
Uniform random generation of executions in
concurrent programs

Martin Pépin
under the supervision of Antoine Genitrini & Frédéric Peschanski

July 5, 2019

Sorbonne University – LIP6 – Paris

Outline

The project

Petri nets

Combinatorial interpretation

Uniform sampling of executions

The project

Long term research project:
O. Bodini, M. Dien, A. Genitrini, F. Peschanski,…

0perators of concurrency → combinatorial interpretation

• Quantitative study
→ Combinatorial explosion
→ Average number of executions?

• Algorithmic applications
→ Counting executions
→ Uniform random sampling of executions

1/19

The project

Long term research project:
O. Bodini, M. Dien, A. Genitrini, F. Peschanski,…

0perators of concurrency → combinatorial interpretation

• Quantitative study
→ Combinatorial explosion
→ Average number of executions?

• Algorithmic applications
→ Counting executions
→ Uniform random sampling of executions

1/19

The project

Long term research project:
O. Bodini, M. Dien, A. Genitrini, F. Peschanski,…

0perators of concurrency → combinatorial interpretation

• Quantitative study
→ Combinatorial explosion
→ Average number of executions?

• Algorithmic applications
→ Counting executions
→ Uniform random sampling of executions

1/19

Classical operators of concurrency (1)

x.P P ∥ Q
→ Trees [AofA’12]

Synchronization
→ DAGs
Counting is ♯P-complete
[Brightwell & Winkler’91]
(too difficult)

→ Fork-Join graphs [Analco’17]

fork1

fork2

compute compute

fork3

compute compute

join3 & fork4

computecomputejoin2

join4

join1 & fork5

compute compute

join5

2/19

Classical operators of concurrency (1)

x.P P ∥ Q
→ Trees [AofA’12]

Synchronization
→ DAGs
Counting is ♯P-complete
[Brightwell & Winkler’91]
(too difficult)

→ Fork-Join graphs [Analco’17]

fork1

fork2

compute compute

fork3

compute compute

join3 & fork4

computecomputejoin2

join4

join1 & fork5

compute compute

join5

2/19

Classical operators of concurrency (2)

+ (choice operator)

→ In the tree model [FSTTCS’13]
• Toy example
• Technical difficulties

Beverage vending machine

e

+

tea e

coffee

Tossing a coin

+

head tail

3/19

In today’s talk

+ . ∥ sync
→ General model: petri
nets
→ Tractable subclass: SP+
→ Uniform random
generator of executions

Beverage vending machine

e

heat water

+

tea e

coffee

+

sugar no sugar

place cup

serve 4/19

Outline

The project

Petri nets

Combinatorial interpretation

Uniform sampling of executions

Petri nets

• Model for concurrent
systems

• Places symbolise
states / resources

• Transitions symbolise
actions

• Connected by directed arcs
• Transitions consume and
produce tokens

1

€

2

tea coffee

3

heat
water

4

serve

€; tea; heat; serve

5/19

Petri nets

• Model for concurrent
systems

• Places symbolise
states / resources

• Transitions symbolise
actions

• Connected by directed arcs
• Transitions consume and
produce tokens

1€

2

tea coffee

3

heat
water

4

serve

€;

tea; heat; serve

5/19

Petri nets

• Model for concurrent
systems

• Places symbolise
states / resources

• Transitions symbolise
actions

• Connected by directed arcs
• Transitions consume and
produce tokens

1€

2tea coffee

3

heat
water

4

serve

€; tea;

heat; serve

5/19

Petri nets

• Model for concurrent
systems

• Places symbolise
states / resources

• Transitions symbolise
actions

• Connected by directed arcs
• Transitions consume and
produce tokens

1€

2tea coffee 3
heat
water

4

serve

€; tea; heat;

serve

5/19

Petri nets

• Model for concurrent
systems

• Places symbolise
states / resources

• Transitions symbolise
actions

• Connected by directed arcs
• Transitions consume and
produce tokens

1€

2tea coffee 3
heat
water

4serve

€; tea; heat; serve
5/19

Construction rules (I)

N1 =
a b

c

N2 = d e

Parallel composition
(N1 ∥ N2)

a b

c

d e

Choice
(N1 + N2)

a b

c

d e

Sequence
(N1 ; N2)

a b

c

d e

6/19

Construction rules (I)

N1 =
a b

c

N2 = d e

Parallel composition
(N1 ∥ N2)

a b

c

d e

Choice
(N1 + N2)

a b

c

d e

Sequence
(N1 ; N2)

a b

c

d e

6/19

Construction rules (I)

N1 =
a b

c

N2 = d e

Parallel composition
(N1 ∥ N2)

a b

c

d e

Choice
(N1 + N2)

a b

c

d e

Sequence
(N1 ; N2)

a b

c

d e

6/19

Construction rules (I)

N1 =
a b

c

N2 = d e

Parallel composition
(N1 ∥ N2)

a b

c

d e

Choice
(N1 + N2)

a b

c

d e

Sequence
(N1 ; N2)

a b

c

d e

6/19

Construction rules (II)

Atomic action
(a)

a

Barrier
(B)

B

Synchronisation
([N : B])

Merge all the
transitions labelled

with B in N

7/19

Construction rules (II)

Atomic action
(a)

a

Barrier
(B)

B

Synchronisation
([N : B])

Merge all the
transitions labelled

with B in N

7/19

Properties

We know

• ; is associative
• ∥ is associative and commutative
• + is associative and commutative
• Counting the executions is #P-hard

We wish to prove

• Petri nets constructed using a, B, ;, +, ∥ and [· : B] are
one-safe?

• All cycles are deadlocks?
• We can construct any cycle-free petri net that is
one-safe???

8/19

Properties

We know

• ; is associative
• ∥ is associative and commutative
• + is associative and commutative
• Counting the executions is #P-hard

We wish to prove

• Petri nets constructed using a, B, ;, +, ∥ and [· : B] are
one-safe?

• All cycles are deadlocks?
• We can construct any cycle-free petri net that is
one-safe???

8/19

Tractable subclass: SP+

Summary

N,M ::= N ∥ M
N+M
N ; M
a
B
[N : B]

⇝

Non-deterministic series
parallel programs

(SP+)

• Simpler model
• Still expressive
• Tractable:

• Specifiable
• Efficient Uniform
random generation of
executions is possible

9/19

Tractable subclass: SP+

Summary

N,M ::= N ∥ M
N+M
N ; M
a
B
[N : B]

⇝

Non-deterministic series
parallel programs

(SP+)

• Simpler model
• Still expressive
• Tractable:

• Specifiable
• Efficient Uniform
random generation of
executions is possible

9/19

Outline

The project

Petri nets

Combinatorial interpretation

Uniform sampling of executions

Analytic combinatorics

Definition: combinatorial class
A set C equipped with a size function | · | : C → N such
that ∀n,#{c ∈ C; |c| = n} <∞

Specification → Generating Function → Asymptotics

Spec → GF
A →

∑
n anzn

A+ B → A(z) + B(z)
A× B → A(z)B(z)

· · ·

A(z) ≈ τ − C
√
1− z

ρ

↓

an ∼ C′n− 3
2 ρ−n

10/19

Analytic combinatorics

Definition: combinatorial class
A set C equipped with a size function | · | : C → N such
that ∀n,#{c ∈ C; |c| = n} <∞

Specification → Generating Function → Asymptotics

Spec → GF
A →

∑
n anzn

A+ B → A(z) + B(z)
A× B → A(z)B(z)

· · ·

A(z) ≈ τ − C
√
1− z

ρ

↓

an ∼ C′n− 3
2 ρ−n

10/19

Analytic combinatorics

Definition: combinatorial class
A set C equipped with a size function | · | : C → N such
that ∀n,#{c ∈ C; |c| = n} <∞

Specification → Generating Function → Asymptotics

Spec → GF
A →

∑
n anzn

A+ B → A(z) + B(z)
A× B → A(z)B(z)

· · ·

A(z) ≈ τ − C
√
1− z

ρ

↓

an ∼ C′n− 3
2 ρ−n

10/19

SP+ specification

Informal

S = S; | S∥ | S+ | a
S; = (S \ S;) ; (S \ S;) ; · · · ; (S \ S;) (≥ 2 terms)
S∥ = (S \ S∥) ∥ (S \ S∥) ∥ · · · ∥ (S \ S∥) (≥ 2 terms)
S+ = (S \ S+) + (S \ S+) + · · · + (S \ S+) (≥ 2 terms)

Formal

S = Z + S; + S∥ + S+
S; = Seq≥2(S \ S;)
S∥ = MSet≥2(S \ S∥)
S+ = MSet≥2(S \ S+)

symbolic method−→ system of equations…

11/19

SP+ specification

Informal

S = S; | S∥ | S+ | a
S; = (S \ S;) ; (S \ S;) ; · · · ; (S \ S;) (≥ 2 terms)
S∥ = (S \ S∥) ∥ (S \ S∥) ∥ · · · ∥ (S \ S∥) (≥ 2 terms)
S+ = (S \ S+) + (S \ S+) + · · · + (S \ S+) (≥ 2 terms)

Formal

S = Z + S; + S∥ + S+
S; = Seq≥2(S \ S;)
S∥ = MSet≥2(S \ S∥)
S+ = MSet≥2(S \ S+)

symbolic method−→ system of equations…

11/19

SP+ specification

Informal

S = S; | S∥ | S+ | a
S; = (S \ S;) ; (S \ S;) ; · · · ; (S \ S;) (≥ 2 terms)
S∥ = (S \ S∥) ∥ (S \ S∥) ∥ · · · ∥ (S \ S∥) (≥ 2 terms)
S+ = (S \ S+) + (S \ S+) + · · · + (S \ S+) (≥ 2 terms)

Formal

S = Z + S; + S∥ + S+
S; = Seq≥2(S \ S;)
S∥ = MSet≥2(S \ S∥)
S+ = MSet≥2(S \ S+)

symbolic method−→ system of equations…

11/19

The symbolic method for executions

We can do the same for counting the possible executions

Specification → Exponential generating function

A → A(z) =
∑

n an zn
n!

A+ B → A(z) + B(z)

A ⋆ B → A(z)B(z)

A ⋆ B1 →
∫ z
0 A

′(z− u)B(u)du+ A(0)B(z)

1Ordered product [Analco’17]

12/19

Expected results

(⋆) Number of programs
Should be of the form C · n− 3

2 ρ−n

(⋆) Average number of global choices
Should be of the form A · Bn for small B.
(Numerically, in the non commutative case: B ≈ 1.11678)

(⋆ ⋆ ⋆) Average number of executions
(very ugly equations)

13/19

Expected results

(⋆) Number of programs
Should be of the form C · n− 3

2 ρ−n

(⋆) Average number of global choices
Should be of the form A · Bn for small B.
(Numerically, in the non commutative case: B ≈ 1.11678)

(⋆ ⋆ ⋆) Average number of executions
(very ugly equations)

13/19

Expected results

(⋆) Number of programs
Should be of the form C · n− 3

2 ρ−n

(⋆) Average number of global choices
Should be of the form A · Bn for small B.
(Numerically, in the non commutative case: B ≈ 1.11678)

(⋆ ⋆ ⋆) Average number of executions
(very ugly equations)

13/19

Outline

The project

Petri nets

Combinatorial interpretation

Uniform sampling of executions

Goal

Sampling executions uniformly at random in a given SP+
program.

Idea 1: listing of all possible executions? No

Idea 2: expand all the global choices and choose one? No
↪→ [CSR’17] gives an algorithm for the choice-free case

Solution: use the symbolic method to select a global choice
(next slides)

14/19

Goal

Sampling executions uniformly at random in a given SP+
program.

Idea 1: listing of all possible executions? No

Idea 2: expand all the global choices and choose one? No
↪→ [CSR’17] gives an algorithm for the choice-free case

Solution: use the symbolic method to select a global choice
(next slides)

14/19

Goal

Sampling executions uniformly at random in a given SP+
program.

Idea 1: listing of all possible executions? No

Idea 2: expand all the global choices and choose one? No
↪→ [CSR’17] gives an algorithm for the choice-free case

Solution: use the symbolic method to select a global choice
(next slides)

14/19

Goal

Sampling executions uniformly at random in a given SP+
program.

Idea 1: listing of all possible executions? No

Idea 2: expand all the global choices and choose one? No
↪→ [CSR’17] gives an algorithm for the choice-free case

Solution: use the symbolic method to select a global choice
(next slides)

14/19

Algorithm (step 1): specify the executions of the program

a

b

c d

e

g

hi

j

o
f

n

k l

m

15/19

Algorithm (step 1): specify the executions of the program

a

b

c d

e

g

hi

j

o
f

n

k l

m

N ∥ M

↓

N ⋆M

↓

N(z)M(z)

15/19

Algorithm (step 1): specify the executions of the program

a

b

c d

e

g

hi

j

o
f

n

k l

m

c ∥ d

↓

Z ⋆ Z

↓

z · z = 2 · z
2

2!

15/19

Algorithm (step 1): specify the executions of the program

a

b

c d

e

g

hi

j

o
f

n

k l

m

N;M

↓

N ⋆ M

↓∫ z

0
N′(z−u)M(u)du+N(0)M(z)

= 2·z
3

3!

15/19

Algorithm (step 1): specify the executions of the program

a

b

c d

e

g

hi

j

o
f

n

k l

m

b; (c ∥ d)

↓

Z ⋆ (Z ⋆ Z)

↓∫ z

0
u2du = 2 · z

3

3!

15/19

Algorithm (step 1): specify the executions of the program

a

b

c d

e

g

hi

j

o
f

n

k l

m

N+M

↓

(

Yi

N +

Yh

M)

↓

yi

N(z) +

yh

M(z)

15/19

Algorithm (step 1): specify the executions of the program

a

b

c d

e

g

hi

j

o
f

n

k l

m

N+M

↓

(YiN + YhM)

↓

yiN(z) + yhM(z)

15/19

Algorithm (step 1): specify the executions of the program

a

b

c d

e

g

hi

j

o
f

n

k l

m

i+ h

↓

(YiZ + YhZ)

↓

yiz+ yhz = (1 · yi + 1 · yh)
z1
1!

15/19

Algorithm (step 2): backward symbolic method

a

b

c d

e

g

hi

j

o
f

n

k l

m

30yo
z9
9! +90yf

z10
10! +210yg(yh+yi)

z11
11!

y... ← 1

30z
9

9! + 90 z
10

10! + 420 z
11

11!

16/19

Algorithm (step 2): backward symbolic method

a

b

c d

e

g

hi

j

o
f

n

k l

m

30yo
z9
9! +90yf

z10
10! +210yg(yh+yi)

z11
11!

y... ← 1

30z
9

9! + 90 z
10

10! + 420 z
11

11!

16/19

Algorithm (step 2): backward symbolic method

a

b

c d

e

g

hi

j

o
f

n

k l

m

30yo
z9
9! +90yf

z10
10! +210yg(yh+yi)

z11
11!

y... ← 1

30z
9

9! + 90 z
10

10! + 420 z
11

11!

of executions =
540

16/19

Algorithm (step 2): backward symbolic method

a

b

c d

e

g

hi

j

o
f

n

k l

m

30yo
z9
9! +90yf

z10
10! +210yg(yh+yi)

z11
11!

y... ← 1

30z
9

9! + 90 z
10

10! + 420 z
11

11!

P[exec size = 11] = 420
540

16/19

Algorithm (step 2): backward symbolic method

a

b

c d

e

g

i h

j

o
f

n

k l

m

210yg(yh + yi)
z11
11!

There remains to sample an
execution in the resulting

choice-free graph

→ [CSR’17]

17/19

Algorithm (step 2): backward symbolic method

a

b

c d

e

g

i h

j

o
f

n

k l

m

210yg(yh + yi)
z11
11!

There remains to sample an
execution in the resulting

choice-free graph

→ [CSR’17]

17/19

Algorithm (step 2): backward symbolic method

a

b

c d

e

g

i h

j

k l

m

210yg(yh + yi)
z11
11!

There remains to sample an
execution in the resulting

choice-free graph

→ [CSR’17]

17/19

Algorithm (step 2): backward symbolic method

a

b

c d

e

g

i

j

k l

m

210yg(yh + yi)
z11
11!

There remains to sample an
execution in the resulting

choice-free graph

→ [CSR’17]

17/19

Algorithm (step 2): backward symbolic method

a

b

c d

e

g

i

j

k l

m

210yg(yh + yi)
z11
11!

There remains to sample an
execution in the resulting

choice-free graph

→ [CSR’17]

17/19

Analysis of the algorithm

Correction: symbolic method

Worst case complexity (n = size of the graph):

• Step 1: size of the polynomial: O(n2)
• Step 2: number of arithmetic operations on big
integers: O(n2)

• Choice-free algorithm [CSR’17]: O(n2)

18/19

Conclusion

• A class of petri nets that captures the features we want to
study

• A realistic and tractable subclass: SP+
• An efficient uniform random generator of executions

In the future:

• Quantitative results
• Beyond SP+: unfold some choices? Modelling loops?
• Recognize that a petri net is in SP+
• Implement a statistical model checker based on our
random generation techniques

19/19

Conclusion

• A class of petri nets that captures the features we want to
study

• A realistic and tractable subclass: SP+
• An efficient uniform random generator of executions

In the future:

• Quantitative results
• Beyond SP+: unfold some choices? Modelling loops?
• Recognize that a petri net is in SP+
• Implement a statistical model checker based on our
random generation techniques

19/19

Thank you!

Questions?

19/19

Sampling in a choice-free graph

Input: A choice-free SP+
Output: A uniform execution of this program (list of actions)
function SAMPLE_CF(P)

if P = a then
return [a]

else if P = P1 ∥ P2 then
return SHUFFLE(SAMPLE_CF(P1), SAMPLE_CF(P2))

else if P = P1;P2 then
return CONCAT(SAMPLE_CF(P1), SAMPLE_CF(P2))

References i

Olivier Bodini, Matthieu Dien, Antoine Genitrini, and
Frédéric Peschanski.
The Ordered and Colored Products in Analytic
Combinatorics: Application to the Quantitative Study of
Synchronizations in Concurrent Processes.
In 14th SIAM Meeting on Analytic Algorithmics and
Combinatorics (ANALCO), pages 16–30, 2017.

References ii

Olivier Bodini, Antoine Genitrini, and Frédéric Peschanski.
The Combinatorics of Non-determinism.
In IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS
2013), volume 24 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 425–436, Guwahati, India, 2013.

Olivier Bodini, Antoine Genitrini, and Frédéric Peschanski.
A Quantitative Study of Pure Parallel Processes.
Electronic Journal of Combinatorics, 23(1):P1.11, 39 pages,
(electronic), 2016.

References iii

Graham Brightwell and Peter Winkler.
Counting linear extensions.
Order, 8(3):225–242, 1991.
Philippe Flajolet and Robert Sedgewick.
Analytic Combinatorics.
Cambridge University Press, 2009.

	The project
	Petri nets
	Combinatorial interpretation
	Uniform sampling of executions
	Appendix

