions considered by Dixon in the nineteenth century and re-
lated to Fermat’s cubic, z°+” = 1, lead to 2 new set of continued fraction expansions
with sextic numerators and cubic denominators. The functions and the fractions are
‘pregnant with interesting combinatorics, including a special Pélya urn, a continuous-
time branching process of the Yule type, as well as permutations satisfying vatious
constraints that involve either parity of levels of elements or a repetitive pattern of
order three. The combinatorial models are related to but different from models of
elliptic functions earlier introduced by Viennot, Flajolet, Dumont, and Frangon.
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The Anrals of Probabilty

2005, Vol. 33, No. 3, 1200-1233

DOI 10.1214/0091 1790000000026

© Institie of Mathematcal Statistics, 2005

Fourth Colloguium on Mathematics and Computer Science DMTCS proc. AG, 2006, 59-118

ANALYTIC URNS

BY PHILIPPE FLAJOLET, JOAQUIM GABARRO AND HELMUT PEKARI
Some exactly solvable models

INRIA R t, Universitat Politécnica de Catalunya and f th
Universitat Politécnica de Catalunya orurn process theory
This article describes a purely analyic approach to um models of the - . - .
or extended P6l type, in the case of fwo types Philippe Flajolet, Philippe Dumas, and Vincent Puyhaubert
of balls and constant 'balance," that is, constant row sum. The treatment Algorithms Project, INRIA, F-78153 Le Chesnay (France)

starts from a quasilinear first-order partial differential equation associated

with a combinatorial renormalization of the model and bases itself on ‘We establish a fundamental isomorphism between discrete-time balanced urn processes and certain ordinary differen-

elementary oonfon-nal mappmg arguments coupled with smgulanty analysis tial systems, which are nonlm=nr a\lwmmo\ls and of a simple monomial form. As a consequence, all balanced urn
technigues. in the case of uns are

. I~ o ™ functions re expressd in terms of cerin P integrals over curves of the Ferma type (which are also hyper-
new for the pr y of the urn’s ‘eometric functions), together with ther inverscs. A consequence is the unification of the analyses of many classical
at any time n, structural information on the shape of moments of all orders, ‘models, including those related 1o the coupon collector's problem, particle transfer (the Ehrenfest model), Friedman's
estimates of the speed of convergence to the Gaussian limit and an explicit “adverse campaign” and Polya's contagion model, as well as the OK Corral model (a basic case of Lanchester's theory

L N s N of conflcts). In each case, it is possible {0 quantify very preciscly the probable composition of the urn at any dis
determination of the associated large deviation function. In the general i “semi-sacrificial” urns, for which the lollwmg e obtinet: 8 Gausian g
well

case, analytic solutions involve Abelian integrals over the Fermat curve

by h— includi " N N Tegimes. Wo also work out cxpiily the cas of 2 dimensional gl i s o v e st
X"+ y" =1. Several um models, including a classical one associated with e are obained. A few models of dimension e or geater .2, “autistic” (generalized Polya), cyclic chambers
balanced trees (2-3 trees and fringe-balanced search trees) and related to a [¢ lized Ehrenfest), 1o be exactly solvable.

previous study of Panholzer and Prodinger, as well as all urns of balance
1 or 2 and a sporadic un of balance 3, are shown to admit of explicit

ions in terms of W 8 elliptic functions: these elliptic models
appear precisely to correspond to regular tessellations of the Euclidean plane.
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J. Symbolic Computation (1995) 20, 653671

Computer Algebra Libraries for Combinatorial
Structures

PHILIPPE FLAJOLET AND BRUNO SALVY
Algorithms Project, INRIA, 78153 Le Chesnay, France

(Received 29 December 1994)

This paper introduces the X inatorial structures and their
traversal algorithms. A combi type is if it admits i in
terms of unions, products, sequences, sets, and cycles, either in the labelled or in the un-
labelled context. Many properties of decomposable structures are decidable. Generating
function equations, counting sequences, and random generation algorithms can be com-
piled from specifications. Asymptotic properties can be determined automatically for a
reasonably large subclass. Maple libraries that implement such decision procedures are
briefly surveyed (LUD, coubstruct, equivalent). In addition, libraries for manipulating
holonomic sequences and functions are presented (gfun, Mgfun).

©1995 Acadenmic Press Limited

2 Icvlnc!@nlulcv< Journal of
Eas Symbolic
2 Computation
ELSEVIER Journal of Symbolic Computation 41 (2006) 1-29 —_—
wwwelseviercomfocateljsc

Fast computation of special resultants

Alin Bostan®*, Philippe Flajolet?, Bruno Salvy?, Eric Schost®
* Algorithms Project, Inria Rocquencourt, 78153 Le Chesnay, France
©LIX, Ecole polytechnique, 91128 Palaiseau, France

Received 3 Seplember 2003; accepted 9 July 2005
Available online 25 October 2005

Abstract

‘We propose fast algorithms for computing composed products and composed sums, as well as diamond
products of univariate polynomials. These operati d to special multivari that we
compute using power sums of roots of polynomials, by means of their generating serics.

© 2005 Elsevier Ltd. All rights reserved.

Keywonds: Diamond product; Composed product; Composed sum; Complexity; Tellegen's principle
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Context: enumeration of lattice walks

> Nearest-neighbor walks in the quarter plane N?; admissible steps
Gg{/y%l\yTy/‘l_)y\[y\l/}'

> G-walks = walks in N? starting at (0,0) and using steps in &.
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> fg(n;i,j) = number of G-walks ending at (7, ) and consisting of
exactly n steps.
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> G-walks = walks in N? starting at (0,0) and using steps in &.
> fg(n;i,j) = number of G-walks ending at (7, ) and consisting of
exactly n steps. Complete generating function
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Context: enumeration of lattice walks

> Nearest-neighbor walks in the quarter plane N?; admissible steps
Gg{/y%l\yTy/‘l_)y\[y\l/}'

> G-walks = walks in N? starting at (0,0) and using steps in &.
> fg(n;i,j) = number of G-walks ending at (7, ) and consisting of
exactly n steps. Complete generating function

Faltixy) = 3 ( 3 folmi by ) € Qe il
n=0 ij=0

Questions: Given &, what can be said about Fg(t; x, y)?
Structure? (algebraic / holonomic) Explicit form? Asymptotics?
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Context: enumeration of lattice walks

> Nearest-neighbor walks in the quarter plane N?; admissible steps
Gg{/y%l\y/ry/‘l_)y\[y\l/}'

> G-walks = walks in N? starting at (0,0) and using steps in &.
> fg(n;i,j) = number of G-walks ending at (7, ) and consisting of
exactly n steps. Complete generating function

Faltixy) = Y2(3 flmi )iyl €7 € Qlx L

n=0 ij=0

Questions: Given G, what can be said about Fg(t; x, y)?
Structure? (algebraic / holonomic) Explicit form? Asymptotics?

Fs(t;0,0) ~ counts G-walks returning to the origin (excursions);
Fs(t;1,1) ~ counts G-walks with prescribed length;
Fs(t;1,0) ~ counts G-walks ending on the horizontal axis.
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Small step sets in the quarter plane

& C {-1,0,1}*\ {(0,0)}

3

'

There are 28 such sets.
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Small step sets in the quarter plane

& C {-1,0,1}*\ {(0,0)}

Some of these 28 = 256 step sets are:

3

'

There are 28 such sets.

trivial,

simple,

intrinsic to
the half plane, ~ Symmetrical.
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Small step sets in the quarter plane

3 3

G C {-1,0,1}2\ {(0,0)} There are 28 such sets.

/ /

Some of these 28 = 256 step sets are:

intrinsic to

trivial, simple, the half plane, symmetrical.

Finally, there remain 79 inherently different cases!
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Two important cases: Kreweras and Gessel walks

S={l+«, " Fe(t;x,y) = K(t;x,y)

S={ "/ +. =} Fs(tix.y)=G(tixy)

Example: A Kreweras excursion.
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Important classes of univariate power series
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Important classes of univariate power series

Holonomic: S(t) € Q[[t]] satisfying a linear differential equation
with polynomial coefficients ¢,(t)S()(t) + - -- + co(t)S(t) = 0.
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Important classes of univariate power series

Holonomic: S(t) € Q[[t]] satisfying a linear differential equation
with polynomial coefficients ¢,(t)S()(t) + - -- + co(t)S(t) = 0.

Algebraic: S(t) € Q[[t]] root of a polynomial P € Q[t, T].
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Important classes of univariate power series

Holonomic: S(t) € Q[[t]] satisfying a linear differential equation
with polynomial coefficients ¢,(t)S()(t) + - -- + co(t)S(t) = 0.

Algebraic: S(t) € Q[[t]] root of a polynomial P € Q[t, T].
Hypergeometric: S(t) = 3, spt" such that 2t € Q(n). E.g.

a b = (a)a(b), t" B
2F1( c ’t)—ngo ©n A (a)ph=a(a+1)---(a+n—1).
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Important classes of multivariate power series

S € Q[[x, y, t]] is holonomic if the set of all partial derivatives of S
spans a finite-dimensional vector space over Q(x, y, t).
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Important classes of multivariate power series

S € Q[[x, y, t]] is holonomic if the set of all partial derivatives of S
spans a finite-dimensional vector space over Q(x, y, t).

S € Q[[x, y, t]] is algebraic if it is the root of a P € Q[x, y, t, T].
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Main results (1): algebraicity of Gessel walks

Theorem [Kreweras 1965; 100 pages combinatorial proof!]

ooy e (132315 4G
K(t'o'o)_f‘F?( 3/2 2 ’27t>_n:0(n+1)(2n+1)t '
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Main results (1): algebraicity of Gessel walks

Theorem [Kreweras 1965; 100 pages combinatorial proof!]

1/3 2/3 1 S 4 "
K(t;0,0)=3F2< /3/2/2 2”3) :z_:o("+1)523+1)t3 '

Theorem [Gessel's conjecture; Kauers, Koutschan, Zeilberger 2009]

G(t;o,0)=3F2<5/§/31/22 1 16t2> 2(55/3 15 (4t)%"
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Main results (1): algebraicity of Gessel walks

Theorem [Kreweras 1965; 100 pages combinatorial proof!]

k(10,0 =22V 25,

Theorem [Gessel's conjecture;

c1:0.0)= (35 12

27 t3> — i 4" (3nn) t3n
— (n+1)(2n+1)
Kauers, Koutschan, Zeilberger 2009]

2 5 12 2n
16t) 2(5/3 é)n (4t)

Question: What about K(t; x, y) and G(t;x,y)?

Theorem [Gessel'86, Bousquet-Mélou'05] K (t; x, y) is algebraic.

> G(t; x,y) had been conjectured to be non-holonomic.
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Main results (1): algebraicity of Gessel walks

Theorem [Kreweras 1965; 100 pages combinatorial proof!]

1/3 2/3 1 S 4 "
K(t;0,0)=3F2< /3/2/2 2”3) :z_:o("+1)523+1)t3 '

Theorem [Gessel's conjecture; Kauers, Koutschan, Zeilberger 2009]

G(t;o,0)=3F2<5/§/31/22 1 16t2> 2(55/3 15 (4t)%"

Question: What about K(t; x, y) and G(t;x,y)?

Theorem [Gessel'86, Bousquet-Mélou'05] K (t; x, y) is algebraic.
> G(t; x,y) had been conjectured to be non-holonomic.
Theorem [B. & Kauers'10] G(t; x, y) is holonomic, even algebraic.

> Computer-driven discovery and proof; no human proof yet.
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Main results (1): algebraicity of Gessel walks

Theorem [Kreweras 1965; 100 pages combinatorial proof!]
1/3 2/3 11,3 S () 3
K(t;0,0) = 3F; 27t | = < ",
(£:0,0) 32( 3/2 2 > nz:(:)(n+1)(2n+1)
Theorem [Gessel's conjecture; Kauers, Koutschan, Zeilberger 2009]

G(t;o,o)—an<5/g/31/22 1 16t2> 2(55/3) lg (4t)%"

Question: What about K(t;x,y) and G(t; x,y)?

Theorem [Gessel'86, Bousquet-Mélou'05] K(t; x, y) is algebraic.
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Main results (1): algebraicity of Gessel walks

Theorem [Kreweras 1965; 100 pages combinatorial proof!]
3n
1/3 2/3 11,3 S 4" () 3
K(t;0,0) = 3F; 27t | = < ",
(£:0,0) =3 2( 3/2 2 > nz:(:)(n+1)(2n+1)
Theorem [Gessel's conjecture; Kauers, Koutschan, Zeilberger 2009]

G(t;o,o)—an<5/g/31/22 1 16t2> 2(55/3) lg (4t)%"

Question: What about K(t;x,y) and G(t; x,y)?

Theorem [Gessel'86, Bousquet-Mélou'05] K(t; x, y) is algebraic.
> G(t; x,y) had been conjectured to be non-holonomic.

Theorem [B. & Kauers'10] G(t; x, y) is holonomic, even algebraic.
> Fresh news: human proof just announced [B., Kurkova, Raschel].
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Main results (I1): Explicit form for G(t;x,y)

Theorem Let V =1+ 4t% + 36t* +396t° + - - - be a root of
(V —1)(1+3/V)® = (161)?
let U =1+ 2t2+16t* 4 2xt° + 2(x*> 4 83)t° + - - - be a root of
x(V = 1)(V 4+ 1)U = 2V(3x + 5xV — 8Vt)U?
—xV(V? =24V —9)U +2V?(xV — 9x — 8Vt) = 0,
let W = t?+ (y +8)t* +2(y? + 8y +41)t5 + - - be a root of
y(I = VIW3 4+ y(V+3)W? —(V+3)W +V —1=0.

Then G(t; x, y) is equal to

64(U(V+1)—2V)Vv3/2 y(W—1)*(1—Wy)v—3/2
x(P=V(UP=8U+9-V)? — t(y+D)(A-W)(W2y+1)2 1

(1+y+x2y +x2y2)t — xy tx(y +1)

> Computer-driven discovery and proof; no human proof yet.
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Main results (I1): Explicit form for G(t;0,0)

Theorem Let V =1+ 4t2 + 36t* 4 396t° + - - - be a root of
(V —1)(1+3/V)® = (16t)2.
V246V —3

Then G(t;0,0) is equal to 4\/32/:2

-1
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Main results (I1): Explicit form for G(t;0,0)

Theorem Let V =1+ 4t2 + 36t* 4 396t° + - - - be a root of
(V —1)(1+3/V)® = (16t)2.
V246V —3

4V3/2
2t2

-1

Then G(t;0,0) is equal to

De : Philippe Flajolet
Objet : Rép:cayest..
Date : 7 aoQt 2008 09:49:21 HAEC
A: Alin Bostan
Cc : Bruno Salvy , Philippe Flajolet

La courbe P(x,y)=0 est de genre 0 et possede une merveilleuse
parametrisation rationnelle:

o = —(t-1)*(tA2-t+ DA [(tA2*(t-2)A6), y = t¥(tA3-2)*(t-2)A3 [((t-1)*(tA2-t+ 1)A3);

Y a de la structure....

Phil e



Main results (l11): Experimental classification of walks

with holonomic Fg(t;1,1) [B. & Kauers 2009]

OEIS Tag Sample step set Equation sizes OEIS Tag Sample step set Equation sizes
A000012 e 1,0 1,1 | 1,1 A000079 e 1,0 1,1 | 1,1
A001405 2,1 | 23 | 22 A000244 L0 | 1,1 | 11
A001006 2,1 2,3 2,2 A005773 2,1 2,3 2,2
A126087 31 | 25 | 22 A151255 . 6,8 | 416 | -
A151265 6,4 | 49 | 68 A151266 i 7,10 | 5,16 | -
A151278 7.4 | 412 | 6,8 A151281 31 2,5 | 22
A005558 2,3 | 35 - A005566 2,2 | 3,4 -
A018224 2,3 | 35 - A060899 2,1 2,3 | 22
A060900 23 | 35 |89 A128386 31 | 25 |22
A129637 31 | 25 | 22 A151261 58 | 415 | -
A151282 31 2,5 2,2 A151291 6, 10 5,15 -
A151275 9,18 | 524 | - A151287 7,11 | 5,19 | -
A151292 3,1 2,5 2,2 A151302 9,18 | 5,24 -
A151307 8,15 | 520 | - A151318 2,1 2,3 | 22
A129400 2,1 2,3 2,2 A151297 7,11 5,18 -
A151312 4,5 | 3,8 - A151323 2,1 2,3 | 44
A151326 7,14 5,18 - A151314 9,18 5,24 -
A151329 9,18 | 524 | - A151331 3.4 | 36 -

> Computer-driven; confirmed by human proofs in [Bousquet-Mélou & Mishna, 2010].

Equation sizes = {order, degree}(rec, diffeq, algeq).
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Experimental classification of walks

with holonomic Fg(t;1,1)

OFIS Tag | Steps |  Equation sizes Asymptotics OFIS Tag | Steps |  Equation sizes Asymptotics
aoooor2 | T Lo | L1 | 1 4000079 | °T Lo | 1 | on
. 3 o .
A001405 21 | 23 |22 1_‘[] A000244 Sl nr 3n
A001006 | +%0 | 21 | 23 |22 d‘/f _ Ao0s773 | STl 2 | 23 |22
PYOEEE
oo 12v2 2%7/2 .
Ae0s7 | 40| a1 | 25 |22 % A151255 | Do | 68 | 416 | -
3
. 2v32 30 .
Ats126s | .0 | 64 | 49 |68 “?L Als1266 | + 2 | 710 | 516 | -
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> Computer-driven; recent human proofs of asymptotics by [Fayolle & Raschel, 2012].
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The group of a walk: an example

- , 1 1
The characteristic polynomial xs =x+ —+y + —
X y
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The group of a walk: an example

, 1 1.
The characteristic polynomial xg =x+ —+y+ — s left
X y

invariant under

T O R SR (L
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The group of a walk: an example

- , 1 1.
The characteristic polynomial xg =x+ —+y+ — s left
X y

invariant under

T O R SR (L

and thus under any element of the group

(1, 6) = {(x,y), <x, i) (i i) Cy)}
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The group of a walk: the general case

The polynomial xg : Z x'yl = Z (y)Xi: Z Aj(X)yj

(ij)e6 i=—1 j=-1
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The group of a walk: the general case

The polynomial xg : Z x'yl = Z (y)x'z Z Aj(X)yj

(iJ)ES i=—1 Jj==
is left invariant under

v = (5590 atan = (51L),
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The group of a walk: the general case

The polynomial xg : Z x'yl = Z (y)xi = Z Aj(X)yj

(iJ)ES i=—1 Jj==
is left invariant under

v = (5590 atan = (51L),

and thus under any element of the group

Gs == (¥, 9).
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Examples of groups of walks

Order 4,
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Examples of groups of walks

Order 4, order 6,

19/54



Examples of groups of walks

Order 4, order 6, order 8,
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Examples of groups of walks

Order 4, order 6, order 8, order oco.
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The 79 cases: finite and infinite groups

79 step sets
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The 79 cases: finite and infinite groups
23 admit a finite group
[Mishna’'07]

79 step sets

56 have an infinite group
[Bousquet-Mélou-Mishna'10]
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The 79 cases: finite and infinite groups
all are holonomic
19 transcendental
23 admit a finite group/ [Gessel-Zeilberger'92]
[Mishna’'07] [Bousquet-Mélou'02]

\ 4 are algebraic

3 Kreweras-type 4+ Gessel
Y
[B.-Kauers'10]

79 step sets

56 have an infinite group
[Bousquet-Mélou-Mishna'10]
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The 79 cases: finite and infinite groups

all are holonomic

19 transcendental
23 admit a finite group/ [Gessel-Zeilberger'92]

[Mishna’'07]

[Bousquet-Mélou’02]

\ 4 are algebraic

3 Kreweras-type 4+ Gessel
Y
[B.-Kauers'10]

79 step sets

56 have an infinite group — all non-holonomic
[Bousquet-Mélou-Mishna'10] e [Mishna-Rechnitzer'07] and

[Melczer-Mishna'12] for 5 singular cases
e [Kurkova-Raschel'12] and
[B.-Raschel-Salvy’12] for all others
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The 23 cases with a finite group

(i) 16 with a vertical symmetry, and group isomorphic to D,

A RKHOOE RO AGK
HAHAHA

(i) 5 with a diagonal or an anti-diagonal symmetry, and group
isomorphic to Dj

AOKAH K

(iii) 2 with group isomorphic to Dy

AV

In red, cases with algebraic generating functions

(ii)+(iii): zero drift Z s

se6
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Main results (IV): explicit expressions

for the 19 holonomic transcendental cases

Theorem [B.-Chyzak-Van Hoeij-Kauers-Pech, 2011]

Let G be one of the 19 step sets with finite group Gg, and such
that the generating series F = Fg(t; X, y) is not algebraic.
Then F is expressible using iterated integrals of »F; expressions.
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Main results (IV): explicit expressions

for the 19 holonomic transcendental cases

Theorem [B.-Chyzak-Van Hoeij-Kauers-Pech, 2011]

Let G be one of the 19 step sets with finite group Gg, and such
that the generating series F = Fg(t; X, y) is not algebraic.
Then F is expressible using iterated integrals of »F; expressions.

Example (King walks in the quarter plane, A025595)

F%(t;l,l)_ifotm.ﬂ:l(gzg 16X(1+X))d

(=g

=1+ 3t + 18> + 105t3 + 684t* + 4550¢> + 31340t° + 219555¢7 + - - -
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Main results (IV): explicit expressions

for the 19 holonomic transcendental cases

Theorem [B.-Chyzak-Van Hoeij-Kauers-Pech, 2011]

Let G be one of the 19 step sets with finite group Gg, and such
that the generating series F = Fg(t; X, y) is not algebraic.
Then F is expressible using iterated integrals of »F; expressions.

Example (King walks in the quarter plane, A025595)

%(t;l,l)_ifotm.ﬁ@zz 16x<1+x))d

(1 + 4x)2
=1+ 3t + 18> + 105t3 + 684t* + 4550¢> + 31340t° + 219555¢7 + - - -

> Computer-driven discovery and proof; no human proof yet.

> Proof uses creative telescoping, ODE factorization, ODE solving.
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Main results (V): algorithmic proof of non-holonomy

for the 51 non-singular cases with infinite group

Theorem [B.-Rachel-Salvy, 2012]

Let & be one of the 51 step sets with infinite group Gg, and such
that the excursions series Fg(t;0,0) is not equal to 1.
Then Fg(t;0,0), and in particular Fg(t; x, y), are non-holonomic.
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Main results (V): algorithmic proof of non-holonomy

for the 51 non-singular cases with infinite group

Theorem [B.-Rachel-Salvy, 2012]

Let & be one of the 51 step sets with infinite group Gg, and such
that the excursions series Fg(t;0,0) is not equal to 1.
Then Fg(t;0,0), and in particular Fg(t; x, y), are non-holonomic.

> Algorithmic, computer-driven, proof. Uses Grobner basis
computations, polynomial factorization, cyclotomy testing.
> Based on two ingredients: asymptotics + irrationality.

> [Kurkova & Raschel 2012] Alternative proof of Fg(t; x, y) is

non-holonomic. No human proof yet for Fs(t;0,0) non-holonomic.

23/54



The 56 cases with infinite group

AKX
AR KKK K
AR AKX
HRAE R AKX
AR KO K
RRKKK

In blue, non-singular cases, solved by [B., Raschel & Salvy, 2012]
In red, singular cases, solved by [Melczer & Mishna 2012]
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Summary — classification of 2D non-singular walks

The Big Theorem Let G be one of the 74 non-singular step sets.
The following assertions are equivalent:

(1) The full generating series F(t; x,y) is holonomic

2) the excursions generating series F(t;0,0) is holonomic

3) the excursions seq. [t"] Fg(t;0,0) is ~ K- p" - n®, with a € Q

4) the group Gg is finite (and |Gg| = 2 - min{¢ € N*| 0#1 €Z})
)

5) the step set G has either an axial symmetry, or a zero drift

(
(
(
(
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Summary — classification of 2D non-singular walks

The Big Theorem Let G be one of the 74 non-singular step sets.
The following assertions are equivalent:

(1) The full generating series F(t; x,y) is holonomic

(2) the excursions generating series Fg(t;0,0) is holonomic

(3) the excursions seq. [t"] Fs(t;0,0) is ~ K- p"-n®, with a € Q
(4) the group Gg is finite (and |Gg| = 2 - min{¢ € N*| 0#1 €Z})
(5) the step set G has either an axial symmetry, or a zero drift

Moreover, under (1)—(5), Fs(t; x, y) is algebraic if and only if the

step set G has positive covariance Z Ij — Z I Z j>0
(ij)e6 (i))e&  (ij)ed
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Summary — classification of 2D non-singular walks

The Big Theorem Let G be one of the 74 non-singular step sets.
The following assertions are equivalent:

(1) The full generating series F(t; x,y) is holonomic

(2) the excursions generating series Fg(t;0,0) is holonomic

(3) the excursions seq. [t"] Fs(t;0,0) is ~ K- p"-n®, with a € Q
(4) the group Gg is finite (and |Gg| = 2 - min{¢ € N*| 0#1 €Z})
(5) the step set G has either an axial symmetry, or a zero drift

Moreover, under (1)—(5), Fs(t; x, y) is algebraic if and only if the
step set G has positive covariance Z Ij — Z I Z j>0

(iJ)e6 (ij)e6  (ij)e6

In this case, Fs(t; x, y) is expressible using nested radicals. If not,

Fs(t; x, y) is expressible using iterated integrals of F; expressions.
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Main methods

(1) for proving non-holonomy

(1a) Infinite number of singularities, or lacunary
(1b) Asymptotics

(2) for proving holonomy

(2a) Diagonals, or positive parts, of rational functions
(2b) Guess'n'Prove
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Main methods

(1) for proving non-holonomy

(1a) Infinite number of singularities, or lacunary
(1b) Asymptotics

(2) for proving holonomy

(2a) Diagonals, or positive parts, of rational functions
(2b) Guess'n'Prove

> All methods are algorithmic.
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Methodology for proving algebraicity
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Methodology for proving algebraicity

Experimental mathematics —Guess'n'Prove— approach:

(S1) high order expansion of the generating series Fg(t; x,y);
(S2) guessing candidates for minimal polynomials of Fg(t; x, 0)
and Fs(t;0,y), based on Hermite-Padé approximation;

(S3) rigorous certification of the minimal polynomials, based on
(exact) polynomial computations.
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Step (S1): high order series expansions

fs(n; i, j) satisfies the recurrence with constant coefficients

fs(n+1;i,j)= Z fs(n;i—u,j—v) for ni,j>0
(u,v)e6

+ init. cond. fs(0;1,)) = do,;j and fs(n; —1,j) = fs(n;i,—1) = 0.
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Step (S1): high order series expansions

fs(n; i, j) satisfies the recurrence with constant coefficients
fs(n+1;i,j) = Z fs(n;i—u,j—v) for n,i,j>0
(u,v)EG
+ init. cond. f5(0;1/,j) = do,ij and fg(n; —1,j) = fs(n;i,—1) = 0.
Example: for the Kreweras walks, |
k(n+1;i,j)=k(nmi+1,)) *
+ k(n;i j+1) -
Fk(ni—1,j—1)
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Step (S1): high order series expansions

fs(n; i, j) satisfies the recurrence with constant coefficients
fs(n+1;i,j) = Z fs(n;i—u,j—v) for n,i,j>0
(u,v)EG
+ init. cond. f5(0;1/,j) = do,ij and fg(n; —1,j) = fs(n;i,—1) = 0.
Example: for the Kreweras walks, |
k(n+1;i,j)=k(nmi+1,)) *
+ k(n;i j+1) -
Fk(ni—1,j—1)

> Recurrence is used to compute Fg(t;x, y) mod t" for large N.

K(t;x,y) =1+ xyt + (Py%2 +y + x)t2 + (3y3 + 2xy? + 2x%y + 2)¢3
+ (XA'y4 + 3x2y3 + 3x3y2 + 2y2 + 6xy + 2x2)t4
+ (x5y5 + 43yt + 4ax*y® + 5xy3 4+ 12x%y2% 4+ 5x3y + 8y + 8x)t° +
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Step (S2): guessing equations for Fs(t; x, y), a first idea

In terms of generating series, the recurrence on k(n; i, ) reads

(v = (x +y +x2y2)t)K(t: x, y)
=xy —xt K(t;x,0) — yt K(t;0, y) (KerEq)

> This kernel equation can be seen as a multivariate analogue of

(1—t—t?)- Zént" =1, where ¢, are the Fibonacci numbers.
n>0

> A similar kernel equation holds for Fg(t; x, y), for any &-walk.

Corollary. Fg(t; x,y) is holonomic (resp. algebraic) if and only if
Fs(t; x,0) and Fg(t; 0,y) are both holonomic (resp. algebraic).

> Crucial simplification: equations for G(t; x, y) are huge (~30Gb)
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Step (S2): guessing equations for Fg(t; x,0)& Fg(t;0, y)

Task 1: Given the first N terms of S = Fg(t; x,0) € Q[x][[¢]],
search for a differential equation satisfied by S at precision N:

S S
Ly0(S) = c(x, t)-ﬁjb e (x, t)-ajtco(x, t)-S = 0 mod tV.
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Step (S2): guessing equations for Fg(t; x,0)& Fs(t; 0, y)

Task 1: Given the first N terms of S = Fg(t; x,0) € Q[x][[¢]],
search for a differential equation satisfied by S at precision N:

r

EX,O(S) = CI’(X' t) atr 8t

Task 2: Search for an algebraic equation Py o(S) =0 mod tV.

+-+al(x, t)-§+co(x, t)-S = 0 mod tV.
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Step (S2): guessing equations for Fg(t; x,0)& Fg(t;0, y)

Task 1: Given the first N terms of S = Fg(t; x,0) € Q[x][[¢]],
search for a differential equation satisfied by S at precision N:

r

Ly0(S) = c(x, ) (89 — 4 ta(x t)- ?jtco(x t)-S = 0 mod tV.
Task 2: Search for an algebraic equation Pxo(S) =0 mod tV.

» Both tasks amount to linear algebra in size N over Q(x).

» In practice, we use modular Hermite-Padé approximation
(Beckermann-Labahn algorithm) combined with (rational)
evaluation-interpolation and rational number reconstruction.

» Fast (FFT-based) arithmetic in Fp[t] and Fp[t](;).
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Step (S2): guessing equations for G(t; x,0) and G(t;0, y)

Using N = 1200 terms of G(t; x, y), we guessed candidates
> Pyo in Z[x, t, T] of tridegree (32,43, 24), 21 digits coefficients
»Po,y in Zly, t, T] of tridegree (40, 44, 24), 23 digits coefficients

such that
Pro(x,t, G(t;x,0)) = Poy(y. t, G(t;0,y)) = 0 mod t12%.

Tof order 11, and bidegree (96, 78) for G(t; x,0), and (68, 28) for G(t;0, y)
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Step (S2): guessing equations for G(t; x,0) and G(t;0, y)

Using N = 1200 terms of G(t; x, y), we guessed candidates

> Pyo in Z[x, t, T] of tridegree (32,43, 24), 21 digits coefficients
»Po,y in Zly, t, T] of tridegree (40, 44, 24), 23 digits coefficients

such that
Pro(x,t, G(t;x,0)) = Poy(y. t, G(t;0,y)) = 0 mod t12%.

> We actually first guessed differential equations®, then computed
their p-curvatures to empirically certify them. This led to suspect
the algebraicity of G(t;x,0) and G(t;0, y), using a conjecture of
Grothendieck (on differential equations modulo p) as an oracle.

Tof order 11, and bidegree (96, 78) for G(t; x,0), and (68, 28) for G(t;0, y)
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Step (S2): guessing equations for G(t; x,0) and G(t;0, y)

Using N = 1200 terms of G(t; x, y), we guessed candidates

> Pyo in Z[x, t, T] of tridegree (32,43, 24), 21 digits coefficients
»Po,y in Zly, t, T] of tridegree (40, 44, 24), 23 digits coefficients

such that
Pro(x,t, G(t;x,0)) = Poy(y. t, G(t;0,y)) = 0 mod t12%.

> We actually first guessed differential equations®, then computed
their p-curvatures to empirically certify them. This led to suspect
the algebraicity of G(t;x,0) and G(t;0, y), using a conjecture of
Grothendieck (on differential equations modulo p) as an oracle.

> Guessing Py o by undetermined coefficients would require solving
a dense linear system of size ~ 100000, and = 1000 digits entries!

Tof order 11, and bidegree (96, 78) for G(t; x,0), and (68, 28) for G(t;0, y)
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Step (S3): warm-up — Gessel excursions are algebraic

(1/2)n
Theorem  G(t;0,0) Z (55/3) é) (4t)®" s algebraic.
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Step (S3): warm-up — Gessel excursions are algebraic

(1/2)n
Theorem  G(t;0,0) Z (55/3) é) (4t)®" s algebraic.

Proof: Guess a polynomial P(t, T) in Q[t, T], then prove that P
admits the power series g(t) = G(1/1;0,0) = > gnt" as a root.
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Step (S3): warm-up — Gessel excursions are algebraic

(1/2)n
Theorem  G(t;0,0) Z (55/3) é) (4t)®" s algebraic.

Proof: Guess a polynomial P(t, T) in Q[t, T], then prove that P
admits the power series g(t) = G(1/1;0,0) = > gnt" as a root.

33/54



Step (S3): warm-up — Gessel excursions are algebraic

(1/2)n

5/3) @, (4t)>" is algebraic.

Theorem  G(t;0,0) Z (5/6

Proof: Guess a polynomial P(t, T) in Q[t, T], then prove that P

admits the power series g(t) = G(1/1;0,0) = > gnt" as a root.

1. Such a P can be guessed from the first 100 terms of g(t).
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Step (S3): warm-up — Gessel excursions are algebraic

(1/2)n

5/3) @, (4t)>" is algebraic.

Theorem  G(t;0,0) Z (5/6

Proof: Guess a polynomial P(t, T) in Q[t, T], then prove that P

admits the power series g(t) = G(1/1;0,0) = > gnt" as a root.

1. Such a P can be guessed from the first 100 terms of g(t).
2. Implicit function theorem: 3! root r(t) € Q[[t]] of P.
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Step (S3): warm-up — Gessel excursions are algebraic

(1/2)n

5/3) @, (4t)>" is algebraic.

Theorem  G(t;0,0) Z (5/6

Proof: Guess a polynomial P(t, T) in Q[t, T], then prove that P

admits the power series g(t) = G(1/1;0,0) = > gnt" as a root.

1. Such a P can be guessed from the first 100 terms of g(t).
2. Implicit function theorem: 3! root r(t) € Q[[t]] of P.

3. r(t)=>_,", rat" being algebraic, it is holonomic, and so is (r,):

(n+2)(3n+5)rpy1 —4(6n+5)(2n+ 1)r, =0, n=1

= solution r, = %42" = gp, thus g(t) = r(t) is algebraic.
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Step (S3): rigorous proof for Kreweras walks

—t—/x22tx+t2(1—4x3) 3
t—/x2—2tx+12( X):t—l-%tz-i-xx%lt:)"i""

2tx2

1. Setting yo = =
in the kernel equation

(xy — (x+y + x°y?))K(t; x, y) = xy — xtK(t; x,0) — ytK(t;0,y)

!
=0
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Step (S3): rigorous proof for Kreweras walks

—t—/x22tx+t2(1—4x3) 3
t—/x2—2tx+12( X):t—l-%tz-i-xx%lt:)"i""

2tx2

1. Setting yo = =
in the kernel equation

(xy — (x+y—|—x2y2)t)K(t;x,y) = xy — xtK(t;x,0) — ytK(t;y,0)

!
=0
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Step (S3): rigorous proof for Kreweras walks

—t—/x22tx+t2(1—4x3) 3
t—/x2—2tx+12( X):t—l-%tz-i-xx%lt:)"i""

2tx2

1. Setting yo = =
in the kernel equation

(xy — (x—l—y+x2y2)t)K(t;x,y) = xy — xtK(t;x,0) — ytK(t;y,0)

|
=0
shows that U = K(t; x, 0) satisfies the reduced kernel equation

‘0:X-yo—x-t-U(t,x)—yo-t~U(t,yo)‘ (RKerEq)
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Step (S3): rigorous proof for Kreweras walks

—t—/x22tx+t2(1—4x3) 3
t—/x2—2tx+12( X):t—l-%tz-i-xx%lt:)"i""

2tx2

1. Setting yo = =
in the kernel equation

(xy — (x—l—y+x2y2)t)K(t;x,y) = xy — xtK(t;x,0) — ytK(t;y,0)

|
=0
shows that U = K(t; x, 0) satisfies the reduced kernel equation
‘0:X-yo—x-t-U(t,x)—yo-t~U(t,yo)‘ (RKerEq)

2. U= K(t; x,0) is the unique solution in Q[[x, t]] of (RKerEq).
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Step (S3): rigorous proof for Kreweras walks

. —t—/x2— 2(1—4x3
1. Setting yo = x—t—+/x?=2tx+12(1—4x3)

3
I

in the kernel equation

(xy — (X+y—|—x2y2)t)K(t;x,y) = xy — xtK(t;x,0) — ytK(t;y,0)

|
=0
shows that U = K(t; x, 0) satisfies the reduced kernel equation

‘0:X-yo—x-t-U(t,x)—yo-t~U(t,yo)‘ (RKerEq)

2. U= K(t; x,0) is the unique solution in Q[[x, t]] of (RKerEq).

3. The guessed candidate Py o has one solution H(t, x) in Q[[x, t]].
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Step (S3): rigorous proof for Kreweras walks

. 2 2(1—4x3
1 Settlng Yo = x—t x2—2tx+t2(1—4x3)

3
PO 1 S0

in the kernel equation

(xy — (x—l—y+x2y2)t)K(t;x,y) = xy — xtK(t;x,0) — ytK(t;y,0)

|
=0
shows that U = K(t; x, 0) satisfies the reduced kernel equation

‘0:X-yo—x-t-U(t,x)—yo-t~U(t,yo)‘ (RKerEq)

2. U= K(t; x,0) is the unique solution in Q[[x, t]] of (RKerEq).
3. The guessed candidate Py o has one solution H(t, x) in Q[[x, t]].

4. Resultant computations + verification of initial terms
—> U = H(t, x) also satisfies (RKerEq).
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Step (S3): rigorous proof for Kreweras walks

.  x—t— /2 2tx+2(1-4x3) 1.2 | x341.3
1. Setting yo = e =t+i2+H 3+
in the kernel equation

(xy — (X+y—|—x2y2)t)K(t;x,y) = xy — xtK(t;x,0) — ytK(t;y,0)

|
=0
shows that U = K(t; x, 0) satisfies the reduced kernel equation

‘0:X-yo—x-t-U(t,x)—yo-t~U(t,yo)‘ (RKerEq)

2. U= K(t; x,0) is the unique solution in Q[[x, t]] of (RKerEq).
3. The guessed candidate Py o has one solution H(t, x) in Q[[x, t]].

4. Resultant computations + verification of initial terms
—> U = H(t, x) also satisfies (RKerEq).

5. Uniqueness: H(t,x) = K(t;x,0) = K(t;x,0) is algebraic!
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Algebraicity of Kreweras walks: our Maple proof in a nutshell

[bostan@inria ~1$ maple

VoV o3

v

Vo3

v v

VVVVYV#R

Vo3

IN/1 Maple 17 (APPLE UNIVERSAL 0SX)

INI |/1_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2013
\ MAPLE / All rights reserved. Maple is a trademark of

________ > Waterloo Maple Inc.
| Type 7 for help.

HIGH ORDER EXPANSION (S1)
st,bu:=time() ,kernelopts(bytesused) :
f:=proc(n,i,j)
option remember;
if i<0 or j<O0 or n<0 then 0
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else f(n-1,i-1,j-1)+f(n-1,i,j+1)+f(n-1,i+1,j) fi
end:
S:=series(add(add(f(k,i,0)*x"i,i=0..k)*t"k,k=0..80),t,80):

GUESSING (S2)

libname:=".",libname:gfun:-version();
3.62

gfun:-seriestoalgeq(S,Fx(t)):

P:=collect (numer (subs (Fx(t)=T,%[11)),T):

RIGOROUS PROOF (S3)

ker := (T,t,x) -> (x+T+x"2¥T"2)*t-x*T:
unapply (P,T,t,x):

resultant (pol(z-T,t,x) ,ker(t*z,t,x),z):

p2 := subs(T=x*T,resultant (numer(pol(T/z,t,z)) ,ker(z,t,x),z)):

normal (primpart (p1,T) /primpart (p2,T));
1

time (in sec) and memory consumption (in Mb)
trunc(time () -st) ,trunc((kernelopts(bytesused)-bu)/1000°2);
7, 618
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Step (S3): rigorous proof for Gessel walks

Same philosophy, but several complications:
» stepset diagonal symmetry is lost: G(t;x,y) # G(t;y,x);
» G(t;0,0) occurs in (KerEq);
> equations are ~ 5000 times bigger.

— replace (RKerEq) by a system of 2 reduced kernel equations.

— fast algorithms needed (e.g., [B.-Flajolet-Salvy-Schost'06] for
computations with algebraic series).

line at
.e..nc.@n...cw Journal of
Symbolic
Computation

ELSEVIER Journal of Symbolic Computation 41 (2006) 1-29 —
wwwelsevier.com/locate/jsc

Fast computation of special resultants
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LIX, Ecole polytechnique, 91128 Palaiseau, France
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Holonomy via the finite group

39/54



Holonomy via the finite group: an example

i i\ 1 1
. The polynomial xg = Z(i,j)ee Xy =x+L+y+;

is left invariant under (x,y), (%y) (% %) (x, %)

The same holds for J(t;x,y) = >3 (; jyee X'v) — 1/t.
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Holonomy via the finite group: an example

i i\ 1 1
<. The polynomial xg = Z(i,j)ee Xy =x+L+y+;

is left invariant under (x,y), (%y) (% %) (x, }17)

The same holds for J(t;x,y) = > jyes X'¥) — 1/t.

J(tix y)xytF(tix,y) = txF(t;x,0) + tyF(t;0,y) — xy
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Holonomy via the finite group: an example

i i\ 1 1
The polynomial xg = Z(i,j)ee X'y =x+1l+y+ :

is left invariant under (X,y), (%y) (% %) (x, %)

The same holds for J(t;x,y) = > jyes X'¥) — 1/t.

J(t;x,y)xytF(t;x,y) = txF(t;x,0)+ tyF(t;0,y) — xy
—J(tx,y) gy tF(t 5 y) = =t F (65, 0) — ty F(£:0,y) + 3y
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Holonomy via the finite group: an example

The polynomial xg = Z(i,j)ee X'yl = x+ % +y+ %
v is left invariant under (x,y), (+,¥), (1) (x. ).

i The same holds for J(t;x,y) = >3 (; jyee X'v) — 1/t.

J(t;x,y)xytF(t;x,y) = txF(t;x,0)+ tyF(t;0,y) — xy
,0) — tyF(t;0,y) + Ly
1 01 11

—J(t; x, y)%th(t;

J(tix,y) 3 tF(t
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Holonomy via the finite group: an example

1 is left invariant under (x,y), (%y) (% }l/) (x, %)
V| The same holds for J(t; x, y)

J(t;x, y)xytF(t;x,y) = txF(t;x,0)+ tyF(t;0,y) — xy
—J(t;x, y)iytF(t; L y) = —t1F(t;1,0) — ty F(t;0,y) + 1y
: 11 J1 1y 1 1 1p(p0 1y 11
(X, y) ey tF(t 5 5) = txF(t£.0) + t,F(£:0,5) — %7
7J(t,X,y)X)l/tF(t;X, )%) —txF(t;x,0) — t)l/F(t 0, ) )l/

i i\ 1 1
The polynomial xg = Z(i,j)ee X'y =x+1l+y+ :

— Z(i,j)eG X'yl — 1/t.
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Holonomy via the finite group: an example

<]+ The polynomial xe =3 ; jce X'y =x+L14+y+ %
is left invariant under (X,y), (%y) (% %) (x, }%)
The same holds for J(t;x,y) = >3 (; jyee X'v) — 1/t.

J(t;x,y)xytF(t;x,y) = txF(t;x,0)+ tyF(t;0,y) — xy
—J(tix, y) 3y tF(t; 2 y) = —t3F(t: ,0) — ty F(£;0,y) + Ly
it x y)ELtF(t; 1, 5) = tiF(t5,0) + t5F(£0,5) — &5
—J(t,x,y)x}l/tF(t; X, %) = —txF(t;x,0) — t}%F(t;O, %) + x}l/
Summing up vyields: 1 11 1
—Xy+t—-—y———+x—
M (=1)0[xyt F(t; x, )] = j(t;x,xy})/ Y

0cGs
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Holonomy via the finite group: an example

- 1. The polynomial xe =>_(; )es xiyi=x+14y+ %
: Car 1 11 1

is left invariant under (x,y), (;,y), (£, ;?, (X, })'

! [ The same holds for J(t;x,y) = > (i hes X'y — 1/t.

J(t;x, y)xytF(t;x,y) = txF(t;x,0) + tyF(t;0,y) — xy
—J(tx, y)gytF(t 5 y) = —tF(t:,0) — ty F(£:0,y) + %y
X, y)E2tF(t 5, 3) = tEF(t 2 0)+ 15 F(£0,5) — 22
—J(t; X,y)X%tF(t; X, %) = —txF(t;x,0) — t1F(t;0, %) + X}l/
Summing up yields: 1 11 1
—xy+;y—;;+x;

[><>][y>]9;(gC Obot F(tix,y)] =Ny 77—
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Holonomy via the finite group: an example

The polynomial xg = Z(i,j)ee X'yl = x+ % +y+ %
: : : 1 11 1
is left invariant under (x,y), (;,y), (;, ;), (X, ;).

A | The same holds for J(t;x,y) = Z(i,j)e@ x'yl —1/t.

J(t;x, y)xytF(t;x,y) = txF(t;x,0)+ tyF(t;0,y) — xy
—J(tix,y) 3y tF(t 5 y) = —tF(£5,0) — ty F(£0,y) + 3y
J(Ex )5y th(t 5, 5) = txF(65,0) +t5F(80,3) — 55
—J(t;x,y)x%tF(t; X, )l/) = —txF(t;x,0) — t}%F(t;O, }l/) + X)l/
Summing up yields: 1 11 1
ot Fleixy) = [Ny | 20y
o J(tix, y)
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The 19 transcendental holonomic cases

Theorem [Bousquet-Mélou & Mishna, 2009]
Let G be one of the 19 step sets with finite group Gg, and such

that the generating series F = Fg(t; x, y) is not algebraic. Then:

> (1) 0(xy)

>qr. >1 0€Gs
1 s

xyt F(t;x,y) = [x

In particular, F(t; x,y) is holonomic.
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The 19 transcendental holonomic cases

Theorem [Bousquet-Mélou & Mishna, 2009]
Let G be one of the 19 step sets with finite group Gg, and such
that the generating series F = Fg(t; x, y) is not algebraic. Then:

> (1) 0(xy)

>qr. >1 0€Gs
1 s

xyt F(t;x,y) = [x
In particular, F(t; x,y) is holonomic.

Proof: Use [Lipshitz'88] for positive parts of holonomic series.

If F(t;x,y), as a formal series in t, has its coefficients in Q(x)[y, %], then [y~ ]F(t; x, y) is algebraic. If in addition

[y~ 1F(t; x, y) as a formal series in t, has its coefficients in Q[x, )1—(y] then [x~ ][y~ 1F(t; x, y) is holonomic.
> Constructive proof, but it leads to a highly inefficient algorithm.
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Explicit expressions for the 19 holonomic cases

Theorem [B.-Chyzak-Van Hoeij-Kauers-Pech, 2011]

Let © be one of the 19 step sets with finite group Gg, and such
that the generating series F = Fg(t; x, y) is not algebraic.
Then F is expressible using iterated integrals of »F; expressions.
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Explicit expressions for the 19 holonomic cases

Theorem [B.-Chyzak-Van Hoeij-Kauers-Pech, 2011]

Let © be one of the 19 step sets with finite group Gg, and such
that the generating series F = Fg(t; x, y) is not algebraic.
Then F is expressible using iterated integrals of »F; expressions.

Sketch of the approach

1 (BM&M)IFR=Y, % then F = Res, (Res, H), for H = /et

2. If P €Q(x,y)[t](0:) and U,V € Q(x,y, u, v, t) such that L(H) = 9,U + 9, V,
then L(F(t;x,y)) =0 — Chyzak’s creative telescoping for finding L.

3. Factor L as L(2) . Lgl) cee L(tl), then solve L) in terms of »Fis, and deduce F.
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Proofs of non-holonomy
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A historical example
Knight walks: & = {(-1,2),(2,-1)}
0 ifm<OQorn<O
amn=11 fm=n=1

amy1,n—2 + am-2nt1 Otherwise

12 24

11 108

10 24 312

9 6 84 720

8 24 204 1440

7 6 60 408

6 2 18 120 720

5 6 36 204

4 2 12 60 312

301 4 18 84

2 2 6 24 108

1 1 2 6 24

0 1 2 6 24
0 1 2 3 4 5 6 7 8 9 10 11 12 -

Theorem [Bousquet-Mélou & Petkovsek'03] The generating series
F(x,y)= Z am nx™y" is not holonomic.
m,n>0

> Key argument: F(x,0) has infinitely many singularities.
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A historical example

am+1,n—2 + am—2,n+1 — A3m—1,n—1 if mn>2
dm,n =

_5(m,n),(1,1) if m < lorn < 1

n

T

o0 o0 o0 - .

o0 -1.0 0 1 -

o0 0 0 -1 0 -

00 0 -1 0 0 O

00 1 0 0 -10

0 -10 0 0 0 O

00 0 0 0 0 0—m

The series F(x,y) =3, 1>2 am nx™2y"2 satisfies

(x—y?)(y—x?)F(x,y)=xy—G(x)—G(y), for G(x Zam ox M1

m>2

= X*-6(x)-6(xA)=0= G(x)=) (-1)x*?

i>0

> G is lacunary, thus it is not holonomic, and so is F. 27 /54



Algorithmic proof of non-holonomy
[B., Raschel & Salvy 2012]

Two ingredients:
1. Asymptotics of excursions:

[t"] Fs(t:0,0) ~ K - p" - n%,

where
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Algorithmic proof of non-holonomy
[B., Raschel & Salvy 2012]

Two ingredients:
1. Asymptotics of excursions:

[t"] Fs(t:0,0) ~ K - p" - n%,

where
» o =—1—7/arccos(—c)
> c and p are algebraic numbers depending on &
(implied by a recent probability result [Denisov & Wachtel 2011])
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Algorithmic proof of non-holonomy
[B., Raschel & Salvy 2012]

Two ingredients:
1. Asymptotics of excursions:

[t"] Fs(t:0,0) ~ K - p" - n%,

where
» o =—1—7/arccos(—c)
> c and p are algebraic numbers depending on &
(implied by a recent probability result [Denisov & Wachtel 2011])

2. If Fs(t;0,0) is holonomic, then it is a G-function, and o € Q
(implied by deep number theory results [Chudnovsky-André-Katz])
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Algorithmic proof of non-holonomy
[B., Raschel & Salvy 2012]

Irrationality of arccos(c)/m is proven algorithmically in two steps:

(S1) determine the minimal polynomial, ¢, of ¢

2 o
(S2) prove that the numerator of (X;l) contains no

cyclotomic polynomial factor.

> The algorithm proves that F(t;0,0) is non holonomic (and thus
so is F(t; x,y)) for the 51 non-singular walks with infinite group.
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The algorithm on the example
S =

> S:=[[-1,0],[0,1],[1,0],[1,-11,[0,-111:
> chi:=add(x"s[1]*y~s[2],s=S);

1 1 X
X=—-—+—-—+x+y+—
X oy y
> chi_x:=numer(diff(chi,x));chi_y:=numer(diff(chi,y));
XXZ=X2+X2y7y, Xy::yzfxfl.
> G:=Groebner[Basis] ([chi_x,chi_y, numer(t~2-

diff(chi,x,y)"2/diff(chi,x,x)/diff(chi,y,y))],lexdeg([x,y],[t])):
> p:=factor(op(remove(has,G,{x,y})));

pi= (4t> +1)(8¢> + 8t% + 6t + 1)(8t> — 8% + 6t — 1).

The polynomial p has only two real roots, =c. Numerical evaluation of c identifies its
minimal polynomial as pic = 8t3 + 8t + 6t + 1

mu_c:=8%t"3+8%t " 2+6%t+1:
R:=expand(x~3*subs (t=(x"2+1)/x/2, mu_c),sort);

R(x) = x% 4+ 2x5 4+ 6x* +5x3 + 6x% + 2x + 1.
> irreduc(R) ,numtheory[iscyclotomic] (R,x);

true, false
—_— 50/54



Summary

© 2D classification of F(t;0,0) and F(t;x, y) is fully completed
© robust algorithmic methods:

e Guess'n'Prove approach based on modern CA algorithms

e Creative Telescoping for integration of rational functions
© Brute-force and/or use of naive algorithms = hopeless.

E.g. size of algebraic equations for G(t; x, y) ~ 30Gb.
©® Remarkable properties discovered experimentally. E.g.:
all algebraic cases have solvable Galois groups

3 ﬁ\j et + 1662t +3)+2 U(e)? 4+ 3

cEll)=-5+5 1 —4020()

where  U(t) = \/1+4¢1/3(4t +1)1/3/(4t — 1)/3.
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© O

Summary

2D classification of F(t;0,0) and F(t;x, y) is fully completed
robust algorithmic methods:

e Guess'n'Prove approach based on modern CA algorithms

e Creative Telescoping for integration of rational functions
Brute-force and/or use of naive algorithms = hopeless.
E.g. size of algebraic equations for G(t; x, y) ~ 30Gb.

Remarkable properties discovered experimentally. E.g.:
all algebraic cases have solvable Galois groups

G(t:1,1)=—— + — - 402000 —U()?+3

3 3 16t(2t+ 3 2
f\jU(tH (2t +3) +
6t 6t

where  U(t) = \/1+4¢1/3(4t +1)1/3/(4t — 1)/3.

lack of “purely human” proofs for many results. E.g.:
non-holonomy of F(t;0,0) and ;s expressions for F(t; x, y)
still missing a unified proof of: finite group <+ holonomic
open: is F(t;1,1) non-holonomic in the 51 non-singular cases
with infinite group?

51/54



Extensions

1. Longer 2D steps [B., Bousquet-Mélou & Melczer, in progress]

e 680 step sets with one large step, 643 proven non holonomic,
32 of 37 have differential equations guessed.

e 5910 step sets with two large steps, 5754 proven non
holonomic, 69 of 156 have differential equations guessed.

2. 3D walks [B., Bousquet-Mélou, Kauers & Melczer, in progress|
e 83682 with 5 steps or less: B. and Kauers (2009) conjectured
(up to equivalence) 35 holonomic steps. Now proved.
e With 6 steps, 96 new holonomic cases: guessed, then proved.

e New phenomenon (empirically discovered, no proof yet): 3 step
sets (3D Kreweras) with finite group and non-holonomic GF?!
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Thanks for your attention!
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