Progressive Wasserstein Barycenters for Persistence Diagrams

Outline

- Introduction
- Preliminaries
 - Wasserstein distances for Persistence Diagrams
 - Solving assignment between diagrams : The Auction algorithm
 - Computing Fréchet means of diagrams : Turner algorithm
- Progressive barycenters
- Application to Ensemble Topological Clustering
- Results

Introduction : The Persistence Diagram (PD)

- Tool from Topological Data Analysis
- Encodes the *Persistence* of topological features
- Highlights important features comparing to noise
- Lightweight topological signature of data

Introduction : The Persistence Diagram (PD)

- Tool from Topological Data Analysis
- Encodes the *Persistence* of topological features
- Highlights important features comparing to noise
- Lightweight topological signature of data

Introduction

- $\circ~$ 2D or 3D data
- (physics simulation, medical imaging...)
- \circ High resolution

~ 16,500,000 cells

~ 29,000 cells

Introduction : Ensemble Analysis

- Ensemble of data-sets
- Characteristics?
 - Commonalities / differences between members
 - Average number of topological features, clustering, trend analysis, ...

Introduction : Ensemble Analysis

 $\circ~$ Data reduction using TDA

Introduction : Summarization of topological features

- \circ $\,$ Cost of an optimal matching between two diagrams $\,$
- Pairwise distance :

$$d_q(a,b) = (|x_b - x_a|^q + |y_b - y_a|^q)^{1/q}$$

 \circ Wasserstein distance :

$$W_q(\mathscr{D}(f),\mathscr{D}(g)) = \min_{\phi \in \Phi} \left(\sum_{a \in \mathscr{D}(f)} d_q(a,\phi(a))^q \right)^{\frac{1}{2}}$$

- Cost of an optimal matching between two diagrams
- Pairwise distance :

$$d_q(a,b) = (|x_b - x_a|^q + |y_b - y_a|^q)^{1/q}$$

 $\circ~$ Wasserstein distance :

$$W_q(\mathscr{D}(f),\mathscr{D}(g)) = \min_{\phi \in \Phi} \left(\sum_{a \in \mathscr{D}(f)} d_q(a,\phi(a))^q \right)^1$$

- \circ $\,$ Cost of an optimal matching between two diagrams $\,$
- Pairwise distance :

$$d_q(a,b) = (|x_b - x_a|^q + |y_b - y_a|^q)^{1/q}$$

• Wasserstein distance :

$$W_q(\mathscr{D}(f),\mathscr{D}(g)) = \min_{\phi \in \Phi} \left(\sum_{a \in \mathscr{D}(f)} d_q(a,\phi(a))^q \right)^{1/q}$$

- \circ Cost of an optimal matching between two diagrams
- Pairwise distance :

$$d_q(a,b) = (|x_b - x_a|^q + |y_b - y_a|^q)^{1/q}$$

• Wasserstein distance :

$$W_q(\mathscr{D}(f),\mathscr{D}(g)) = \min_{\phi \in \Phi} \left(\sum_{a \in \mathscr{D}(f)} d_q(a,\phi(a))^q \right)^{1/q}$$

 \circ Augmented diagrams for a balanced problem

- \circ Cost of an optimal matching between two diagrams
- Pairwise distance :

$$d_q(a,b) = (|x_b - x_a|^q + |y_b - y_a|^q)^{1/q}$$

• Wasserstein distance :

$$W_q(\mathscr{D}(f),\mathscr{D}(g)) = \min_{\phi \in \Phi} \left(\sum_{a \in \mathscr{D}(f)} d_q(a,\phi(a))^q\right)^{1/q}$$

- \circ $% \left(Augmented \mbox{ diagrams for a balanced problem} \right)$
- Diagonal matchings (~ removal of a feature)

Auction algorithm

- Approximation of an optimal assignment
- Mimics a real-life auction between *bidders* and *objects*.
- Auction Round : several bids
 - \circ Each bidder **a** successively acquires the object **b** of greatest value $v_{a \rightarrow b}$
 - Objects prices increase
 - \circ Provides a perfect matching ϕ

$$\widehat{W_2}\left(\mathscr{D}'(f), \mathscr{D}'(g)\right) = \sqrt{\sum_{a \in \mathscr{D}'(f)} d_2\left(a, \phi(a)\right)^2}$$

$$a \qquad b \\ \hline p_{b} \ge 0$$
$$v_{a \to b} = -d_{2}(a, b)^{2} - p_{b}$$
$$p_{b} + = \delta_{a} + \varepsilon$$

$$\widehat{W_2} \left(\mathscr{D}'(f), \mathscr{D}'(g) \right)^2 \leq (1+\gamma)^2 \left(\widehat{W_2} \left(\mathscr{D}'(f), \mathscr{D}'(g) \right)^2 - \varepsilon |\mathscr{D}'(f)| \right)$$
$$\Longrightarrow W_2 \left(\mathscr{D}(f), \mathscr{D}(g) \right) \leq \widehat{W_2} \left(\mathscr{D}'(f), \mathscr{D}'(g) \right) \leq (1+\gamma) W_2 \left(\mathscr{D}(f), \mathscr{D}(g) \right)$$

• Several Auction Rounds : *ɛ*-scaling

Auction algorithm : Toy example

Turner algorithm

Computation of a Fréchet mean of a set of PDs

$$\mathscr{D}^* = \operatorname*{arg\,min}_{\mathscr{D}\in\mathbb{D}} \sum_{\mathscr{D}(f_i)\in\mathscr{F}} W_2(\mathscr{D},\mathscr{D}(f_i))^2$$

- Gradient descent-like approach
- N assignment computations for each Relaxation

Algorithm 1 Reference algorithm for Wasserstein Barycenters [94].

Input : Set of diagrams $\mathscr{F} = \{\mathscr{D}(f_1), \mathscr{D}(f_2), \dots, \mathscr{D}(f_N)\}$ **Output** : Wasserstein barycenter \mathscr{D}^*

1:
$$\mathscr{D}^* \leftarrow \mathscr{D}(f_i)$$

2: while
$$\{\phi_1, \phi_2, \dots, \phi_N\}$$
 change do

4: **for**
$$i \in [1, N]$$
 do

5:
$$\phi_i \leftarrow Assignment(\mathscr{D}(f_i), \mathscr{D}^*)$$

7:
$$\mathscr{D}^* \leftarrow Update(\phi_1, \dots, \phi_n)$$

- 8: // Relaxation end
- 9: end while

10: return \mathscr{D}^*

// with *i* randomly chosen in [1, N]

// optimizing Eq. 2

// arithmetic means in birth/death space

- Naive approach : Auction + Turner
- Mey observations :
 - The assignments can be re-used between two *Relaxations*
 - The early Relaxations do not necessarily need great precision in the assignments.
 - Emphase should be put on larger Persistence Pairs
 - Trivial parallelization

Progressivity in accuracy

- Only one Auction Round at each Relaxation
- Prices memorization
- Global ε -scaling

Algorithm 1 Reference algorithm for Wasserstein Barycenters [94].									
	Input : Set of diagrams $\mathscr{F} = \{\mathscr{D}(f_1), \mathscr{D}(f_2), \dots, \mathscr{D}(f_N)\}$								
	Output : Wasserstein barycenter \mathcal{D}^*								
1:	$\mathscr{D}^* \leftarrow \mathscr{D}(f_i)$	// with <i>i</i> randomly chosen in $[1, N]$							
2:	while $\{\phi_1, \phi_2, \dots, \phi_N\}$ change do								
3:	// Relaxation start								
4:	for $i \in [1,N]$ do								
5:	$\phi_i \leftarrow Assignmentig(\mathscr{D}(f_i), \mathscr{D}^*ig)$	// optimizing Eq. 2							
6:	end for								
7:	$\mathscr{D}^* \leftarrow Update(\phi_1,\ldots,\phi_n)$	// arithmetic means in birth/death space							
8:	// Relaxation end								
9:	end while								
10:	return \mathscr{D}^*								

Persistence-driven Progressivity

 $_{\circ}$ Decreasing persistence threshold ρ Pairs are added at each Relaxation

•
$$\rho = \sqrt{4\varepsilon}$$

 $_\circ$ $\,$ Introduction of a time-constraint $t_{\rm max}$

Algorithm 2 Our overall algorithm for Progressive Wasserstein Barycenters. **Input** : Set of diagrams $\mathscr{F} = \{\mathscr{D}(f_1), \mathscr{D}(f_2), \dots, \mathscr{D}(f_N)\}$, time constraint t_{max} **Output** : Wasserstein barycenter \mathcal{D}_{o}^{*} 1: $\mathscr{D}^*_{\rho} \leftarrow \mathscr{D}_{\rho}(f_i)$ // with *i* randomly chosen in [1, N]2: while the Fréchet energy decreases do // Relaxation start 3: for $i \in [1, N]$ do 4: // Sec. 3.5 // In parallel 5: $\phi_i \leftarrow Assignment(\mathscr{D}_{\rho}(f_i), \mathscr{D}_{\rho}^*)$ // Sec. 3.2 6: end for 7. $\mathscr{D}_{\rho}^{*} \leftarrow Update(\phi_{1}, \ldots, \phi_{n})$ // arithmetic means in birth/death space 8: *E psilonScaling()* // Sec. 3.3 9: if $t < 0.1 \times t_{max}$ then PersistenceScaling() // Sec. 3.4 10: else if $t >= t_{max}$ then return \mathcal{D}_{ρ}^* // Sec. 3.6 11: // Relaxation end 12: 13: end while 14: return \mathscr{D}_{ρ}^{*}

Application to Ensemble Topological Clustering

- Use of the K-Means algorithm
 Two sub-routines : Assignment and Update
- Progressive accuracy : One relaxation per clustering Update
- Persistence-driven progressivity and time constraint
- Geometrical lifting for the metrics
- K-Means++, Accelerated K-Means

Results

Time performance

Data sat	N	$\#_{\mathscr{D}(f_i)}$	Sinkhorn	Munkres	Auction	Ours	Speedup
Data set			[53]	[94]+[86]	[94]+[51]	Ours	Speedup
Gaussians (Fig. 8)	100	2,078	7,499.33	> 24H	8,975.60	785.53	11.4
Vortex Street (Fig. 9)	45	14	54.21	0.14	0.47	0.23	0.6
Starting Vortex (Fig. 10)	12	36	40.98	0.06	0.67	0.28	0.2
Isabel (3D) (Fig. 1)	12	1,337	1,070.57	>24H	377.42	82.95	4.5
Sea Surface Height (Fig. 11)	48	1,379	4,565.37	> 24H	949.08	75.90	12.5

Time performance

Data set	N	$\#_{\mathscr{D}(f_i)}$	1 thread	8 threads	Speedup
Gaussians (Fig. 8)	100	2,078	785.53	117.91	6.6
Vortex Street (Fig. 9)	45	14	0.23	0.10	2.3
Starting Vortex (Fig. 10)	12	36	0.28	0.19	1.5
Isabel (3D) (Fig. 1)	12	1,337	82.95	31.75	2.6
Sea Surface Height (Fig. 11)	48	1,379	75.90	19.40	3.9

Barycenter quality

Barycenter quality : Comparison of Fréchet energy

Data set	N	$\#_{\mathscr{D}(f_i)}$	Auction [94]+[51]	Ours	Ratio
Gaussians (Fig. 8)	100	2,078	39.4	39.0	0.99
Vortex Street (Fig. 9)	12	36	415.1	412.5	0.99
Starting Vortex (Fig. 10)	45	14	112,787.0	112,642.0	1.00
Isabel (3D) (Fig. 1)	12	1,337	2,395.6	2,337.1	0.98
Sea Surface Height (Fig. 11)	48	1,379	7.2	7.1	0.99

• Disparity of 2% at most

Visual quality : Ours (bottom) compared to the Auction approach

Results : Barycenter computation

Visual quality : Ours (bottom) compared to the Auction approach

Ensemble Visual Analysis with Topological Clustering

Gaussian Data-set : 100 members, 3 clusters

Starting Vortex Data-set : 12 members, 2 clusters

Vortex Street Data-set

45 members, 5 clusters

Sea Surface Height Data-set : 48 members, 4 clusters

Conclusion

- Algorithm for the computation of PD barycenters
- Two layers of progressivity
- Interruptibility
- Interactive analysis of ensembles
- Extension to topological clustering of ensembles
- Open-source implementation in the Topology Tool Kit

