
Digital Object Identifier (DOI) 10.1007/s00200-004-0160-x
AAECC (2004)

Computation of the Decomposition Group
of a Triangular Ideal

I. Abdeljaouad-Tej1, S. Orange2, G. Renault2, A. Valibouze2

1 École Supérieure de la Statistique et de l’Analyse de l’Information à l’INSAT, Boulevard de la
Terre, Zone Urbaine Nord Tunis, BP 675, 1080 Tunis, Tunisie
(e-mail: Ines.Abdeljaoued@insat.rnu.tn)
2 LIP6 - Université Pierre et Marie Curie, 4, place Jussieu, 75005 Paris, France
(e-mail: {orange, renault, valibouze}@calfor.lip6.fr)

Received: July 1, 2003; revised version: June 10, 2004
Published online: October 15, 2004 – © Springer-Verlag 2004

Abstract. This article describes two algorithms in order to search decompo-
sition groups of ideals of polynomials with coefficients in a perfect field when
those ideals are generated by a triangular system of generators.

Keywords: Triangular Ideal, Strong Generating Set

Introduction

Let K[X1, . . . , Xn] be a multivariate polynomial ring over a perfect field K

and I a triangular ideal of this ring. We have a canonical action of Sn over
K[X1, . . . , Xn]. We are interested in computation of Dec(I) the set of permu-
tations which leaves I globally invariant. Actually, this set is a group called the
decomposition group of I consistently with the classical definition on prime
ideals (see [4, Définition 2 page 36]).

In the specific case where I is a relations ideal of f an irreducible poly-
nomial f of degree n, Anai, Noro and Yokoyama give in [1] an algorithm for
Dec(I) computation which is, up to an isomorphism, the Galois group of f .
They bound by O(n4) the number of normal forms computations needed by
their algorithm.

Our algorithm includes the backtracking technique (see [5]) in order to
compute a strong generating set of Dec(I) (see Section 3). This algorithm uses
the naive algorithm of Section 2 as a subroutine. Recall that a strong generating
set E of a group G ⊂ Sn is a set of permutations verifying: for all i ∈ [[1, n]],
FixG({a1, . . . , ai}) ∩ E generates FixG({a1, . . . , ai}) (see [5]).

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL --File Options: Compatibility: PDF 1.2 Optimize For Fast Web View: Yes Embed Thumbnails: Yes Auto-Rotate Pages: No Distill From Page: 1 Distill To Page: All Pages Binding: Left Resolution: [600 600] dpi Paper Size: [595 842] PointCOMPRESSION --Color Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitGrayscale Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitMonochrome Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 600 dpi Downsampling For Images Above: 900 dpi Compression: Yes Compression Type: CCITT CCITT Group: 4 Anti-Alias To Gray: No Compress Text and Line Art: YesFONTS -- Embed All Fonts: Yes Subset Embedded Fonts: No When Embedding Fails: Warn and ContinueEmbedding: Always Embed: [] Never Embed: []COLOR --Color Management Policies: Color Conversion Strategy: Convert All Colors to sRGB Intent: DefaultWorking Spaces: Grayscale ICC Profile: RGB ICC Profile: sRGB IEC61966-2.1 CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data: Preserve Overprint Settings: Yes Preserve Under Color Removal and Black Generation: Yes Transfer Functions: Apply Preserve Halftone Information: YesADVANCED --Options: Use Prologue.ps and Epilogue.ps: No Allow PostScript File To Override Job Options: Yes Preserve Level 2 copypage Semantics: Yes Save Portable Job Ticket Inside PDF File: No Illustrator Overprint Mode: Yes Convert Gradients To Smooth Shades: No ASCII Format: NoDocument Structuring Conventions (DSC): Process DSC Comments: NoOTHERS -- Distiller Core Version: 5000 Use ZIP Compression: Yes Deactivate Optimization: No Image Memory: 524288 Byte Anti-Alias Color Images: No Anti-Alias Grayscale Images: No Convert Images (< 257 Colors) To Indexed Color Space: Yes sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [576.0 792.0] /HWResolution [600 600]>> setpagedevice

I. Abdeljaouad-Tej et al.

In Section 4, we generalize Theorem 5 of [1] to the case of Galois ideal
and we prove, in Section 5.1, that the number of normal forms computations
needed by our algorithm is bounded by O(n3). In Section 5.2, we give an heu-
ristic comparison of our algorithms and the one given in [1], in the case of
Galois ideals (see Section 5.2).

Notations

In this paper, the following notations are used:

• K[X1, . . . , Xn] is the polynomial ring over a perfect field K in n algebraic
independent variables X1, . . . , Xn ;

• I is an ideal of K[X1, . . . , Xn] generated by a triangular set of n polynomials
in K[X1, . . . , Xn]:

S = {f1(X1), f2(X1, X2), . . . , fn(X1, X2, . . . , Xn)};
• for all subsets A of the set {1, . . . , n} and for all subgroups G of Sn, FixG(A)

is the pointwise stabilizer of G in A, which is the subgroup composed by all
permutations σ in G verifying ∀i ∈ A, σ (i) = i;

• for any non empty set E of Sn, 〈E〉 is the subgroup generated by E .

1. Decomposition Group and Ideal Membership Test

The symmetric group Sn acts naturally on the ring K[X1, . . . , Xn]: for all P ∈
K[X1, . . . , Xn] and for all σ ∈ Sn, we define σ.P by

σ.P (X1, . . . , Xn) = P(Xσ(1), . . . , Xσ(n)).

For this group action, the stabilizer Dec(I) of the ideal I is called its decom-
position group:

Dec(I) = {σ ∈ Sn | ∀P ∈ I, σ.P ∈ I }.
In order to test whether P , a polynomial, belongs to I , the triangular ideal, we
will use the following classical result (see [7]):

Let P ∈ K[X1, . . . , Xn] and (ri)i∈[[1,n]] the sequence of K[X1, . . . , Xn]
inductively defined by: rn = P and, for all i ∈ [[2, n]], ri−1 is the rest of
the euclidean division of ri by fi relatively to the variable Xi . The following
equivalence holds:

(P ∈ I) if and only if (r1 = 0).

The polynomial r1 is usually called the normal form of P with respect to S, the
triangular basis chosen for I .

Computation of the Decomposition Group of a Triangular Ideal

2. Computing all the Permutations of the Group Dec(I)

Since {f1, f2, . . . , fn} is a generating system of the ideal I , the decomposition
group can be written:

Dec(I) = {σ ∈ Sn | ∀i ∈ {1, . . . , n}, σ.fi ∈ I }.
Thus:

σ ∈ Dec(I) iff

f1(Xσ(1)) ∈ I

f2(Xσ(1), Xσ(2)) ∈ I
...

fn(Xσ(1), . . . , Xσ(n)) ∈ I

{∗}

Let the condition set P = {P1, . . . , Pn} be: for all r ∈ [[1, n]]:

Pr(a1, . . . , ar) is true if fr(Xa1, Xa2, . . . , Xar
) ∈ I.

Our first algorithm, named DecompositionGroup, uses equivalence
{∗} and can be described in the following way:

• The first step of the algorithm computes all possible values a1 ∈ {1, . . . , n}
verifying P1(a1) and the second step is applied to each of these values.

• At the r th step (2 ≤ r ≤ n), the algorithm has found r − 1 distinct values
a1, . . . , ar−1 such that ∀i ∈ [[1, r − 1]], Pi(a1, a2, . . . , ai) is true. The
algorithm computes all possible values ar taken among the set {1, . . . , n}\
{a1, . . . , ar−1} and verifying Pr(a1, . . . , ar). The next step is applied to
each of the sequences a1, . . . , ar .

• When r = n + 1, the algorithm has found σ = (
1 ··· n
a1 ··· an

)
, a permutation

belonging to the group Dec(I).

Algorithm 2.1
Function DecompositionGroup(P)

/*
Input : The condition set P defined above.

Output : The decomposition group of the ideal I .
*/
Return ConstructionOfPermutations (1, [], {Id}, P);
End Function

Function ConstructionOfPermutations (r ,[a1, . . . , ar−1],G,P)
/*

Input : . r an integer of [[1, n + 1]].
. [a1, . . . , ar−1] a list of distinct integers from {1, . . . , n}, for which are searched the suffix lists

[ar , . . . , an] such that
(

1 ··· n
a1 ··· an

)
∈ Dec(I).

. G a set containing the already found permutations belonging to Dec(I).

. The condition set P .

Output : . The group Dec(I).
*/

I. Abdeljaouad-Tej et al.

If r = n + 1 Then
. G := G ∪ {(1 ··· n

a1 ··· an

)}; /*
(

1 ··· n
a1 ··· an

)
belongs to Dec(I) */

Else
. For All a ∈ {1, . . . , n}\{a1, . . . , ar−1} Do
. . /* The possible images a of r are then searched */
. . If Pr(a1, . . . , ar−1, a) Then
. . G := ConstructionOfPermutations (r + 1, [a1, . . . , ar−1, a],
. . G, P);
. . End If ;
. End For;
End If ;
Return G;
End Function

At the r th step (r ∈ [[1, n]]), the function ConstructionOfPermuta-
tions realizes at least n + 1 − r recursive calls; this insures the algorithm
ending. A permutation σ will be added to G if it verifies the n conditions {∗};
thus the set returned by the Function DecompositionGroup is the group
Dec(I).

Example 2.2 Let I be a Galois ideal of Q[x1, . . . , x6] (see Definition 4.3) gen-
erated by the polynomials:

f1(x1) = x6
1 − x5

1 − 10x4
1 + x3

1 + 12x2
1 − 3x1 − 1,

f2(x1, x2) = 17x2 − 5x5
1 + 4x4

1 + 44x3
1 + 14x2

1 + 4x1 − 8,

f3(x1, x2, x3) = 17x2
3 − 8x3x

5
1 + 3x3x

4
1 + 84x3x

3
1 + 36x3x

2
1 − 65x3x1

−6x3 − 29x5
1 + 13x4

1 + 296x3
1 + 139x2

1 − 276x1 − 77,

f4(x1, . . . , x4) = 17x4 + 17x3 − 8x5
1 + 3x4

1 + 84x3
1 + 36x2

1 − 65x1 − 6,

f5(x1, . . . , x5) = 17x2
5 + 13x5x

5
1 − 7x5x

4
1 − 128x5x

3
1 − 50x5x

2
1 + 78x5x1

−3x5 + 11x5
1 − 19x4

1 − 107x3
1 + 95x2

1 + 168x1 − 115,

f6(x1, . . . , x6) = 17x6 + 17x5 + 13x5
1 − 7x4

1 − 128x3
1 − 50x2

1 + 78x1 − 3 .

Algorithm 2.1 runs through the full tree of Figure 1, in which, for each node,
it tests whether a permuted polynomial belongs to I :

In this example, many computations are useless. For instance, (3; 4)(5; 6)

belongs to the group 〈(3; 4), (5; 6)〉 ; in the same way (1; 2)(3; 5; 4; 6), (1; 2)

(3; 6; 4; 5) and (1; 2)(3; 6)(4; 5) belong to the group 〈(3; 4), (5; 6),

(1; 2)(3; 5)(4; 6)〉. To look for an other algorithm computing only a set of gen-
erators for Dec(I) appears natural. We remark that Algorithm 2.1 determines
successively the increasing sequence of pointwise stabilizer:

FixDec(I)({1, . . . , 6}) < · · · < FixDec(I)({1, 2}) < F ixDec(I)({1}).

Computation of the Decomposition Group of a Triangular Ideal

1

2

3

4

5

6

1

2

3
4
5
6

3
4
5
6

4
5
6
3
5
6

3
4
5
6

3
4
5
6

3
4
6
3
4
5

3

5
6

5
6

4

3
4

 σ(1) σ(2) σ(3) σ(4) σ(5)

(5;6)

(3;4)
(3;4)(5;6)

(1;2)(3;5)(4;6)
(1;2)(3;5;4;6)

(1;2)(3;6)(4;5)
(1;2)(3;6;4;5)

Id
 σ(6)

6
5

6
5

4
3

4
3

5
6

2
1

3
5
6

2
1

3
4
5

2
1

3
4
6

2
1

4

Fig. 1. Full tree

3. Determination of a Generating set for Dec(I)

In the case Dec(I) = Sn, Algorithm 2.1 presents the double disadvantage to
realize n! membership tests to the ideal I and to stock n! permutations, which
can compromise the computation.

In this section, we focus on the determination of a generating set of Dec(I).
Thus, when Dec(I) = Sn, the algorithm will compute only n(n + 1)/2 − 1
membership tests to I in order to determinate a generating set composed by
n − 1 transpositions.

3.1. Notation

For now on, k is an integer of [[1, n]].
Let G0 be the group Dec(I) and Gk be the group FixG0({1, . . . , k}). For

all subgroup L of Sn, OrbL(k) is the L-orbit of k.
Algorithm 2.1 determines successively all the increasing sequence terms:

{Id} = Gn < Gn−1 < · · · < G2 < G1 < G0.

This algorithm constructs the group Gk−1, for all k ∈ [[1, n]], by adding to Gk

the elements of Gk−1\Gk. In order to avoid the computation of all the permu-
tations of Gk−1\Gk, the propositions of Section 3.2 permit the construction of
a Gk−1 generating set from any Gk generating set. And so on, up to obtaining
a G0 strong generating set.

I. Abdeljaouad-Tej et al.

3.2. Construction of a Generating set

Given a generating set of L a group such that Gk ⊂ L ⊂ Gk−1 and a
permutation of Gk−1 (determined Algorithm 2.1), we construct a generating
set of L′ a group strictly containing L (Proposition 3.1). Iterating this process,
we determinate an increasing chain of groups between Gk and Gk−1 (Algorithm
3.7). Each group will be represented by a generating set.

Proposition 3.1 Let L be a subgroup of Sn such as Gk ⊆ L ⊆ Gk−1. Let G be
a generating set of L and O an L-orbit of {1, . . . , n} included in {k+1, . . . , n}.

Let E be the set {σ ∈ Gk−1 | σ(k) ∈ O} and L′ = 〈L∪E〉. If E is not empty
then the group L′ strictly contains L and is generated by G ∪ {σ } for any σ

in E .

Proof. Let σ ∈ E . Since G ∪ {σ } generates 〈L ∪ {σ }〉 and 〈L ∪ E〉 generates
L′, it is sufficient to prove that any permutation of the set L ∪ E belongs to the
group 〈L ∪ {σ }〉. Let σ ′ be a permutation of L ∪ E .

If σ ′ ∈ L, the result is immediate.
If σ ′ ∈ E then the integers σ ′(k) and σ(k) belong to the orbit O. Then,

there exists τ ∈ L such that τ(σ (k)) = σ ′(k), thus σ−1(τ−1(σ ′(k))) = k. The
permutation ρ = σ−1τ−1σ ′ belongs to Gk−1 (like σ, τ and σ ′) and fixes k. Then
ρ ∈ Lk ⊂ L because

Gk = FixGk−1(k).

Thus, σ ′ = τσρ and σ ′ is a product of σ and of two elements of L. �

Remark 3.2 We take the notations of Proposition 3.1. Let a be Min(O), the
minimal integer of O. It can be easily proved that, if E is not empty, there exists
σ ∈ E such that σ(k) = a. Therefore, searching a permutation of E can be
restricted to searching the one sending k to a.

The following lemma is a consequence of Lagrange’s Theorem:

Lemma 3.3 Let L be a subgroup of Sn verifying Gk ⊆ L ⊆ Gk−1. Then:

Card(L) = Card(Gk) . Card(OrbL(k)) .

Proposition 3.4 gives conditions to test the equality L = Gk−1 (see
Algorithm 3.8). Its proof and also the proof of theoreme 3.4 are two simple
consequences of Lemma 3.3.

Proposition 3.4 Let L be a subgroup of Sn verifying Gk ⊆ L ⊆ Gk−1. Then

1. either, no L-orbit of {1, . . . , n} is included in {k + 1, . . . , n} and, in this
case, L = Gk−1.

Computation of the Decomposition Group of a Triangular Ideal

2. or, let O = {O1, . . . , Or} be the non empty set of the L-orbits of {1, . . . , n}
included in {k + 1, . . . , n}; if, for all i ∈ {1, . . . , r}, there is no σ ∈ Gk−1

such that σ(k) ∈ Oi then L = Gk−1 else L �= Gk−1.

To construct a group chain between Gk and Gk−1, we need to determine the
orbits of {1, . . . , n} under the action of the subgroup L′ = 〈{σ }∪L〉 mentioned
in Propositions 3.1. Proposition 3.5 allows this determination from the L-orbits.

Proposition 3.5 Let O be the set of the orbits of {1, . . . , n} under the action of
the subgroup L of Sn and O ∈ O. Let σ be a permutation of Sn and denote by
L′ the subgroup generated by {σ } ∪ L.

Let (Er)r∈N and (Pr)r∈N be the sequences recursively defined by:

• E1 = O and P1 = (σ.E1) ∪ E1;
• For all k ∈ N∗,

Ek+1 = ∪{O ′∈O | O ′∩Pk �=∅}O ′ and Pk+1 = (σ.Ek+1) ∪ Ek+1 .

Then, the sequence (Ek)k∈N∗ is stationary from an index k0 on and the set Ek0

is the orbit of {1, . . . , n} under the action of L′ such that O ⊂ Ek0 .

Proof. Since the sub-sequences (Ek)k∈N∗ and (Pk)k∈N∗ of {1, . . . , n} are increas-
ing for inclusion, they are stationary from an index k0 on. It can be easily proved
that Ek0 is stable under both σ and L actions. Then, Ek0 can be written as a
union of L′-orbits. By trivial recurrence on k, each Ek is included in the L′-orbit
containing O. Consequently, Ek0 is the L′-orbit containing O. �

3.3. Algorithm for Computing a Generating set of G0

We define a function NewOrbits witch determines the orbits of {1, . . . , n}
under the action of L′ = 〈L ∪ {σ }〉. They are computed by generating the
sequences (Ek)k∈N∗ and (Pk)k∈N∗ mentioned in Proposition 3.5 .

Algorithm 3.6 (Synopsis)
Function NewOrbits (orbits,σ)
/*

Input : . orbits, the set of orbits of {1, . . . , n} under the action of L, a subgroup of Sn.
. σ a permutation of Sn.

Output : . the set of orbits of {1, . . . , n} under the action of 〈L ∪ {σ }〉.
*/

Consider FindAPermutation, the function based on the same algorithm
than the function ConstructionOfPermutations (see Algorithm 2.1),

I. Abdeljaouad-Tej et al.

returning a permutation of the group G0, when it exists, and the identity
otherwise. Note that, the formal parameter G appearing in Construct-
ionOfPermutations which represents a set of permutations is replaced
in FindAPermutation by a parameter representing a permutation.

The next function From Gk to G(k-1) constructs inductively from Gk

a finite and increasing sequence of groups:

Gk = L0 < L1 < · · · < Lm = Gk−1

each group is represented by a generating set of permutations.
Let L be one of the groups Li , where i ∈ [[0, m]], represented by G, a gen-

erating set. This function determines, when it exists, a permutation of Gk−1\L
which, together the elements of G, make up a generating set of a new group
Li+1 = L′. And so on, until no new permutation can be found and, in this case,
L = Gk−1.

The explicit method to compute L′ from L is described below.
Let (O1, . . . , Or) be the L-orbits of {1, . . . , n}. Then:

Case 1. None of the orbits is included in {k + 1, . . . , n}; then L = Gk−1

(case 1. Proposition 3.4).
Case 2. Let O ′

1, . . . , O
′
s be the L-orbits included in {k + 1, . . . , n}; the

function From Gk to G(k-1) tries to find an integer i in [[1, s]]
and a permutation σ ∈ Gk−1\Gk verifying σ(k) = Min(O ′

i). The
determination of such a permutation is done by the call:

FindAPermutation(k + 1, [1, . . . , k, Min(O ′
i)], Id, P).

For i ∈ [[1, s]], we set Ei = {σ ∈ Gk−1\Gk | σ(k) ∈ O ′
i}.

There are two sub-cases:

Case 2.1. For all i ∈ [[1, s]], there is no permutation σ ∈ Gk−1\Gk verifying
σ(k) = Min(O ′

i); from Remark 3.2, this is equivalent to

∀i ∈ [[1, s]], Ei = ∅.

Then L = Gk−1 (case 2. Proposition 3.4).

Case 2.2. There exists i0 ∈ [[1, s]] such that σ(k) = Min(O ′
i0
). In this case,

the group L′ = 〈L ∪ Ei0〉 is generated by the set of permutations
G ′ = G ∪ {σ } (see Proposition 3.1).

IfL = Gk−1, the process is finished. Otherwise, FunctionFrom Gk to G(k-1)
is recursively called with, as new arguments, the set of permutations G ′ and the
L′-orbits of {1, . . . , n} determined by using the function NewOrbits.

Computation of the Decomposition Group of a Triangular Ideal

Algorithm 3.7
Function From Gk to G(k-1)(k, G, orbits, P)
/*

Input : . k, the index of the group Gk .
. G, the list used to stock the elements of a generating set of Gk−1 and equals to a generating set of Gk at the first
call.
. orbits, the set of the orbits of {1, . . . , n} under the action of Gk .
. The condition set P = (P1, . . . , Pn) described in Section 2.

Output : . G, a generating set of Gk−1.
. orbits, the set of the orbits of {1, . . . , n} under the action of Gk−1.

*/
elts := {Min(O) | O ∈ orbits and O ⊂ {k + 1, . . . , n}};
While elts �= ∅ Do
. a := Min (elts);
. elts := elts \ {a} ;
. If Pk(1, 2, . . . , k − 1, a) Then (Condition C)

. . σ := FindAPermutation(k + 1, [1, 2, . . . , k − 1, a],Id,P);

. . If σ �= Id Then

. . . G := G ∪ {σ };

. . . orbits := NewOrbits(orbits, σ);

. . . elts := {Min(O) | O ∈ orbits and O ⊂ {k + 1, . . . , n}};

. . End If ;

. End If ;
End While;
Return G, orbits;
End Function;

The following function constructs the increasing and finite sequence of groups

{Id} = Gn < Gn−1 < · · · < G2 < G1 < G0.

Each generating set of these groups is computed by From Gk to G(k-1).
In addition, the decomposition group order is computed ; this will be used in
Sections 4 and 5.

Algorithm 3.8
Function Generators(P)

/*
Input : . The condition set P described in Section 2.

Output : . The integer, Cardinal, which is the order of Dec(I);
. A list G of generators of the group Dec(I).

*/
G := {IdSn

};
orbits := {{1}, . . . , {n}};
k := n − 1;
Cardinal := 1;
While k �= 0 Do
. G, orbits := From Gk to G(k-1)(k, G, orbits, P);

I. Abdeljaouad-Tej et al.

. Cardinal := Card(OrbGk
(k + 1)) ∗ Cardinal;

. k := k − 1;
End While ;
Return Cardinal, G;
End Function;

Remark 3.9 The computation of Card(G0) uses the equality which is the di-
rect consequence of the Lemma 3.3:

Card(G0) =
n−1∏

i=0

Card(OrbGi
(i + 1)) .

Remark 3.10 A straightforward recurrence shows that, for each step,

Card(G) + Card(orbits) = n + 1.

Hence, the cardinal of the generating set returned by this algorithm is at most n.

Example 3.11 Let I6T 3 be the ideal of Example 2.2.
The recursive algorithm 3.8 returns the list [Id, (5, 6), (3, 4), (1, 2)(3, 5)

(4, 6)] by running through the partial tree of Figure 2. It does 32 membership
tests to the ideal I6T 3; in Algorithm 2.1, 64 were necessary.

4. Decomposition Group and Galois Ideals

Definition 4.1 An ideal is said to be triangular if it is radical and generated
by a triangular set of generators.

Let K̂ be an algebraic closure of K . Let from now on I be triangular. Let V (I),
its variety (i.e. the set of its zeros in K̂n). Then its cardinal �(I) is:

�(I) =
n∏

i=1

degXi
(fi),

(see [2] for example). Proposition 4.2 is a direct consequence of this equality.

Proposition 4.2 Let I be a triangular ideal. The decomposition group Dec(I)

acts faithfully on the variety V (I) and:

Card(Dec(I)) ≤ �(I) . (4.1)

When equality holds, the variety V (I) is uniquely determined by α ∈ K̂n any
of its elements and by Dec(I) because:

Computation of the Decomposition Group of a Triangular Ideal

1

2

3

1

2

3
4
5

3
4
5

4
5

3
3

5

3
4
6

3

5

5
6

 σ(1) σ(2) σ(3) σ(4) σ(5)

(5;6)

(3;4)

(1;2)(3;5)(4;6)

Id
 σ(6)

6
5

6

4

5
6

2
1
4

Fig. 2. Partial tree

V (I) = Dec(I).α .

In this case, we say that I is a pure Galois ideal.
We are interested in testing whether I is a pure Galois ideal and then to

compute Dec(I). Algorithm 3.8 can be used to do this task but so much useless
computation is done. Hereafter, we show how to specialize this algorithm for
this particular problem.

A first observation is that I is a pure Galois ideal if it is at least a Galois ideal:

Definition 4.3 Let I be an ideal of K[X1, . . . , Xn] and α = (α1, . . . , αn) in
V (I). The ideal I is said to be an α-Galois ideal if the two following conditions
hold:

(1) if i �= j then αi �= αj ;
(2) there exists L, a subset of Sn such that

I = {f ∈ K[X1, . . . , Xn] | f (σ.α) = 0 ∀σ ∈ L}.
Such an ideal is denoted by IL

α and the set L is called its α-injector if L is the
maximal set satisfying condition (2).

Definition 4.4 Let σ be a permutation of Sn and t ∈ [[1, n]]. The first t-part of
σ is the sequence (σ (1), . . . , σ (t)).

Theorem 4.5 Let I be a Galois ideal generated by the triangular set:

T = {f1, f2, . . . , fn} .

I. Abdeljaouad-Tej et al.

Let α be a zero of I and L its α-injector. Let t ∈ [[1, n − 1]] and {c1, . . . , ct} be
a t-subset of {1, . . . , n}. Let D be the product degxt+1(ft+1) · · · degxn

(fn).
For all i ∈ [[1, t]], fi(αc1, . . . , αci

) = 0 if and only if there exists an element
σ ∈ L with (c1, . . . , ct) as first t-part.
More precisely, there are exactly D many of these permutations in L.

Proof. Let t be an element of [[1, n − 1]]. Since the variety V of I is equipro-
jectable (see [2]), each element β in the variety of the ideal 〈f1, f2, . . . , ft〉 is
the projection on the first t coordinates of D elements in V .
The one-to-one map between V and L gives the result. �

Remark 4.6 In the particular case where I is a maximal Galois ideal, we obtain,
as a corollary, Theorem 5 of [1].

The following proposition is the key for the improvement of Algorithm 3.8
in order to test if I is a pure Galois ideal and then to compute its decomposi-
tion group. We say that Algorithm 3.7 made a backtrack when a permutation σ

verifying the (Condition C) cannot be continued, i.e. FindAPermutation
returns Id .

Proposition 4.7 Let I be a triangular ideal generated by S, a triangular set.
If the function Generators produces a backtrack in one of
From Gk to G(k-1) calls, then I is no pure Galois.

Proof. InAlgorithm 3.7 a backtrack appears when a first t-part (c1, . . . , ct), ver-
ifying ∀i ∈ [[1, t]] fi(αc1, . . . , αci

) = 0, can not be completed in (c1, . . . , ct+1),
a first (t + 1)-part such that ft+1(αc1, . . . , αct+1) = 0. In other words, the algo-
rithm has found a permutation σ �∈ Dec(I) such that its first t-part verifies
the above condition. By Theorem 4.5, it is possible only if I is not a Galois
ideal or I is a Galois ideal such that Dec(I) is not an injector of I . The result
follows. �

Let I be a triangular ideal. During Dec(I) computation with Algorithm 3.8,
two cases happen:

(1) a backtrack appears and I is no pure Galois,
(2) otherwise, I is a pure Galois if and only if Card(Dec(I)) = �(I).

In order to test whether a triangular ideal I is a pure Galois ideal, an algorithm
called IsPureGaloisIdeal can be derived from Algorithm 3.8 by testing
the backtracking condition during computation.

Application in Galois theory

In general case, an injector of I can be computed only when a maximal ideal
M containing I is known. But, when I is a pure Galois ideal, this injector is

Computation of the Decomposition Group of a Triangular Ideal

unique and equals its decomposition group (computed by Algorithm IsPu-
reGaloisIdeal). Injectors are needed in Algorithm GaloisIdeal of [
9] which computes M. The ideal M is needed because the splitting field of
polynomial

∏n
i=1(x − αi), α ∈ V (M), is isomorphic to k[x1, x2, . . . , xn]/M.

When a Galois ideal is not pure this information can be used in M computation
(see [8]).

5. Comparisons of Algorithms

5.1. Complexity

In this section, we study efficiency of Algorithm IsPureGaloisIdeal. As
its total cost is dominated by the cost of normal forms computation, we evaluate
this efficiency by the following bound:

Proposition 5.1 Let 〈S〉 be a triangular ideal of K[X1, . . . , Xn]. The num-
ber of normal forms computations in Function IsPureGaloisIdeal(S) is
bounded by O(n3).

Proof. We can bound the number of normal forms computations by the one
needed to compute Dec(I) in the worst case, i.e. when the hypothesis:

H: no backtrack is realized during the calculation

is verified. In Algorithm IsPureGaloisIdeal, all normal forms are com-
puted in the different calls of function From Gk to G(k-1).
To begin with, we study the former function complexity.
To one call of Function From Gk to G(k-1), one normal form is computed
to test Condition C of Algorithm 3.7. Next, there are two cases:

• C is false and no other computation is done. Then, only one normal form is
computed. Moreover, to one call of Function From Gk to G(k-1), this
case appears at most n times ;

• C is true. Then, Function FindAPermutation is called and the hypoth-
esis H insures that a new element is returned and added to Parameter G of
From Gk to G(k-1). Theorem 4.5 allows a straightforward complexity
analysis of this function: the number of normal forms needed for computing
such a generator is bounded by O(n2).

Function IsPureGaloisIdeal calls n − 1 times Function
From Gk to G(k-1). Thus, the normal forms computations number cor-
responding to “(Condition C) is false” is bounded by O(n2).

The cardinal of Parameter G is bounded by n (see Remark 3.10); thus Con-
dition C is true at most n times. Hence, during the execution of Algorithm

I. Abdeljaouad-Tej et al.

IsPureGaloisIdeal, the normal forms computations number correspond-
ing to “(Condition C) is true” is bounded by n O(n2).

The Algorithm IsPureGaloisIdeal complexity evaluated in term of
normal forms number is bounded by O(n2) + n O(n2) = O(n3). �

5.2. Heuristic Comparisons

In this section, we adopt Butler and McKay notation nTi for transitive subgroups
of Sn (see [6]).

All algorithms have been implemented using the MAGMA software (see [3]).
We denote by fn,i the polynomial which nTi Galois group presents in gal-
pol package. We use some triangular Galois ideal In,i of the polynomial fn,i

computed by using the technique described in [8].
To establish the following table, we compare the number of membership

tests to each In,i realized byAlgorithms 2.1 and 3.8 for Dec(In,i) determination.
The symbol ∗ means that I is a pure Galois ideal. In this case, the decom-

position group of In,i is also its injector (see Section 4).
Table 2 compares the tests number done by Algorithm 2.1, Algorithm 3.8

and the one called STRONG GENERATORS by Anai, Noro and Yokoyama (see
[1]). Since this last algorithm can only be applied to maximal Galois ideals,
comparisons concern this very case. In Table 2, we write nTi instead of In,i

because the In,i decomposition group equals, up to an isomorphism, the Galois
group of fn,i .

We can see that Algorithm STRONG GENERATORS computes around 5
times more membership tests than Algorithm 3.8.

It is possible to improve the algorithms of this paper by using some mod-
ular method for membership tests. In most of the preceding examples, those
modular pre-tests reduce the time of computation by a factor 20.

Table 1. Comparisons between Algorithms 2.1 and 3.8

Ideal Card(Dec(I)) Algorithm 2.1 Algorithm 3.8

I7,1∗ 7 154 31
I7,2 8 115 49
I6,4∗ 24 144 28
I9,4 24 258 52
I7,3 36 193 38
I6,10∗ 72 264 30
I6,13∗ 72 264 30
I9,28∗ 648 2637 64
I6,12∗ 720 1956 20
I9,20 2160 5970 42
I7,4∗ 5040 13699 27
I7,5∗ 5040 13699 27
I7,6∗ 5040 13699 27

Computation of the Decomposition Group of a Triangular Ideal

Table 2. Comparisons in the case of relations ideals

nTi Card(nTi) Algorithm 2.1 Algorithm 3.8 STRONG GENERATORS

8T1 8 232 65 224
8T2 8 232 83 224
8T3 8 232 83 224
8T6 16 352 62 299
8T7 16 280 68 291
8T8 16 352 64 298
8T9 16 280 69 292

8T10 16 280 69 291
8T11 16 280 57 292
8T12 24 472 63 328
8T13 24 472 63 329
8T14 24 472 59 329
8T16 32 448 71 324
8T19 32 448 76 325
8T22 32 448 66 324
8T24 48 712 59 354
8T27 64 480 47 327
8T29 64 640 64 377
8T31 64 480 63 331
8T47 1152 3520 34 387
8T50 40320 40320 35 463

6. Conclusion

We present a method to compute the decomposition group of a triangular ideal.
This new method can be applied, not only to a maximal Galois ideal as in Algo-
rithm STRONG GENERATORS of [1], but also to Galois ideals. Theorem 4.5
generalizes Theorem 5 of [1] to Galois ideals. We show that the complexity
of this new method in case of pure Galois ideals have a better bound than the
one given in [1] for the specific case of maximal Galois ideals. The heuristic
comparison of Algorithms in Table 2 shows that Algorithm 3.8 computes less
normal forms for the decomposition group determination than the two others
algorithms.

Acknowledgments. The authors would like to thank the anonymous referees for extensive com-
ments on clarifying and improving the exposition of this paper and Laurence Bessis for her
helpful suggestions and comments.

References

1. Anai, H., Noro, M., Yokoyama, K.: Computation of the splitting fields and the Galois groups
of polynomials. In: Algorithms in algebraic geometry and applications (Santander, 1994),
volume 143 of Progr. Math. Birkhäuser, Basel, 1996, pp. 29–50

I. Abdeljaouad-Tej et al.

2. Aubry, P., Valibouze, A.: Using Galois ideals for computing relative resolvents. J. Symbolic
Comput. 30(6), 635–651 (2000). Algorithmic methods in Galois theory

3. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language.
J. Symbolic Comput. 24(3–4), 235–265 (1997). Computational algebra and number theory
(London, 1993)

4. Bourbaki, N.: Algèbre Commutative. Chapitres 5 à 7. Éléments de mathématiques. Masson,
1985

5. Butler, G.: Fundamental algorithms for permutation groups, volume 559 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 1991

6. Butler, G., McKay, J.: The transitive groups of degree up to eleven. Comm. Algebra 11(8),
863–911 (1983)

7. Cox, D., Little, J., O’Shea, D.: Ideals, varieties, and algorithms. Undergraduate Texts in Math-
ematics. Springer-Verlag, New York, second edition, 1997. An introduction to computational
algebraic geometry and commutative algebra

8. Orange, S., Renault, G., Valibouze, A.: Calcul efficace d’un corps de décomposition. LIP6
Research Report 2003.005, LIP6, Université Pierre et Marie Curie, France, 2003

9. Valibouze,A.: Étude des relations algébriques entre les racines d’un polynôme d’une variable.
Bull. Belg. Math. Soc. Simon Stevin 6(4), 507–535 (1999)

