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The protagonists

f = an

n∏
i=1

(x − αi ) = anxn + · · ·+ a0

ai ∈ k , a field

n distinct roots (α1, . . . , αn) = α in an algebraic closure of k

2/31 A. Valibouze Galoiseries



Beginning of history since Lagrange

First goal: Exprime the roots by radicals
more than 2000 years before JC: n = 2
antiquity : some equations of degree n = 3
Scipione del Ferro, 1500 : x3 + px − q (Tartaglia, 1535 and
Cardan, 1545)
Ferrari, 1540 and Cardan, 1945 : degree 4
Lagrange, 1770, introduced the Resolvent in order to unified
the solvability methods and to prove that it is not possible to
solve each polynomial by radicals from degree 5.
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The Lagrange Resolvent

Since Lagrange we have a new objet clearly defined

the (Lagrange) resolvent

He writes

Cet examen aura un double avantage ; d’un côté il servira à
répandre une plus grande lumière sur les résolutions connues du
troisième et du quatrième degré ; de l’autre il sera utile à ceux qui
voudront s’occuper de la résolution des degrés supérieurs, en leur
fournissant différentes vues pour cet objet et en leur épargnant
surtout un grand nombre de pas et de tentatives inutiles.

Other reference : Vandermonde, 1771, “Mémoire sur la résolution
des équations” (resolvents, relations, permutations, solvabily)
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The Lagrange Resolvent : idea

Resolvent : an univariate polynomial R = RΘ resulting of an
algebraic transformation Θ of f .

Dihedral resolvent deg(f ) = n = 4 and Θ = x1x2 + x3x4 and

R = (x − (α1α2 + α3α4))(x − (α1α3 +α4α2))(x − (α1α4 +α3α2))

Ferrari: solve degree n = 4 from the solvability in degree
3 = deg(R)

Idea of Lagrange (and Vandermonde): from degree 5, it is not clear
that we can decrease the degree for each polynomial by a resolvent.

The Vandermonde-Lagrange resolvent for the solvability: the n!
roots of R are

εαi1 + ε2αi2 + · · ·+ εnαin

where εn = 1 and {i1, i2, . . . , in} = {1, . . . , n}.
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The Lagrange resolvent : coefficients

Why the coefficients of RΘ belong to k like those of f in k[x ]?

Considere the symmetric orbit of Θ = x1x2 + x3x4:

Sn.Θ = {Θ1 = x1x2 + x3x4,Θ2 = x1x3 + x4x2,Θ3 = x1x4 + x3x2}

Evaluations in roots of f => roots of R :

θ1 = Θ1(α1, . . . , α4) = α1α2 + α3α4 , θ2 = ..., θ3 = ...

R = (x − θ1)(x − θ2)(x − θ3)

The coefficients of R are symmetric polynomials of its roots:

R = x3 − (θ1 + θ2 + θ3)x2 + (θ1θ2 + θ1θ3 + θ2θ3)x − θ2θ2θ2

then symmetric in roots of f too.
By fondamental theorem of symmetric functions the
coefficients of R are algebraic expressions in coefficients of f .
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The Lagrange Resolvent : computation

How computes Lagrange resolvents ? Many effective methods. The
first methods (which are optimised now) given by Lagrange:

By recursive elimination method:
W := x −Θ, For i:=1 to n do W :=Resultant(f (xi ),W , xi ).
Rm is a factor of W computable by some others recursive
elimination methods.
By computing power functions of roots of R :

pi = θi
1 + θi

2 + θi
3

symmetric in the roots of f and deduce the coefficients of R
by Girard-Newton relations.

General and particular resolvents are available in Maxima (AV)
(i3) f:x4 + a3 ∗ x3 + a2 ∗ x2 + a1 ∗ x + a0;
(i9) resolvante_diedrale(f,x);
(o9) x3− a2∗ x2 + (a1∗ a3−4∗ a0)∗ x − a0∗ a32 +4∗ a0∗ a2− a12
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Permutations in Lagrange and Vandermonde

Lagrange proposes to describe the transformation Θ s.t. the
invariance by permutations appear in its expression.
For example, Θ((x1, x3), ...) if Θ leaves unchanged when x1, x3 are
permuted. Actuallly, there are generators of the permutation group
H leaving Θ invariant

Definition: H < L. Θ L-primitive H-invariant if StabL(Θ) = H.

He computes the degree of the resolvent: n! divided by the order of
Stab(Θ) (the group H). It is the index of H in Sn.
Origine of the classical Lagrange formulae: | H | .[L : H] =| L |.
Actually, the (absolute) resolvent of f by Θ is

RΘ =
∏

σ∈Sn/H

(x − σ.Θ(α))

Permutations in Vandermonde

Also in Θ and permutations leaving invariant the relations among
the roots αi .
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From Lagrange to Galois

Abel, 1824-Ruffini, 1799: n = 5, the general equation is not
solvable by radical

Galois, 1831: group of the equation f = 0, the Galois group of f

Galois resolvent (actually, Lagrange used it before)

Θ = t1x1 + · · ·+ tnxn

ti ∈ k pairwise distincts s.t. the n! roots of RΘ are pairwise distinct

R factorises in k-irreducible factors of same degree g and there is a
group G of order g which ”exchanges” the roots of each factor.

Lagrange (Galois) Theorem:

R(θ) = 0 => αi = p(θ)

p univariate polynomial with deg(p) < g , the order of G
i.e. θ is a primitive element of the field of roots of f
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Two essential Galois results

f is solvable by radicals iff G is a solvable group
an algebraic expression γ in roots of f over k belongs to k iff
γ is invariant by G : G .γ = {γ}
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Permute only with the Galois group G

G .γ = {γ} makes sens ?

Γ ∈ k[x1, . . . , xn], γ = Γ(α1, . . . , αn) and σ ∈ Sn, a permutation

It is possible to write

σ.Γ(α) = Γ(ασ(1), . . . , ασ(n))

but σ.γ makes no sens if σ 6∈ G .

f (x) = x3 + 1 α1 = e iπ = −1, α2 = e i π
3 , α3 = e i 5π

3 .

let τ = (2)(1, 3) and γ = α3
2 = α1 (Γ = x2

2 or Γ = x1)

α3
τ(2) = α3

2 = −1 6= ατ(1) = α3 = e i 5π
3

(2)(1, 3) 6∈ G and G 6= Sn

G is the set s.t. an action can be defined (Indetermination theory)
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Artin (father), 1959

Let K = k(α), the field of roots of f ∈ k[x ], k , perfect (think
k = Q)

Galois group G := Gal(K/k): automorphisms of K , leaving k
invariant.
Each element of G is entirely defined by an auto-bijection of
{α1, . . . , αn}.

The galoisian correspondence
Let L be an intermediate field: k ⊂ L ⊂ K .
Then L = {γ ∈ K | H.γ = {γ}} = KH where H subgroup of G
H < G => k ⊂ KH ⊂ K .
H normal in G <=> L is the field of roots of a polynomial of
k[x ] with Gal(L/k) = G/H.

Not constructive point of view
but usefull to anderstand and prove many things as Galois Theorem:
k = k(α)G or G = StabG (k(α))
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Solvability

G solvable group:

G = G0 < G1 < G2 < · · · < Gr =< 1 >

s.t. Gi−1/Gi cyclic of order prime ni
if k0 contains a primitive n-th root of unity then

k0 = k ⊂ · · · ki−1 ⊂ ki · · · ⊂ k(α1, . . . , αn) = kr

ki = ki−1(b) = k(α)Gi where bni = a with a ∈ ki−1

Goal find b and xni − a its minimal polynomial over ki−1 .

In polynomial time: Landau-Miller, 1981 (Imprimitivity blocs of G )

n = 5: Cayley, 1861, Arnaudiès, 1976, Dummit, 1991, . . . .
The meta-cyclic group M5 is the maximal solvable group.
The Cayley resolvent associated to M5 is always square free and
has a linear factor iff G is solvable (i.e. a subgroup of M5)

n = 6: Hagedorn, 2000.
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Alexander Hulpke example: x6 − 3x2 − 1

sage: gp.polgalois(’x6 − 3 ∗ x2 − 1’)
[12, 1, 1,′′ A4(6) = [22]3′′]

G = G0 < G1 < G2 < G3 =< 1 >

n1 = 3,n2 = n3 = 3.

k ⊂ k1 = k(α1 + α2) ⊂ k(α1) ⊂ k(α1, α2) = k(α)

G1 = StabG (α1 + α2) and G2 = StabG (α1)
θ = α1 + α2 is a root of a factor of degree 3 of the resolvent
Rx1+x2 => solvable.
α1 is a root of f1 = x2 − 3/4θ + 2, a factor of f over k1 = k(θ)
=> solvable.
Replace θ by its expression by radicals in the expression of α1
=> Finish for α1.
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On the other Galois result

Γ, a polynomial in x1, . . . , xn over k and γ = Γ(α).

Galois Theorem: γ ∈ k iff γ is invariant by G (i.e. G .γ = {γ})

f = x6 − 3x2 − 1

An algebraic expression in roots: γ = α1 + · · ·+ α6
Γ = x1 + · · ·+ x6 symmetric polynomial => invariant by G
=> γ belongs to k. We have γ = 0 (-coefficient of x5 in f ).
Easy : Fundamental Theorem of symmetric functions !
Conversely : γ = 0 ∈ k => γ invariant by G.
Another expression: γ = α6

1 − 3α2
1 − 1 = f (α1); Γ = f (x1)

σ.Γ(α1) = f (ασ(1)) = f (αi ) = 0 for σ ∈ Sn
=> Γ symmetric relation; Not symmetric polynomial!
=> γ invariant by G => γ ∈ k (γ = 0)
Another expression : γ = α1 + α3. What about ???
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Constructive version of Galois Theorems

Recall : γ = Γ(α), Γ ∈ k[x1, . . . , xn]

Problem 1: G .γ = {γ}?
If G .γ = {γ} how to compute the value γ in k ?
i.e. compute u in k s.t. Γ− u is a relation.

Difficulties: αi are unknown : α1 + α3 is not α1 + α2.
How define the action of G on the roots of f ?
Problem 2 Choose usefull resolvents to determine the Galois
group
Problem 3 Compute resolvents (absolute and relative)
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Solve Problem 3: Computation of Relative resolvents

L a group containing G , H = StabL(Θ)
We have L.Θ instead of Sn.Θ.

L-Relative resolvent of α by Θ

RΘ,L =
∏

Ψ∈L.Θ

(x −Ψ(α))

Coefficients of RΘ,L invariant by L => by G => belong to k .
How to compute algebraically RΘ,L when L 6= Sn ?

First (expensive) solution: with some primitive elements
(Arnaudies-AV, 1993)
We will use galoisian ideal (see later)

Interest of relative resolvents RΘ,L is a factor over k of RΘ,Sn

=> decrease time and space during the computation and precise
the order of roots.
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Solve Problem 2 Determination of the the Galois group

f irreductible Berwick (n = 5, 6, 1915, 1929), Foulkes (n = 7,
1931), Jordan-Stauduhar (1870,1975, graph of subgroups,
implemented in GP-Pari by Eichenlaub), McKay-Soicher
(n ≤ 7, 1981, implemented in Maple by Soicher), .
General case
- The degrees of the factors of resolvents depends only on G
and H and the partition matrice of these degrees determine G
(Arnaudiès-AV, 1993).
- The Galois groups of the factors of RΘ,L depends only on G
and H ; the groups matrice determine rapidly G and is usefull
for the inverse Galois problem (AV, 1995)
Frobenius Theorem: the degrees of the factors of f mod p give
a cycle type of G ; the Galois group of f mod p is a subgroup
of G (see Density Tcheborarev Theorem and McKay-Butler,
1983, McKay, 1979).

To solve Problem 2, absolute resolvents (L = Sn) are sufficient but
the computation is expensive.
We want compute relative resolvents when n increases=> Problem
3 => Problem 1.
Problem 2 is solved but we are not satisfied.
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Solve Problem 1: Cauchy, 1840

Toni Machi showed me this fundamental paper
The Cauchy moduli:

Cn = f (xn),Cn−1 =
Cn(xn−1)− Cn(xn)

xn−1 − xn
, . . .

Ci is a polynomial in variables x1, . . . , xi with degree i in xi .
Close formulae : Machi-AV, 1991

Reduction of Γ modulo the Cauchy moduli:
Compute the remainder pn−1 of Γ = pn by Cn(xn) , the remainder
pn−2 of pn−1 by Cn−1(xn−1), . . . , the remainder p1 of p2 by C1(x1).

Cauchy Theorem Γ symmetric polynomial => p1 ∈ k and γ = p1.

Theorem S the set (an ideal) of symmetric relations is generated
by the Cauchy moduli (a Gröbner basis)

Γ− p1 ∈ S and γ = p1(α)

Nullestellenstazt (Hilbert): Γ ∈ S iff p1 = 0
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Solve Problem 1: Tchebotarev, 1950

We search a constructive method for Galois theorem.
Toni Machi showed me this fundamental book of Tchebotarev
- f1(x) a factor of f (x) over k = k0, α1 a root of f1
- f2 a factor of f over k1 = k(α1), α2 6= α1 a root of f2
- f3 a factor of f over k2k(α1, α2), α3 a root of f3

...
- fn a factor of f over kn−1 = k(α1, . . . , αn−1), αn a root of fn.

Fi multivariate polynomial s.t. Fi (α1, . . . , αi ) = fi (αi ).
F1, . . . ,Fn : fundamental moduli.

Let p1 the reduction of Γ modulo Fn(xn), . . . ,F1(x1)

Theorem: p1 ∈ k iff γ ∈ k and p1 = γ.

We can test if γ is invariant by G and compute its value in k .
Problem 1 is solved !... when Fi are computed ...
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Example

(i14) factor(x6 + 2); (o14) x6 + 2
Then F1 = x6

1 + 2, α1 a root of F1.

Factorize f over k(α1) ≡ k[x1]/ < f (x1) >
(i16) factor(x6 + 2, x16 + 2);
(o16) (x − x1) ∗ (x + x1) ∗ (x2− x ∗ x1+ x12) ∗ (x2 + x ∗ x1 + x12)
We can choose F2 = x2 + x1 and F3 = x2

3 − x3x1 + x2
1

- α2 = −α1 the root of f2 = x + α1 = x − α2
- α3 a root of f3 = x2 − α1x + α2

1 = (x − α3)(x − α4)
Then F4 = x4 + x3 − x1 and k(α1, α2, α3, α4) = k(α1, α3).
x2 + xα1 + α2

1 = (x − α3 + α1)(x + α3) over k(α1, α3)
(computable in Sage or Magma)
Then F5 = x5 + x1 − x3 and F6 = x6 + x3

The last extension has degree | G |= dimkk(α)
Problem 4 Compute efficiently (without factorize on big
extensions).
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Compute with fundamental moduli

f = x6 + 2

Fundamental moduli
F1 = x6

1 + 2,F2 = x2 + x1,F3 = x2
3 − x3x1 + x2

1
F4 = x4 + x3 − x1,F5 = x5 + x1 − x3,F6 = x6 + x3

Roots : α1, . . . , αn s.t. F (α) = 0 (not any order !!!).

Solvablity Yes! α1 = 6
√
2

degrees 1,2,1,1,1 of fi are < 6:
α2 = −α1, 2α3 = α1 − i

√
3α1 = −2α6, α4 = α1 − α3 = −α5

Normal form p1 of Γ: degxi (p1) < degxi (Fi ) and Γ(α) = p1(α).

Examples:
- γ = α1 + α3; Γ = p1 = x1 + x3 => γ not invariant by G , γ 6∈ k .
- γ = α2

2 + α1

Γ = p6 = · · · = p3 = x2
2 + x1 = (x2 − x1)F2 + x2

1 + x1

Then p2 = p1 = x2
1 + x1 6∈ k . Thus γ 6∈ k .
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The Galois group ; point of view of Vandermonde, 1771

f = x6 + 2

Fundamental moduli
F1 = x6

1 + 2,F2 = x2 + x1,F3 = x2
3 − x3x1 + x2

1
F4 = x4 + x3 − x1,F5 = x5 + x1 − x3,F6 = x6 + x3

The Galois group G of α makes sens: the set of permutations σ s.t.

Fi (ασ(1), . . . , ασ(n)) = 0 i = 1, . . . , n

| G |= degx1(F1) · · · degxn(Fn) = 12 and G transitive

=> G is a conjugate of D6 or of A4(6)+. With Fi we obtain

G =< σ = (1, 3)(2, 6)(4, 5), (1, 2, 4)(3, 6, 5), (2, 4)(5, 6) >

Note Easy to compute F5,F6 from F2 and F4 without
factorisations:

F5 = σ.F4 F6 = σ.F2

=> Systematic deductions from informations on G
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The ideal of α-relations

γ = Γ(α) = p1(α) where p1 is the normal form of Γ
p1 ∈ k iff Γ− p1 is an α-relation : Γ(α)− p1 = γ − p1 = 0

Let M the set (maximal ideal) of α-relations : r(α1, . . . , αn) = 0.

Definition: The Galois group of α (not f !) is the Stabilisator of
the ideal M

G = {σ ∈ Sn | r(α) = 0 => σ.r(α) = 0}

Theorem: The fundamental moduli form a separable triangular
basis of M (a Gröbner basis).
Theorem (Aubry-AV, 1998): The initial degrees of Fi are
respectively the cardinality of some subgroups of G.
If G is known => Compute the initial degree by Theorem 3.
If Fi are known => Compute G (Theorems 1 and 3).
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Galoisian ideal, AV, 1995

- α = (α1, . . . , αn)
- L ⊂ Sn, not necessary a group.
Galoisian ideal of α defined by L:

I L = {P ∈ k[x1, . . . , xn] | σ.P(α) = 0}

Theorem GL is the stabilizer of I L and Zero(I L)=GL.α

as IGL = I L we can suppose L = GL

Theorem Γ invariant by L => the reduction p1 of Γ modulo I L

belongs to k and γ = p1.

It not necessary to known M to compute the value of γ in k .

Theorem (Aubry-AV, 1998) If L is a group containing G then I L is
generated by a separable triangular ideal.
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Galoisian correspondence on galoisian ideals

Symmetric relations ideal: S = I Sn

α-relation ideal: M = I In = I L = IG for each subset L of G .

S ⊂ I L ⊂M

with Stab(M) = G ⊂ Stab(I L) ⊂ Stab(S) = Sn

if
S ⊂ I ⊂M

then I galoisian ideal with Sn ⊂ Stab(I L) ⊂ G .
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Compute relative resolvents

Put I := I L

I -Relative resolvent: RΘ,I = RΘ,L already defined when L is a group
containing G .

Coefficients of RΘ,I invariant by G => belong to k .

- Aubry-AVB: by elimination (1998, 2009) and by multi-modular
computation (2010) when I triangular

- Abdeljaouad-Bouazizi-AVB: by effectiveness of Galois Theorem
(2010), by algebraic certification of the numerical method (2010).

=> Problem 3 solved=> efficient determination of G with
algebraic method (see GaloisianIdeal Algo)
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Galois theory and linear algebra

we have
Rh

Θ,I = χΘ,I

where h =| H | and χΘ,I is the characteristic polynomial of the
mutiplicative endomorphism of k[x1, . . . , xn]/I induced by Θ
=> RΘ,I ∈ k[x ] (k perfect field), by linear albebra without use the
Galois group

=> When I = M and RΘ,I is the Galois resolvent, we can prove
easely Galois theorems.

As k(α1, . . . , αn) isomorphic to k[x1; . . . , xn]/M and
√

M = M

(galoisian ideal are radical),

we have this classical result: | G |= [k(α) : k]
Actually

| G |=| Zero(M) |= dimk(k[x1; . . . , xn]/M) = [k(α) : k]

=> Galois theory can be view as linear algebra
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GaloisianIdeal Algorithm, AV

Compute M from S:
Construct a chain of galoisian ideals:

S ⊂ I1 ⊂ I2 · · · ⊂M

with Primitive element Theorem(AV, 1995) on galoisian ideals:

Ii+1 = Ii+ < h(Θ) >

where h(x) is a factor of a some relative resolvent RΘ,Ii of α
computed with Ii as explained before

The relative resolvent RΘ excludes groups as Galois group (groups
matrices, AV, 1995)

Resolvents are usefull to compute generators of galoisian ideals and
find Galois groups.

=> M and G are computed simultaneously

Other similar work: Ducos and Quitté, 2000
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Other methods to compute M

- Multivariate Interpolation (Burberger-Möller algorithm for
Gröbner basis): Lederer, 2004 (G is known), McKay-Stauduhar,
1996 (linear relations only)
- Linear method: Yokoyama, 1999
- p-adic method : Yokoyama, 1994
- Mixed method with pre-computation of Fi from permutations and
euclidean division (very efficient): Orange-Renault-AV, 2003; AV,
2008.
- Dynamic methods: Lombardi and Diaz-Toca, 2009
. . . ...

See manuscrit of Toni Machi on the Web

Conclusion:

Mixe all the methods in a parallel and collaborative computation is
the better method
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Thanks Toni!

Toni

J’ai pu travailler fructueusement à partir de documents précieux
que tu m’as fait découvrir. Merci pour ta collaboration et ta
bienveillance depuis plus de 20 ans.
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