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The project

Long term research project:
O. Bodini, M. Dien, A. Genitrini, F. Peschanski,…

0perators of concurrency → combinatorial interpretation

• Quantitative study
→ Combinatorial explosion
→ Average number of executions?

• Algorithmic applications
→ Counting executions
→ Uniform random sampling of executions
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Classical operators of concurrency (1)

x.P P ∥ Q
→ Trees [AofA’12]

Synchronization
→ DAGs
Counting is ♯P-complete
[Brightwell & Winkler’91]
(too difficult)

→ Fork-Join graphs [Analco’17]

fork1

fork2

compute compute

fork3

compute compute

join3 & fork4

computecomputejoin2

join4

join1 & fork5

compute compute

join5

2/19



Classical operators of concurrency (1)

x.P P ∥ Q
→ Trees [AofA’12]

Synchronization
→ DAGs
Counting is ♯P-complete
[Brightwell & Winkler’91]
(too difficult)

→ Fork-Join graphs [Analco’17]

fork1

fork2

compute compute

fork3

compute compute

join3 & fork4

computecomputejoin2

join4

join1 & fork5

compute compute

join5

2/19



Classical operators of concurrency (2)

+ (choice operator)

→ In the tree model [FSTTCS’13]
• Toy example
• Technical difficulties

Beverage vending machine

e

+

tea e

coffee

Tossing a coin

+

head tail
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In today’s talk

+ . ∥ sync
→ General model: petri
nets
→ Tractable subclass: SP+
→ Uniform random
generator of executions

Beverage vending machine

e

heat water

+

tea e

coffee

+

sugar no sugar

place cup

serve 4/19
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Petri nets

• Model for concurrent
systems

• Places symbolise
states / resources

• Transitions symbolise
actions

• Connected by directed arcs
• Transitions consume and
produce tokens

1

€

2

tea coffee

3

heat
water

4

serve

€; tea; heat; serve
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Construction rules (I)

N1 =
a b

c

N2 = d e

Parallel composition
(N1 ∥ N2)

a b

c

d e

Choice
(N1 + N2)

a b

c

d e

Sequence
(N1 ; N2)

a b

c

d e
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Construction rules (II)

Atomic action
(a)

a

Barrier
(B)

B

Synchronisation
([N : B])

Merge all the
transitions labelled

with B in N
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Properties

We know

• ; is associative
• ∥ is associative and commutative
• + is associative and commutative
• Counting the executions is #P-hard

We wish to prove

• Petri nets constructed using a, B, ;, +, ∥ and [· : B] are
one-safe?

• All cycles are deadlocks?
• We can construct any cycle-free petri net that is
one-safe???
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Tractable subclass: SP+

Summary

N,M ::= N ∥ M
N+M
N ; M
a
B
[N : B]

⇝

Non-deterministic series
parallel programs

(SP+)

• Simpler model
• Still expressive
• Tractable:

• Specifiable
• Efficient Uniform
random generation of
executions is possible
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Analytic combinatorics

Definition: combinatorial class
A set C equipped with a size function | · | : C → N such
that ∀n,#{c ∈ C; |c| = n} <∞

Specification → Generating Function → Asymptotics

Spec → GF
A →

∑
n anzn

A+ B → A(z) + B(z)
A× B → A(z)B(z)

· · ·

A(z) ≈ τ − C
√
1− z

ρ

↓

an ∼ C′n− 3
2 ρ−n
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SP+ specification

Informal

S = S; | S∥ | S+ | a
S; = (S \ S;) ; (S \ S;) ; · · · ; (S \ S;) (≥ 2 terms)
S∥ = (S \ S∥) ∥ (S \ S∥) ∥ · · · ∥ (S \ S∥) (≥ 2 terms)
S+ = (S \ S+) + (S \ S+) + · · · + (S \ S+) (≥ 2 terms)

Formal

S = Z + S; + S∥ + S+
S; = Seq≥2(S \ S;)
S∥ = MSet≥2(S \ S∥)
S+ = MSet≥2(S \ S+)

symbolic method−→ system of equations…
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The symbolic method for executions

We can do the same for counting the possible executions

Specification → Exponential generating function

A → A(z) =
∑

n an zn
n!

A+ B → A(z) + B(z)

A ⋆ B → A(z)B(z)

A ⋆ B1 →
∫ z
0 A

′(z− u)B(u)du+ A(0)B(z)

1Ordered product [Analco’17]
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Expected results

(⋆) Number of programs
Should be of the form C · n− 3

2 ρ−n

(⋆) Average number of global choices
Should be of the form A · Bn for small B.
(Numerically, in the non commutative case: B ≈ 1.11678)

(⋆ ⋆ ⋆) Average number of executions
(very ugly equations)
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Goal

Sampling executions uniformly at random in a given SP+
program.

Idea 1: listing of all possible executions? No

Idea 2: expand all the global choices and choose one? No
↪→ [CSR’17] gives an algorithm for the choice-free case

Solution: use the symbolic method to select a global choice
(next slides)
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Algorithm (step 1): specify the executions of the program

a

b

c d

e

g

hi

j

o
f

n

k l

m
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g
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n

k l

m

N ∥ M

↓

N ⋆M

↓

N(z)M(z)
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Algorithm (step 1): specify the executions of the program

a

b

c d

e

g

hi

j

o
f

n

k l

m

c ∥ d

↓

Z ⋆ Z

↓

z · z = 2 · z
2

2!
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Algorithm (step 1): specify the executions of the program

a

b

c d

e

g

hi

j

o
f

n

k l

m

N;M

↓

N ⋆ M

↓∫ z

0
N′(z−u)M(u)du+N(0)M(z)

= 2·z
3

3!
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Algorithm (step 1): specify the executions of the program

a

b

c d

e

g

hi

j

o
f

n

k l

m

b; (c ∥ d)

↓

Z ⋆ (Z ⋆ Z)

↓∫ z

0
u2du = 2 · z

3

3!
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Algorithm (step 1): specify the executions of the program

a

b

c d

e

g

hi

j

o
f

n

k l

m

N+M

↓

(

Yi

N +

Yh

M)

↓

yi

N(z) +

yh

M(z)
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Algorithm (step 1): specify the executions of the program

a

b

c d

e

g

hi

j

o
f

n

k l

m

i+ h

↓

(YiZ + YhZ)

↓

yiz+ yhz = (1 · yi + 1 · yh)
z1
1!
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Algorithm (step 2): backward symbolic method

a

b

c d

e

g

hi

j

o
f

n

k l

m

30yo
z9
9! +90yf

z10
10! +210yg(yh+yi)

z11
11!

y... ← 1

30z
9

9! + 90 z
10

10! + 420 z
11

11!
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Algorithm (step 2): backward symbolic method

a

b

c d

e

g

i h

j

o
f

n

k l

m

210yg(yh + yi)
z11
11!

There remains to sample an
execution in the resulting

choice-free graph

→ [CSR’17]
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Analysis of the algorithm

Correction: symbolic method

Worst case complexity (n = size of the graph):

• Step 1: size of the polynomial: O(n2)
• Step 2: number of arithmetic operations on big
integers: O(n2)

• Choice-free algorithm [CSR’17]: O(n2)
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Conclusion

• A class of petri nets that captures the features we want to
study

• A realistic and tractable subclass: SP+
• An efficient uniform random generator of executions

In the future:

• Quantitative results
• Beyond SP+: unfold some choices? Modelling loops?
• Recognize that a petri net is in SP+
• Implement a statistical model checker based on our
random generation techniques
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Thank you!

Questions?
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Sampling in a choice-free graph

Input: A choice-free SP+
Output: A uniform execution of this program (list of actions)
function SAMPLE_CF(P)

if P = a then
return [a]

else if P = P1 ∥ P2 then
return SHUFFLE(SAMPLE_CF(P1), SAMPLE_CF(P2))

else if P = P1;P2 then
return CONCAT(SAMPLE_CF(P1), SAMPLE_CF(P2))
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