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Abstract. In this paper we present a new method for determining the
Galois group of a square free univariate polynomial. This method makes
use of a priori computation of the Galois group of the factors of its
resolvents, and can also be used for the Galois inverse problem.

1 Introduction

Up to now, essentially three methods to compute the Galois group of a polyno-
mial are known.

1. factorization of the polynomial in successive algebraic extensions (see [26])
2. use relative resolvents (see [25])
3. use the partitions of the absolute resolvents (or simply resolvents) (see [20])

The first one is deterministic, but not very efficient. The second one is also
deterministic. It consist in testing the successive inclusions of the Galois group
which is supposed to be transitive (i.e. the polynomial must be irreducible).
Since it is not possible to use the fundamental Theorem of symmetric functions,
this method requires numerical techniques in order to compute the non absolute
resolvents. However, there exists a formal technique to compute these resolvents
as part of this method 2 (see [14]).

The third method, very efficient, has always been thought to be non deter-
ministic. It is based on the computation a priori of the partition resolvents (i.e.
the degrees of the irreducible factors of the resolvents, that are supposed to be
simple). Some authors have contributed to the developement of the effective Ga-
lois theory with this method ([9], [10], [15], [21], [22], [23], . . .). In the paper
[1], a formula is given that depends only on the group and that allows the auto-
matic computation of the entire partition matrix of a reference group (which can
be any finite group). This partition matrix can be used with non absolute resol-
vents when the reference group is not the symmetric group and hence accelerates
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method 2. When the reference group is Σn, the symmetric group of degree n, the
partition matrix gives a deterministic method to compute the Galois group of a
polynomial of degree n and since it gives all possible algorithms for method 3 it
gives obviously the best algorithm to identifiate the Galois group using only the
partition resolvents. A further advantage of this partition matrix is that it is not
restricted to irreducible polynomials (i.e. the Galois group are not necessarily
transitive). Using the absolute resolvents and the partition matrix it is possible
to compute the Galois group of square free polynomials of degree up to 7 (see [5]
and [6]), of irreducible polynomials of degree 8,9 and 11, and for the degree 10
the second method must also be used (see [2] [3] and [7] ). Note that it is possible
to solve the problem for any square free polynomial of degree 8 not necessarily
irreducible.

In the present paper a new deterministic method to compute the Galois group
of a polynomial is given. It consist in the a priori computation of the matrix of
the Galois group of the irreducible factors of all possible resolvents. Section 1
gives the theorems on which the method is based. When we simultaneously use
the latter matrix and the partition matrix, we obtain for any separable resolvent
the Galois groups and the degrees of its irreducible factors. Obviously this two
matrices provide an algorithm which is more efficient than the one using only
the partition resolvents. Sections 3 and 4 show this for the degrees 8 and 10.
Section 2 gives some information useful to compute absolute resolvents. Section
6 shows how to compute this new matrix with a system like that of [17].

Our method is new, although the idea of considering the Galois groups of
the irreducible factors of resolvents can already be found in Berwick (see [10]).
This result can be applied to non absolute resolvents but for the sake of clarity
we shall only consider absolute resolvents (i.e. the reference group is almost the
symmetric group).

This new matrix is also useful for the Galois inverse problem since it is
possible to know the Galois group of a factor of a resolvent of a polynomial
when we know the Galois group of the polynomial. Section 5 gives an example
that illustrates this fact.

2 Theoretical Results

Let k be a field of characteristic zero and f a square free univariate polynomial
over k of degree n. We look for Gal(f), the Galois group of f over k.

Let Ψ be a polynomial in k[x1, . . . , xn], where x1, . . . , xn are n indeterminates.
We denote by Ψ̃ the evaluation of Ψ at the n roots α1, . . . , αn of f and by Ω the
set of these roots. The symmetric group of degree n, Σn, acts on k[x1, . . . , xn],
in the natural way, and for τ ∈ Σn, the image of Ψ under τ is denoted by τΨ .

Let H be a subgroup of Σn. An invariant of H is a primitive element of
the fixed field k(x1, . . . , xn)H over k(x1, . . . , xn)Σn . A necessary and sufficient
condition for Θ ∈ k[x1, . . . , xn] to be an invariant of H is that τΘ = Θ if and
only if τ ∈ H.



Let id = γ1, . . . , γe be a left transversal of Σn mod H and Θ be an invariant
of H. The resolvent of f by Θ, denoted by LΘ,f , is the following univariate
polynomial over k :

LΘ,f (y) =
e∏
i=1

(y − γ̃iΘ) .

The group H is called a testing group and LΘ,f is called an H-resolvent.
The results of this paper are based on the theorem of the conservation of the

primitive element (see [1] Theorème 6.1) :

Theorem 1. Let f be a square free polynomial of k[x] of degree n. Let H be a
subgroup of Σn and Θ an invariant of H. If Θ̃ is a simple root of the resolvent
LΘ,f , then Θ̃ is a primitive element of the fixed field k(Ω)Gal(f)∩H over k =
k(Ω)Gal(f)∩Σn .

If G =Galk(f), then by Theorem 1 we have the following diagram:

k = k(Ω)G
[G:G∩H]−→ k(Ω)G∩H = k(Θ̃)

|G∩H|−→ k(Ω) (1)

(the degrees of the extensions appear on top of the arrows). Let h be the simple
irreducible factor of LΘ,f of which Θ̃ is a root. Suppose that the degree of h is
r. The elements of the transversal id = γ1, . . . , γe are numbered in such a way
that id = γ1, . . . , γr is a left transversal of G mod G ∩H. The conjugates of Θ̃
over k are γ̃1Θ, . . . , γ̃rΘ which are also the r roots of h.

Remark. Since for i = 1, . . . , e the invariant Θi = γiΘ of Hi = γiHγ
−1
i satisfies

LΘi = LΘ, theorem 1 and the diagram (1) are also true when we substitute the
pair (Hi, Θi) for (H,Θ). The next theorem follows from this remark.

Theorem 2. Under the hypotheses of Theorem 1 and with the previous nota-
tions, if Θ̃i1 , . . . , Θ̃iq are simple roots of LΘ,f , then the Galois group of k(Ω)
over k(Θ̃i1 , . . . , Θ̃iq ) is Gal(f) ∩Hi1 ∩ · · · ∩Hiq .

Proof. Let H and K be two subgroups of Σn, and let e and f be the primitive
elements of k(Ω)H and k(Ω)K over k, respectively. Then :

k(e, f) = k(Ω)H∩K .

Under the hypotheses of our theorem and together with Theorem 1 we have
k(Θ̃i1 , . . . , Θ̃iq ) = k(Ω)G∩Hi1∩···∩Hiq , where Gal(f) = G.

The following theorem is a simple consequence of the one just proved.

Theorem 3. Under the hypotheses of Theorem 1 and with the previous nota-
tions, let V be a normal subgroup of Σn given by V =

⋂e
i=1Hi. Then the Galois

group of LΘ,f is isomorphic to G/G ∩ V .



Remark. From the above theorem the known results about the cubique resolvent
easily follow and for n ≥ 5 and H 6∈ {Σn,An}, we have Theorem 4.6. of [1] : the
Galois group of the resolvent LΘ,f is Gal(f).

Theorem 2 also gives the Galois group of all the factors of a resolvent. In the
following theorem we only consider irreducible factors, since these are the ones
that matter for the computation of our matrix :

Theorem 4. If h is a simple irreducible factor of LΘ,f of degree r whose roots
are Θ̃1, . . . , Θ̃r, then its Galois group over k is isomorphic to G/G

⋂r
i=1Hi, where

each Θi = γiΘ is a resolvent of the group Hi = γiHγ
−1
i and Gal(f) = G.

Proof. The Galois group of the polynomial h over k is the one of the exten-
sion k(Θ̃1, . . . , Θ̃r) over k, which is therefore a Galois extension. Hence K =
G

⋂r
i=1Hi is normal in G and the Galois group of h is isomorphic to G/K.

[13] also considers all the different groups relative to a resolvent.

Corollary 5. The order of the Galois group of h over k is [G : G
⋂r
i=1Hi].

Remark. Theorem 1 gives a method to compute the partition matrix, since the
degree of h is equal to the index [G : G ∩Hi], for each i in {1, . . . , r} (see [8]).
By Theorem 4, the Galois group of h is known and can be computed a priori
using only the subgroups G and H of Σn. Hence we can construct the matrix of
the irreducible factors of the resolvents with a system as that of GAP.

2.1 Notations

Let H and G be two subgroups of Σn and g be a univariate polynomial with
Galois group G. [G,H] denotes the list of the Galois groups of the irreducible
factors of any separable H-resolvent of g. If we have the degree of just one factor,
we write down this degree. If just the degree d of a factor and the order D of
its Galois group are known, this group is denoted by (D)d. The exponents +
and − refer to the subgroups of Ad (the alternating group) and to the ones not
contained in Ad, respectively. Here d is the degree of the irreducible factor under
consideration. We denote by [G,H]d the sublist of [G,H] relative to the factors of
degree d. The group G is called the candidate group and H the testing group. For
example, in Section 3.2 we have [T35,H2] = (D4, 8, 16+). Let g be a polynomial
of degree 8 and of Galois group T35, and let L be a separable H2-resolvent of g.
The polynomial L has a factor of degree 4 whose Galois group is D4, a factor of
degree 8, and a factor of degree 16 whose Galois group is a subgroup of A16.

The group T
(j)
i is the subgroup Ti of Σj which appears in the article [11].

The groups Ai, Di, Ci are, respectively, the alternating, dihedral and cyclic group
contained in Σi, and V4 is the Vierer group of Σ4.



2.2 General Assumptions

In this article, we suppose that all resolvents are separable. If this is not the
case, it is possible to use a theorem of multiplicity (see Theorem 6.5 in [1]) and
if this is still not sufficient it is also possible to compute a Tschirnhaus separable
resolvent of f (i.e. an H-resolvent, where H = Σ1 ×Σn−1) whose Galois group
is also Gal(f) (see the above theorem).

3 Computations of the Resolvents

Except for the testing group T48 in degree 8, for all the testing groups H which
appear in this paper, one or more H−resolvents can be computed via the module
SYM (see [29]), an extension of MAXIMA (see [24]). The algorithms and the formulas
are described in [27] and [4].

For m a positive integer, the Vandermonde determinant in the m indetermi-
nates x1, . . . , xm is δm = δm(x1, . . . , xm) =

∏
1≤i<j≤m(xi − xj)

It is important to recall that if a resolvent LΘ,f is computed and factorised,
it is immediate to compute partial factors of the resolvent LδnΘ,f . For example,
let f be a polynomial of degree 8 of Galois group T45; the partition of Lb8,f is
(16, 32) (see Section 3). A factor of degree 32 of Lδ8b8,f is obtained by a simple
resultant. This factor factorizes into two irreducible factors of degree 16. This
new resolvents, introduced in [4], is of interest in practice for two reasons. First,
it can be computed quickly, and second we can compute only the factors we
need.

It is also important to remark that the product, or the monomial resolvents,
can be computed quickly. Hence in the pratice, the resolvents are preferable to
the sum or to linear resolvents. We can also compute these particular resolvents
with the fast algorithms of [12].

4 Degree 8

In this section we show the interest of the Galois group of the resolvent factors
for the identification of the Galois group of an irreducible polynomial of degree
8.

In May 1993, with Jean-Marie Arnaudiès we have computed a submatrix of
the partition matrix for the reference group Σ8 (except for the testing groups of
degree > 672 and the candidate groups which are not transitive). In our article
[2] we have only given the result for the group H whose H-resolvent can be
computed with SYM.

All the computations are performed with [17], that can compute all the con-
jugacy classes of subgroups of Σ8. For simplicity, we have adopted the notation of
[11] for the group T1, . . . , T50, the transitive subgroups of Σ8 (up to conjugacy).

The testing groups are the following ones, and are given with the type of their
invariants, except for the testing group T48 of index 30 an invariant of which can
be computed with the algorithm of [16].



Let the subgroups A= [(1,2)(3,4,5,6), (1,4)(2,6,3,5),(7,8)(5,6)] and
B= [(1,7,4,2,3),(1,2,4,7,3),(5,6,8),(4,7)(6,8)].

Classes Index Type Invariants
H1 16 A7 ×Σ1 δ7 or δ8x8

H2 28 Σ2 ×Σ6 s(x1, x2)
H3 35 T47 b8 = x1x2x3x4 + x5x6x7x8

H4 56 A δ8 s(x1, x2)
H5 56 Σ6 × Id2 m(x1, x2), l(x1, x2), δ2
H6 56 A6 ×Σ2 δ8δ2 ou δ6
H7 56 Σ3 ×Σ5 s(x1, x2, x3)
H8 70 T45 δ8 b8
H11 70 B δ8s(x5, x6, x8)

In this table s(x1, . . . , xr) is a symmetric function in x1, . . . , xr ; l(x1, x2) =
ax1 + bx2 where b 6= a 6= −b and m(x1, x2) = xa1x

b
2 where a 6= b (a, b ∈ k).

Remark. The testing groups are all non trivial groups of index less than 56 in Σn
and the groups whose invariant has the form δnΘ where Θ in an invariant of the
previous groups. Hence for the testing groups H4, H8 and H11, we can compute
fastly some factors of the associated resolvents with the factors of the respective
resolvents associated with the testing group H2, H3 and H7 (see Section 2).

4.1 Comments about the Tables of 3.2

It is difficult (but not impossible) to decide between T45 and T42. With the
absolute resolvents, there exist three methods for this purpose :

– [T45, T48]3 = Σ2
3 and [T42, T48]3 = Σ3 × A3 ; the T48-resolvents must be

computed with a numerical approximation of the roots of f ;
– [T45,H16]6 = H

(6)
15 and [T42, ,H16]6 = H

(6)
24 , where H16 = D8×Σ4 ; x1x2x

2
3x

2
4

is an invariant of H16 and the associated resolvent can be computed rapidly;
but its degree 210 is big ;

– [T45,H12] = (16, 96) and [T42,H12] = (82, 96) ; where H12 = A3 × Σ5 ; the
formal H12-resolvent Lδ3 is partially tabulated but the computation of Lδ3,f
is very long ; its degree 112 can be lowered to 56 since Lδ3,f is an even
polynomial.

With the tables of Section 3.2, the algorithm based only on the partitions
of the resolvents is very accelerated except for the following candidate groups
which can be determined quickly using only the partitions : T50, T49, T47, T46, T34,
T43, T22, T11 and T5. For the other candidate groups, this new table allows an
important progress in their determination. For the following groups, the compu-
tation now requires only a few seconds or a few minutes instead of many hours :
T48, T36, T25, T44, T38, T40, T41, T33, T29, T19, T24, T13.

For example, to decide between the candidate groups T48 and T36 using only
the partition resolvents, the testing group of smallest index is H = A3 × Σ5



and the degree of an H-resolvent is 112. Now to decide between T48 and T36 it
is sufficient to determine the Galois group of the irreducible factor of degree 7
of an H3-resolvent instead the previous H-resolvent. The H3-resolvent can be
computed and factorized quickly and so is the determination of the Galois group
in the degree 7 (see [11]).

4.2 The tables in Degree 8

In the following tables we do not give the Galois groups of the factors that we
have computed when the candidate group can be determined without them. But
it is very easy to compute these groups with the program GAP of Section 6.

For all subgroup T of A8 we have [T,H1] = (8+, 8+).

[T,H1] 6≤ A8,= T49

16 T50 T47 T44 T38 T40 T35 T30 T27 T31 T43 T26 T17 T23 T15 T8 T6

82 T46 T28 T16 T21 T7 T1

[T,H8] 6≤ A8 ≤ A8

70 T50

T
(6)
3 , T 2

33, 48 , T38

T
(6)
3 , T 2

41, 48 T44

T
(6)
2 , T 2

34, 48 T40

T
(6)
2 , T 2

14, 48 T23

142, 42 T43
2, 32, 36 T47 T46

352 T49

2, 4, 82, 16, 32 T35 T30 T27

2, 4, 84, 32 T28

72, 282 T48 T36 T25

32, 44, 242 T39 T32 T12

74, 212 T37

12, 162, 182 T45 T42

23, 82, 163 T31 T26 T17
T15 T8

12, 62, 122, 162 T41 T33

23, 84, 162 T16 T21 T7

12, 22, 44, 82, 162 T29 T19 T20

12, 66, 162 T34

12, 26, 46, 162 T18 T10

23, 44, 84, 16 T6

12, 34, 42, 124 T13 T24

12, 34, 42, 64, 122 T14

16, V 4
4 , 8

6 T1 T22 T11 T5

16, 24, 46, 84 T9 T2

16, 28, 48, 82 T4

114, 414 T3

[T, T48] 6≤ A8 ≤ A8

30 T50
6, 24 T47 T46

2, 12, 16 T44 T38
T40 T23

2, 4, 8, 16 T35 T30
T28 T27

2,D3
4 , 16 T31 T26

2,D2
4 , C4, 16 T16 T21 T17

2,D2
4 , V4, 16 T8 T15

2, C24 , V4, 16 T7

152 T49

2, 142 T43
1, 7, 8, 14 T48 T36 T25

Σ3
2, 122 T45

A3, Σ3, 12
2 T42

1, 2,A3, Σ4, 8, 12 T41
1, 2, C3,A4, 8, 12 T33

13, 3, 43, 12 T34

12, 62, 82 T39 T32 T12

23, 42, 82 T6 T1

12, 22,D2
4 , 8

2 T29 T20

12, 22, C4,D4, 8
2 T19

12, 26, 82 T22 T11 T5

12, 2, 32, 62, 8 T24 T13

14, 2, 44, 8 T18 T10

14, 25, 42, 8 T9 T2

18, 27, 8 T3

12, 74 T37

14, 32, 42, 62 T14

16, 24, 44 T4

[T,H7] 6≤ A8 ≤ A8

56 T50 T43 T49 T48 T36 T37 T25
T, 48 T47 T46 T45 T42 T41 T34 T33
24, 32 T44 T38 T40 T39 T32
T, 16, 32 T35 T30 T28 T26 T17 T29 T19

T 3, 32 T27 T31 T16 T21 T20 T22

8, 242 T23 T24 T12 T14 T13

T, 163 T15 T18

83, 162 T8 T6 T7 T11 T10 T9

87 T1 T5 T4 T2 T3

H [T45, H] [T42, H]

H2 (12+, 16+) (12+, 16+)

H3 (1, 12+, 18+) (1, 12+, 18+)

H5 (24+, 32+) (24+, 32+)

H6 (24+, 32+) (24+, 32+)



[T,H2] 6≤ A8 ≤ A8

28 T50 T43 T49 T48 T36 T37 T25
Σ4, 24 T44 T40 T23 T39
A4, 24 T38 T32 T12
12, 16 T47 T46 T45 T42 T41 T34 T33
D4, T, 16 T35 T30 T28 T29 T19

T26 T17
T15 T8

C4, T, 16 T27 T16 T7 T20

D3
4 , 16 T18

C4,D2
4 , 16 T10

Σ4, (12
+)2 T24

Σ4, 12
+, 12− T14

A4, 122 T13

V4, T
3 T31 T21 T22 T11 T5

D4, 8
3 T6

C4, 83 T1

V4,D2
4 , 8

2 T9

V 3
4 , T

2
2 T2

D4
4 , V4, 8 T4

V 7
4 T3

[T,H11] 6≤ A8 ≤ A8

112 T50 T43
16,96 T47
48,64 T44 T38 T40

16,32,64 T35

163, 64 T30 T27 T31 T26

562 T49 T48 T36
T37 T25

16, 482 T23

T 2, 482 T46 T45 T42 T41
T34 T33

82, 162, 322 T28 T29 T19

163, 322 T17 T15

86, 322 T16 T21 T20 T22

242, 32 T39 T32

82, 244 T24 T12
T14 T13

167 T8 T6

82, 166 T18

86, 164 T7 T11 T10 T9

814 T1 T5 T4 T2 T3

[T,H3] 6≤ A8 ≤ A8

35 T50 T49

T
(7)
5 , 28 T48

T
(7)
3 , 28 T36

T
(7)
1 , 28 T25

Σ3, T41, 24 T44
A3, T33, 24 T38
Σ3, T34, 24 T40
Σ3, T14, 24 T23

A3, Σ
2
4 , 24 T39

A3,A2
4, 24 T32 T12

14,21 T43

T
(7)
5 , H

(7)
18 , 21 T37

1, 16, 18 T47 T46 T45 T42

1, T
(6)
7 , 12, 16 T41

1, T
(6)
4 , 12, 16 T33

1, 2, 82, 16 T35 T30 T28 T27 T16 T7
1, 2, T26, T18, 16 T26
1, 2, T17, T10, 16 T17
1, 2, T15, T9, 16 T15
1, 2, T8, T4, 16 T8

1, 2, C4,D4, 8, 16 T19

1, 2,D2
4 , 8, 16 T29 T20

1, 63, 16 T34

1, 33, 4, 62, 12 T14

1, 23,D3
4 , 16 T18

1, 23,D2
4 , C4, 16 T10

1, 32, 4, 122 T24 T13

13, 84 T31 T21

1, 2, 42, 83 T6 T1 T2

13, V 2
4 , T

3 T22 T11 T5

13, 22, 43, 82 T9

13, 24, 44, 8 T4

17, 47 T3

[T,H4] 6≤ A8 ≤ A8

56 T50 T43
T24, 48 T44
8, 48 T38
T14, 48 T40 T23
24, 32 T47

T9, 16, 32 T35
T4, 16, 32 T30
8, 16, 32 T27

122, 32 T46

42, 82, 32 T28

282 T49 T48 T36
T37 T25

Σ2
4 , 24

2 T39

A2
4, 24

2 T32 T12

8, 163 T31

T4, 16
3 T26 T17

T15 T8

12+2
, 16+2

T45 T42

122, 162 T41 T34 T33

C24 , T
2, 162 T16 T7 T20

D2
4 , T

2, 162 T29 T19

V 2
4 , T

2, 162 T21

D46, 162 T18

C42,D44, 162 T10

85, 16 T6

Σ2
4 , 12

4 T24 T14

A2
4, 12

4 T13

V 2
4 , T

6 T22 T11 T5

42, 86 T1

D4
4 , V

2
4 , T

4
9 T9

C44 , V
2
4 , T

4
2 T2

410, 82 T4

414 T3



[T,H5] 6≤ A8 ≤ A8

56 T50 T43 T49 T48 T36
T37 T25

T, 48 T44 T38 T40 T23 T39 T32
24, 32 T47 T46 T45 T42 T41

T34 T33
8, 16, 32 T35 T30 T28
T, 16, 32 T26 T15 T29 T19

83, 32 T17 T18

8, 242 T24 T12 T14 T13

8, 163 T27 T31 T16 T20 T22
T21 T8 T6

83, 162 T7 T11 T10 T9

87 T1 T5 T4 T2 T3

[T,H6] 6≤ A8 ≤ A8

56 T50 T43 T49 T48 T36 T37 T25
8, 48 T44 T38 T40 T39 T32
24, 32 T47 T45 T42 T41 T34 T33
T, 16, 32 T35 T27 T26 T17 T29 T19

83, 32 T15 T18

8, 242 T23 T24 T12 T14 T13

162, 24 T46

8, 163 T30 T28 T31 T16 T20 T22

83, 162 T8 T6 T7 T11 T10 T9

85, 16 T21

87 T1 T5 T4 T2 T3

4.3 Information about Non Separable Resolvents

It is not necessary that all resolvents be separable. By the theorem of multiplicity,
only the interesting factors must be simple. For example, we have [T3,H2] =
{V4}7. Let f be a polynomial of degree 8 whose Galois group is T3. If a H2-
resolvent is not separable, but its factor of degree 4 is simple then its Galois
group is V4. Conversely if f is a polynomial such that a H2-resolvent of f has a
simple factor of degree 4 whose Galois group is not V4, then Galk(f) 6= T3.

5 Degree 10

The groups T1, . . . , T45 are the transitive groups of degree 10 which appear in
[11].

In the article [7] we have completed the tables of partitions in degree 10 and
11 given in [22]. The degree 10, for the transitive candidate groups cannot be
dealt with only with this submatrix of the matrix of partitions, with Σ10 as
reference group; the computation of relative resolvents is needed.

This section gives the Galois groups of the factor resolvents of degree less
than 10 in the submatrix of partition of [7]. Hence, it is now possible to identify
the candidate groups T11, T34, T36, T37, T38, T39 and accelerate the algorithm of
[7] in many cases.

5.1 The testing Groups

The following testing groups is a subset of the testing groups which appear in
the paper [7]. Let A, B et C be the following subgroups of Σ10 :
A = [(1, 2, 8), (1, 3, 8), (1, 4, 8), (1, 5, 8), (1, 6, 8), (1, 7, 8), (1, 2)(9, 10)] ;
B = [(3, 4, 5, 6, 7), (1, 2, 3), (8, 9, 10), (9, 10)(1, 2)] ;
C = (1, 2, 3, 4, 5), (1, 2), (6, 7, 8, 9, 10), (6, 7), (1, 6)(2, 7)(3, 8)(4, 9)(5, 10)]



Groups Index Invariants
H1 A10 2 δ10
H2 A9 × Id 20 δ9
H3 Σ2 ×Σ8 45 s(x1, x2)
H4 Σ3 ×Σ7 120 s(x1, x2, x3)
H5 Id2 ×Σ8 90 δ2 , l(x1, x2) ,m(x1, x2)
H6 Σ4 ×Σ6 210 s(x1, x2, x3, x4)
H7 Σ5 ×Σ5 252 s(x1, x2, x3, x4, x5)
H9 A 90 δ8δ2(x9, x10) , δ10s(x9, x10)
H10 B 240 δ10s(x1, x2, x3)
H11 C 126 b10 = x1 · · ·x5 + x6 · · ·x10

H12 A8 ×Σ2 90 δ8 , δ10δ2(x9, x10)
H14 G4 252 δ10b10

5.2 Tables in Degree 10

For Θ = x1 − x2 or Θ = x1x2, a factor of degree 5 of the resolvent LΘ,f gives
rapidly the factor of degree 10 of Lδ10Θ,f (see Section 2).

T T39 T38 T29 T25 T23 T16

[T,H12]10 T37 T38 T
+
24 T−25

[T,H9]10 T5 (20) T3 T2

[T,H3]5 T
Σ5 T37 T39 T38 T22 T12

A5 T34 T36 T11

M5 T24 T29 T25 T5

C5 T14 T8 T1

T
(5)
2 T23 T16 T15 T3

5.3 Comments

If we compare with [7], using the following tables we do not compute:

– Lb10,f to determine T29, T36 or T24

– Lx1−x2,f to determine T5, T8, T11, T12 T14, T15 and T22

– Lδ10x1x2,f to determine T1 and T3.

For the six sets {T43, T33}, {T41, T40}, {T28, T18}, {T21, T10, T9}, {T22, T12}
and {T27, T20, T19, T17} is necessary to compute relative resolvents to decide be-
tween the candidate groups in each set (Id3×Σ7 determines T43 and T33, but its
index is 720). With the function Index of [17], we have the following results: T33

is a subgroup of index 36 in T43 ; T40 is a subgroup of index 2 in T41 ; T20, T19

and T17 are subgroups of index 2 in T27 ; T12 is a subgroup of index 2 in T22 and
T10 and T9 are subgroups of index 2 in T21.

6 Galois Inverse Problem

There exist some lists of irreducible polynomials (see [23] [18], [2], [3], the list
of Mattman,J. McKay and G. Smith in degree 8, the list of Alexander Hulpke



in degree 10 . . .). The list of Alexander Hulpke is not complete and allows 33
groups. With GAP, we have computed the Galois groups associated with the parts
of degree 10 in all partition matrices of the reference group Σn (n = 4, . . . , 10)
that we have tabulated them. Many of them give a Galois group that is not Σ10.
In particular T26 is the Galois group of τ(x) = x10 − 28116x8 + 263503152x6 −
4216050432x5−823183846848x4 +59269236973056x3−164584085603401728x+
4443770311291846656. The list of Alexander Hulpke has no group for T26. Ac-
tually, with GAP we compute [Σ1 × A6, Σ1 × T (6)

13 ]10 = T
(10)
26 . The polynomial

b6 = x1x2x3 + x4x5x6 is an invariant of Σ1 × T (6)
13 and Σ1 × A6 is the Galois

group of the polynomial (x− 1)x5(x− 6) + 3124 (We have used the polynomials
given by G. Smith). The factor of degree 10 of the resolvent Lb6,p computed with
SYM is the polynomial τ .

7 Computation Using GAP

With the system GAP, it is easy to compute our group.
Consider the partition I = [G,H] = (dm1

1 , . . . , d
mq
q ) in the partition matrix

of Σn, with mi > 0 for i = 1, . . . q. Let m = m1 and d = d1. We look for the m
groups of [G,H]d corresponding to dm in the partition I.

Let Γ = {γ1, . . . , γe} be a transversal of Σn mod H and H = {H̃1, . . . , H̃dm}
the dm subgroups G∩ γiHγ−1

i of Σn, such that the index in G of H̃i is equal to
d. Then, it is possible to number H such that for i = 1, . . .m, if τ1, . . . , τd is a
transversal of G mod H̃id, then, {τ1H̃idτ

−1
1 , . . . , τdH̃idτ

−1
d }, the set of the conju-

gates (no necessarily distincts) of H̃id is equal to the subset { ˜Hid−d+1, ˜Hid−d+2,

. . . , H̃id} of H. Let Ui = G
⋂id
j=id−d+1 H̃j , for i = 1, . . . ,m. Hence the m Galois

groups of the factors of degree d of the H-resolvents of polynomials whose the
Galois group is G are in set [G,H]d = {G/U1, . . . , G/Um} and can be calculated
using the following algorithm GroupeResolvante (in pseudo-GAP) :

Inputs : S_n , G , H , d
Outputs : sol=[G/U_1 , G/U_2 , ... , G/U_m]
lesconj := List(RightCosets(S_n,H),

rc->Intersection(G,H^Representative(rc)));
lesconj:=Filtered(lesconj, ghi->Index(G,ghi)=d);
sol:=[];
while Length(lesconj)>d-1 do

gh:= lesconj[1];
lesconj_g := List(RightCosets(g,gh),

rc->gh^Representative(rc));
for ghj in lesconj_g do

lesconj_aux :=[];
while not(ghj=lesconj[1]) do

Add(lesconj_aux,lesconj[1]);
lesconj:=Sublist(lesconj,[2..Length(lesconj)]);od;



lesconj:=Sublist(lesconj,[2..Length(lesconj)]);
Append(lesconj,lesconj_aux); od;

for ghj in Sublist(lesconj_g,[2..degre_resol]) do
gh := Intersection(gh,ghj); od;

Add(sol,FactorGroup(G,gh)); od;
return sol;

8 Conclusions

This paper proves the interest of the computation of the Galois group of the
irreducible factors of a resolvent, and also that this computation is easy.

With I. Gilles, we have computed polynomials of degree 12 using the method
of Section 5. The degrees 4 to 8, for square free polynomials can also be acceler-
ated using this new method. We are now computing the corresponding groups.
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