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Abstract 

This paper is devoted to an investigation of the notion of Lagrange’s resolvent and its con- 
nections with Galois theory. @ 1997 Elsevier Science B.V. 

1. Introduction 

Among the first questions encountered in Galois theory, the problem of computing 

the Galois group of a given polynomial (e.g., of the splitting field of this polynomial, 

relatively to the base field) is quite natural. We will call it the direct Gal&s problem. 

Early mathematicians, concerned with the so-called Galois theory, created the concept 

of resol~en~, a very suitable notion in the Galois direct problem. In fact, resolvents and 

Galois groups were discovered simultaneously, essentially by Lagrange, whose papers 

on algebraic equations really contain reasonings about groups, although Lagrange did 

not clearly define them, In these papers, the correspondence between groups and resol- 

vents is also displayed, rather more deeply than by Galois himself (the main contribu- 

tion of Galois seems related to groups, not to resolvents; he certainly knew Lagrange’s 

work, but did not have enough time to develop all ideas arising from this knowledge). 

During the 19th century, no really new ideas about algebraic equations were found 

after those of Lagrange, Abel and Galois, and in most papers or monographs, Galois 

theory was developed using resolvents and nothing else. In the well-known works of 
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Kronecker, Vogt, Weber, Jordan and others, attempts, very similar to one another, to 

determine the Galois group of a pol~omial are found one begins with a resolvent, 
chosen above all according to its ease of dete~ination; whenever this resolvent has 
a root in the base field, by what all these authors call the main Galois theorem on 

resoluents, the Galois group will be contained in the group of this resolvent. If not, one 
adds a root of the resolvent to the base field, and so on. What is obtained in this manner 
is a Jordan-Holder sequence of the Galois group, but where only the successive factor 
groups are known. Moreover, none of these authors points out the case of multiple 
roots in a resolvent, a circumstance under which the main Galois theorem becomes 
false (note that in Lagrange’s original papers, this case is considered, and Lagrange 

not only says that then the method fails; but he suggests some ideas to overcome this 
obstacle; see [ 1 I]). 

The first author who really considered the set of all resolvents of a given polynomial 
and looked at the structure of this set within Galois groups was Berwick. In fact, he 
uses parts of what we call partition tab/es to deduce the Galois group from certain 
configurations of the resolvent factorizations over the base field (see [3]). After him, 
Soicher, Foulkes, Stauduhar, McKay and others investigated this method, obtaining 
significant results. For example, it can be found, in several of their works, that the 
factorization of a single separable resolvent suffices to deduce the Galois group of an 
irreducible polynomial of degree 7. Soicher and McKay calculate partial partition tables 
associated to linear resolvents, thus deducing Galois groups from this factorization of 
resolvents in many cases up to degree 11 (see [5, 8, 12, 141, etc.). 

In this paper, we present our main idea for improving the use of resolvents in 
the direct Galois problem for a polynomial f. Instead of starting with resolvents, 
we consider the set of all subgroups of the symmetric group 6, (n = degree of 
f). We associate to it a square matrix whose coefficients are partitions of integers 
(here, we mean the word partition in its combinatorial sense, not in its set-theoretical 

sense). These partitions are related to the different pairs of conjugacy classes of the 
subgroups of 6,. We call this matrix the partition matrix of 6,. Its rows and columns 
both correspond to the conjugacy classes of subgroups of 6,,, but not in the same 
manner: the row conjugacy classes of groups must be viewed as candidates for being 
the conjugacy class of the sought for Galois group of f, and the column conjugacy 
classes of groups, as test conjugacy classes. To each test conjugacy class, we associate 
a resolvent of f; factoring the latter over the base field, we get a certain partition. We 
show that the family of partitions obtained by taking successively all the test conjugacy 
classes, builds one, and exactly one, row of the partition matrix (see Theorem 14). 
Thus, the direct Galois problem for f amounts to recognizing this row, i.e. to effectively 
factorize all the resolvents associated to test groups. This seems to be a tremendous 
task; fo~nately, one needs not compute all these resolvents. In many cases of interest, 
only a few of them, associated to test groups of low index in 6,, are sufficient for 
our purpose. Moreover, when these resolvents are not irreducible (as happens almost 
systematically when the sought for Galois group has high index in Ga), one needs 
not the whole resolvent, but only some of its factors (see [2]). So, our method allows 
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us to compute Galois groups of separable (not necessarily i~edu~ible) pol~omials in 
many cases up to degree 11: in 1993, we also gave a complete algorithm for separable 
polynomials up to degree 7, and for irreducible polynomials of degree 8, 9 and 11; 

we also gave an algorithm which covers partially the case of irreducible polynomials 
of degree 10 (see also [15]). 

The idea of a partition matrix can be extended to a general finite reference group 
as well as G,. This leads to a generalization of our method to the so-called relative 

resolvents, the ones considered above being called absolute resolvents (see Section 4). 
Finally, the partition matrix can also be a powerful theoretical tool, not only a 

numerical one. As examples, we give a general theorem relating some resolvents, 
which are very easy to compute, to cyclic or metacyclic Galois groups (see [2]), and 
we develop a complete method for the Galois group of a pol~omial of fifth degree 
having general coefficients (see [6]); the parallel method for polynomial of fourth 

degree can be found in [ 11. 
Contents of the paper: Section 2 is devoted to the concept of Lagrange resolvent; 

Section 3 introduces the partition matrix, with statements and proofs of the main results 
mentioned above; Section 4 gives an extension to relative resolvents; and Section 5 
contains some original theoretical results on resolvents. 

2. The concept of resolved 

2.1. ~ermatat~a~ representations 

Let K be a commutative field and let E be a Galois extension of K. For each 
polynomial ~EK[X] normal over K, the Galois group Gal(E/K) admits a natural rep- 
resentation in the pe~utation group of the root set of f. Thus, it will be useful to re- 
call some elementary facts concerning pe~utation representations. For details, see [4]. 

Notation. Let @? be a conjugacy class of subgroups of a finite group G. We will 
denote I$ the subgroup nirEq H of G. Then 1~8 is a normal subgroup of G, notation 
1% a G. The class V will be said to be reduced if and only if Z, = {ed}. Now, let 
E be a finite non-empty set. One defines a permatat~on representation of G in E as 
a group morphism: Y : G -+ GE. The integer N = card(E) is called the degree of 
!P. The representation ty is said ~ithfu~ if and only if Y is injective, transitive if 
and only if the G-set E defined by Y has but one orbit, and primitive if and only if 
the corresponding G-set is primitive. When Y is transitive, the set {Stab&)},EE is a 
conjugacy class of subgroups of G, which will be said assoc~ted with Y. 

Two permutation representations Y : G -+ C& and Q, : G -+ C& are called equivulent 
if and only if there is a bijection 0 : E -+ F such that Y(G) = 0-l o @(G) o 0 for 
all g E G. In case Y and @ are equivalent, then Ker (Sp) = Ker (Y), the conjugacy 
classes of subgroups associated with them as above are the same; thus Qi and Y are 
both faithful or not, and both transitive or not. 
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Clearly, a pe~~tation representation of degree N of G is equivalent to a pe~u~tion 
representation of G in El, N]. The latter will be called a symmetric representation of 
G (of degree N). 

2.2. Transitive permutation representations 

Let !P : G -+ 6’~ a transitive permutation representation of the finite group G. Denote 
by %?k;u, the associated class: it is reduced if and only if Y is faithful. Now, choose 
any xc E E; put HO = Stabo(xO). For every element x E E, the set O(x) = (g E 

G I VgDo) = 1 x is a left coset of G mod HO. The map 0 of E into the set (G/Ho) 
is one-to-one; it is readily seen that 0 establishes an equivalence between Y and the 
pe~utation representation @ of G in G(o,‘~o) defined by the left translations of G. The 
following well-known theorem is easy to check: 

Theorem 1. Let G be a finite group; let E be a non-empty finite set; put N = card(E). 
The mapping sending each equivalence class r of transitive permutation representa- 

tions of G in E to its as.~ociated conjuga~y class of subgroups Vi- de~nes a b~e~tion of 
the set of these representations onto the set of those conjugacy classes of subgroups 
of G ail elements of ~~~hich have index N in G. This b~e~t~o~ associates reduced 

classes to faithful representations. The class { {eo}} corresponds to the set of regular 

representations. 

2.3. Permutation representations and splitting fields 

For the remainder of the paper, we will denote by k a fixed commutative field, 
and we will choose once and for all an algebraic closure k of k. To each polyno- 
mial f E k[X], there corresponds the splitting field Ef of f over k, i.e. the k-algebra 
generated in k by the root set of f. Now consider a separable non-constant manic 
polynomial f E k[X], of degree n, together with an ordering ~1,. . . , pn of its roots in 
k. Then we obtain a symmet~c representation of degree n of Gal (Ef/k): 

Gal @f/k) --+ 6,, a I--+ so (1) 

where s,(pj) = ps,fi) for all i (1 5 i 5 n). This representation will be called associated 
with the given ordering (pi) of the root set of f. It is faith&l; it is transitive if and 
only if f is i~educible. 

Let t E 6,. Put pi = p,--~(~) for all i. The symmetric representation associated with 
the new ordering (pj) is equivalent to the representation (l), for it is given by the 
map: d ++ sk = ts,t -‘. When k is infinite, it is well-mown that for each Galois 
extension E of k, any faithtil symmetric representation of Gal (E/k) is obtainable 
as the representation associated with an ordering of the root set in g of a suitable 
separable polynomial f E k[X] (see [2]). Note that the regular left representation of G 
corresponds to the case where f is the minimal polynomial of any primitive element 
of E over k. 
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2.4. Generic resolvents 

Let n be a fixed natural integer; let Xl,. . . ,X,, be indeterminates over k. Denote by 

9 the field k(Xi , . . .,X,), by d the ring k[_X1,. . . ,X,1, by ~1,. . . , CJ, the elementary 

symmetric polynomials in the variables Xi,. . . ,X,, by Y the ring k[oi,. . . , CT,,], and by 

X the field k(oi, . . . , a,). This notation will be used throughout the remainder of this 

paper. 9 is the splitting field over X of F(T) = T” - 01 T”-’ + . . . + (- 1 )no, = 

l-I:&=xl> E ym; so, 5 is a Galois extension of X; the symmetric representation 

associated with the ordering Xi ,. . .,X,, of the roots of F is a group isomorphism: 

Gal(B/X) 4 6,. It will be convenient to identifv the groups Gal(y/X) and 6, 

by means of this isomorphism. Thus, for all o E 6, and f = f(X,, . . ,Xx) E 9, the 

image of f under the action of r~ is f@&(l), . . . , X0,,,): it will be denoted by c * f. 

To each subgroup H of 6,, we will designate by Inv(H) the field of H-invariants 

in 9. Then Inv(H) is separable over X, 9 is a Galois extension of Inv(H), and 

Gal(p/Inv(H)) = H. The integral closure &H of Y in Inv(H) is ~2 n Inv(H). 

The k-algebra S~H is finitely generated; it is an integrally closed, Noetherian ring; it 

follows that &H is a finitely generated Y-module. In other words, (g,, . . ,on) is a 

homogeneous system of parameters of the k-algebra -QZH in the sense of [13]. More- 

over, Inv(H) is the field of fractions of d H; more precisely, SZZH [l/9] = Inv(H). 

Definition 2. Under the above conditions, we will call primitive invariant of H any 

polynomial Y E &‘H which is a primitive element of the extension field Inv(H) of 

SK Such a Y will be called homogeneous whenever it is an homogeneous polynomial 

in the &‘s. The minimal polynomial over X of a primitive invariant Y of H will be 

called the (generic) Lagrange resolvent of H associated to Y. We will denote it by 

YPIV. 

The next theorem, due to Lagrange, is both of mathematical and of historical interest. 

Theorem 3. Let Y be a primitive invariant of a subgroup H of 6,. Denote by Ay 

the discriminant of the generic resolvent 3’~. Then SZIH c (l/A~)9’[Y]. 

Proof. We give the original proof of Lagrange, which even nowadays remains the best. 

Let e be the index [6, : H]. Choose a left transversal { ti}l <i < e of G, modH, such 

that tl = IdGn. Put !Yi = ti Ir Y (hence, Yi = Y). Denoting by X an indeterminate 

over 5, we have 

2$u(X) = fi(X - Yj) = Xe - C&e- + ... + (-l)eC, E SqX]. (2) 
i=l 

Take any 9 E &H. Put gj = tj k g. For m E [O, e - 11, define 

h,=&jY~=Ctj*(gYm). 
j=l j=l 

(3) 



ha 1 .*f 1 
h, Y2 ... Yy, 

L3= . . . . . . . . 

h,_{ ye-’ *+. 
2 YJ-’ 

Due to 62, = LIP, the latter can be written as 
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Clearly, h, E 9’. We may consider Eqs. (3) as a linear system in the gj’s. Of course, 
this is a Cramer system; by solving it, we especially obtain 

yi = L, 
6Y 

(4) 

where 6~ is the Vandermonde determinant with respect to ‘PI,..., Y,, i.e., 8’~ = 

1 
g = && where 8’ = 6~9. (5) 

Now, we shall prove that 6 E 9[ Y]. To this aim, note that d = E( Yr, . . . , Ye) for 
a suitable polynomial E E Y]Y][Tz, . . . , Z’,], symmetric in the variables T2,. . . , T,. 
By the main theorem on symmetric functions, denoting St,. . . , &_I the elementary 
symmetric polynomials in Y2,. . . , Yy,, we get a polynomial F E Y[YJ[YI,...,Y,_I] 
such that E(Y, ,..., Ye) = F(SI ,..., S,_l). Now n;=,(X - Yi) = U,(X)/(X - Y) = 
Xe-l+(y_c,v(e-2+... E sP[Y][X]. Hence, Sj E sP[Y] for all j f 11, e - 11. We 
deduce d = F(S~,...,&_~) f 9[Y], so by taking (5) into account, g E &9[Y]. q 

Theorem 4. Assume k is qf zero characteristic. For each subgroup H of G,, the 

Y-module s&‘~ is finitely generated, and free of rank e = [G, : H]. 

Proof. The freedom of the finitely generated Y-module J&H comes from the above no- 
ticed property of (01,. . . , n;l ) being a homogeneous system of parameters (see [ 133). Ob- 
viously, the rank r of this module is given by r = dimx (X @3y JZ!H). But Inv(H) = 
LZ?~ [l/9] FZ X gF J&H. By Galois theory, we deduce r = dimx (Inv(H)) = 
(6, : H], as expected. •! 

Under the assumptions of the above theorem, an effective construction of a basis 
for the Y-module .JA!H can be given (see [2]). The field k being still assumed infinite 
(of any characteristic), it can be shown that there exist homogeneous elements of LZZH 
which are primitive over X’ for the extension field Inv(H) (see [2, p. 111). 

2.5. Specialized resolvents 

In this section, we fix a separable manic polynomial f = X” - c$P-’ + a a. + 

(- 1)” c,, E k[X], of degree n > 1, and we denote by E its splitting field in E. The 
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set of roots 9%?f of f will be ordered once and for all: 9?,- = {pi,. . . , p,}. In order to 

abridge notations, we denote the specialization morphism 

3d -+ k, cp = CPGG ,...,x2) I--+ (P(PI,...,Pn) 

by cp ++ (p. Obviously, Zi = ci for 1 5 i 5 n. 

Definition 5. Let Y be a primitive invariant of a subgroup H of 6,. The polynomial 

obtained by substituting the above ci’s to the gi’s in the generic resolvent 9~ will be 

called the (H, Y)-resolvent off; we will denote it by 2’ip,,. The invariant Y will be 

said to be f-separable if and only if 5E’y,f is separable. 

As separable resolvents are the easiest ones to deal with, we must make sure to have 

at our disposal a whole crowd of them: 

Theorem 6. Assume k is injnite. Let A be a subring of k whose quotient field is k. 

Then there exists a primitive homogeneous f-separable invariant Y of H belonging 
to AIX1,...,X,]. 

Proof. Let 2 be the set of left cosets 6,/H. Take n indeterminates Ui, . . . , U,, over 

9. As the pi’s are distinct, the n! elements (xb, Uip,(i))-l,(S E G,,) of k[Ul,. . . , U,] 

are mutually coprime. Hence, defining cpc E k[Ul, . . . , Un] for C E Z by 

CPC = n ( f: uiPs(i)) - 1 2 

SEC 
( i=l > 

(6) 

we find that these cpc’s are mutually coprime too; a fortiori, they are distinct. As A is in- 

finite, we may choose (ui ,. . .,u,) E A” such that the mapping 2 -+ k[Ul,. . ., U,,], C H 
cpc(ul,. , u,) is injective. Then put 

y = n ((~&X,(i)) - 1). (7) 
SEH i=l 

We have Y E Inv(H) f? A[Xi,. .,X,]. The conjugates of Y in 9 over X are the 

various Yc = n,,,((~~=i Ui&(i)) - ) 1 as C describes 2. (Note that Y = YH.) By 

the choice of the ui’s, these conjugates are all distinct. So, Y is a primitive invariant 

for H. But clearly 

ZY,f(X) = n (x - Yc(P1,. . . dh,). (8) 
c E .x 

hence the polynomial 9y.f is separable. In order to obtain a homogeneous primitive 

invariant, take a new indeterminate I over 9. For CE 2, denote by (Yc), the lcri- 

homogenized polynomial 



where d designates the (Xl, _ _ . ,X,)-degree of Y/C. Put 

let @J.) be the X-discriminant of Y;,(X) and D(2) the element of A[il] obtained by 

specializing the (T~‘s to the ci’s in B(2). Then D( l/al ) f 0, because here we have 

nothing but the discriminant of p,;,,(X) = .Yy.f(X). Sot B(2) # 0. As A is infinite, 

we can now choose a E A such that D(a) # 0. Let 0~ = ( Y~v,), 1~ -B and Q = QH. 

Clearly, 0 f Inv(H) nA[Xi). . ,XJ; 0 is homogeneous of degree card(N) in the Xj’s. 

The conjugates of 0 over X are the 0~‘s. Finally, let 0~ E k obtained by substitution 

of the pi’s to the Xi’s in @c, i.e. BC = 0~. The polynomial Y’s,,(X) = ncEX(X-@c) 

has discriminant D(a) # 0. Therefore, on the one hand, the @C’S arc all distinct, so 

0 is a primitive invariant of H, and on the other hand, ~ZS,J is separable, i.e. 0 is 

f-separable. 0 

Proof. Let Yl,..., Ye be the conjugates of Y over X, with Y = ?J’,. Put Fui = 

y/i(Pl>.-. , pn ). Choose elements al,. . . , a, o f A such that the B! elements & = CT=, aj 

FScil fs E G,,) be distinct (their existence comes readily from the hypotheses). The 

natural action of G, = Gal(p/%) is transitive. As n > 5, the onIy normal proper 

subgroups of 6, are {Id} and +&. As e 2 3, the above action is faithful, which 

implies: .X[ Y 1,. . . , Yy,] = F. 

Let f’, be the image of 6, in 6, resulting from this representation. The n! elements 

Ce=, Q?Y,(~) (s E 1’,,) of 9 are obviously distinct; therefore, 4 = cF=, aiYi is a 

primitive element of F over X, Apply Theorem 3 with H = {Id} and with the prim- 

itive invariant b, of N. Here &H = 22; thus, &E (l/da) Y[@J, where do is the X- 

discriminant of the polynomial n,,,(X - CF=, aiYX(,j). From Y[@] c ~[YI,. . . , v’,]> 

we infer 

Set 

A = &@I ,.,*,p,) T (_lp+1)12 n (&-at) . 
sErmtErlf,sSt > 

Clearly, by the choice of @, we have & # 0. Specializing in (lo), we see that 

E = i&[pl,.. .,PJ ck[@~,.. .) pk,] cl?; hence E = k[@l,. .., Fe]. Cl 

Remark 8. Theorem 7 strongly improves the result given by Dickson (see 

17, pp, 190-1931). 
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The next theorem is a crucial tool for relating generic and specialized resolvents. 

Let r = Gal (E/k). By means of the ordering (pi,. . . , pn) of the roots of f, the group 

r can be identified with a subgroup of 6,. We will do so. 

Theorem 9. Let 0 be a primitive invariant of a subgroup H of 6,. Put 0 = 0. 

Assume 8 is a simple root of the specialized resolvent 2’0,~. Then Gal(E/k(B)) = 

r n H. 

Proof. For every o E r and cp E d, we have 

rZ$ = 0(cp) (11) 

(keep in mind that on the left-hand side of (1 1 ), 0 acts as an element of Gal (p/X), 

while on the right-hand side, it acts as an element of Gal(E/k)). Thus, for all o E 

r n H we have oT@ = 6 = t3 = a(&) = o(0), whence cr E Gal (E/k(0)). This gives 

r fl H c Gal (E/k(O)). 

Now, take any o E T\H. Putting 0’ = ok@, clearly 0’ # 0. The (O,f)- resolvent 

is: 2’0,~ = n,,,(X - @), where o stands for the &orbit of 0 in d. But fl being a 

simple root of 90,~~ necessarily 0’ # 8. Consequently, 0’ = 07@ = fr(0) = 0(e), 

whence a(0) # 8, which implies c $ Gal (E/k(B)). This gives the expected opposite 

inclusion: Gal (E/k(O)) c r f’ H, ending the proof. 0 

3. The chasing’ resolvents method 

3.1. The partition matrix 

The basic idea of the present paper consists of reversing the usual approach to 

compute Galois groups through resolvents. Rather than starting with resolvents, chosen 

almost randomly within the constraints of effective calculations, we construct a priori 

global abstract group tables. Partitions issued from the factorization of resolvents of f 

over the base field correspond to a row of one of our groupistic tables. These tables can 

be computed by means of various packages. Our calculations were performed on GAP 

(see [lo]); another valuable system, is MAGMA (formerly CAYLEY). From the tables, 

we infer resolvents needed to search particular Galois groups, and not conversely. 

Let n be a non-null natural integer. We will call partition of n any n-tuple (c(i). . , 

GI,) E N” verifying Cy=, icli = n. (This definition recovers the usual combinatorial 

notion of partition.) The set {i E [l,nJ 1 Mi 2 1) will be called the support of the 

partition. For each i E [l,n]l, the integer ai is by definition the multiplicity of i in the 

partition. The cardinality r of the support is the number of components of the partition. 

A partition w of n is characterized by two objects: the strictly increasing sequence 

(d 1,. . . , d,) of its support elements, and the function [l, rl -+ N*, j H Vj = ad,. We 

will designate the partition as follows: w = [(q,dl), . . . , (vr,d,)]. In this notation, it is 

understood that all vi > 1, r 2 1, and 1 5 dl < . . < d, < n. 
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In the present section, we fix once for all a finite group G, of cardinality N. Let U 

and V be subgroups of G. Put e = [G : U], and let {Cl,. . . , Ce} be the left coset set 

G/U, enumerated so that Cl = U. Denote by 92 and Y’“, respectively, the conjugacy 

classes of subgroups of G containing U and V. Now consider the left action of V 

on G/U by left translations. Denoting Cli the number of V-orbits having cardinality i 

(1 < i < e), clearly we obtain a partition (c(i,. . ., cc,) of e, which will be designated 

by Y( V, U). Then: 

Proposition 10. The above partition P( V, U) = (al,. . . , a,) depends only on the con- 

jugacy classes 42 and Y. 

Proof. We first show that the choice of U in % is irrelevant. Indeed, let u E G, and put 

U’ = o&s-‘. Then we have a natural bijection f : G/U + G/U’, given by C H Ca-‘, 

which is easily verified to be an isomorphism of G-sets. Thus .Y( V, U’) = P( V, U). 

Now, we can prove the independence of .9( V, U) on the choice of V in YY Take 

c E G; put V’ = aVa-’ and U’ = oUa_‘. The inner automorphism I,, : x H cm_-’ 

of G satisfies I,,(yC) = I,(y)&(C) f or all y E G and C E G/U. Hence, Zb induces a 

bijection of the V-orbit set G/U onto the V’-orbit set G/U’. Therefore, .Y( V’, U’) = 

P( V, U). By applying the first part of the proof, we see that .9’( V’, U’) = 9( V’, U); 
hence 9( V, U) = P( V’, U), as desired. 0 

In order to define our partition matrix, we order the conjugacy classes of subgroups 

of G, say (55’1,. . . , %?$e,> (so s denotes the number of these classes). It will be convenient 

to choose this ordering so that the indices ([G : H])H~v, are decreasing functions of i; 

thus, g1 = {{eG)} and %‘s = {G}. Due to Proposition 10, to every pair (42, Y) 

of conjugacy classes of subgroups of G, we may associate a well-defined partition, 

namely, the partition equal to 9( V, U) for all choices of U in % and V in %‘Y This 

well-defined partition will be denoted a( Y, 42). 

Definition 11. With the above notation, the matrix 9’)~ = [m(%‘i,%j)] 1 ,<,ss will be 
I_</+ 

called the partition matrix of G (associated with the chosen ordering (vi)). 

Now we shall describe an explicit way for computing of this matrix. Take subgroups 

U, V of G as above. Let e = [G : U]; choose a left transversal (gi,. . . , ge) of G mod 

U, SO that 91 = eo. For i E [l,e& put: Ci = giU, Vi = giUgi’ (hence, Ul = U). 
Then Stabv(Ci) = V f’ Ui for all i. 

Proposition 12. The notation being as above, the partition 9( V, U) is (al,. . . , cr,) = 

(Ni/l,...,Nj/j,..., N,/e), where for all j, Nj designates the number of those i E 1[1, el 

such that [V : V fl U,] = j. 

Proof. To each i E [l,e& associate the index v(i) = [V : V 17 Ui]. Then v(i) is the 

cardinality of the V-orbit Oi of Ci, because V f~ Ui = Stabv(Ci). Therefore, denoting 
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-Yj the inverse image of a given j E gl,e] by the mapping v, the set {Ci}iE.,+; is the 
union of the V-orbits of cardinality j in GjU; putting Nj = card (4), we see now 
that the total number of these V-orbits is ~j/j, as expected. 0 

Remark 13. Those of the above Mj’s which are # 0 are not quite arbitrary. Indeed, if 
Ej # 0, there is at least one V-orbit of cardinality j, so in this case the number j must 
divide card(V) = N,[G : V]. 

In order to state our next theorem, we keep the above notation G, %‘r,. . . , OS and 
the above assumptions. 

Theorem 14. The rows of the partition matrix 9~ = [m(%‘i,%‘j)>1( ;z:;: are djstinct. 

Hence, they deJine a bijection of 11, s]l onto the set {WI, . . . , Ws). 

Proof. For each i E Bl,sJ, choose a subgroup & E %Jt, and denote ei = [G : Hi]. Fix 
two integers i and j with 1 < j < i 5 s. Let (ai , . . . , a,,) be the partition m((ej, %?j). Let 

(Yl,..*, ye,) be a left transversal of G mod Hj, such that 71 = lo. Then, [& : ylH,y,’ n 
Hj] = 1; the total number of integers r verifying Hj = yr&yF’ is obviously [%o(Hj) : 

Hi], where %o stands for “the no~alizer sub~oup of . . . in G”. consequently, cl1 = 
[%o(Hj) : Hj] 2 1. NOW, let (pi ,..., &) be the partition a(%‘i,%?j). For any m E 
[l,ejl], we have YmHjy,’ # Hi, because 48i # wj, and we cannot have Hi C+ YmHjYm’, 
because ei 5 ej. Hence 81 = 0, which proves that w(%Ti,Vj) # W(%jpj,%?j). Therefore, 
the ith row and the jth row of go are distinct. D 

3.2. The main theorem 

Now we arrive at the heart of our actual problem, how to relate the partition matrices 
and the resolvents. At this stage, we will restore the notation n, d’, 9,.X, F, f = 

X” + ~;__i(-l)‘cjXB-i, E, (pi , . . . , pn) and the co~esponding h~otheses made at 
the beginning of Section 2.2. We denote by r the Galois group Gal(E/k), and by 
6 its conjugacy class in 6,. The set N” will be equipped with the direct prod- 
uct ordering issued from the natural order on N. This ordering will be denoted 5. 
Thus, for u = (all...,a,) f Nn and b = (bl, . . ..b.,) f N”, the assertion 4 5 b 
means that ai 5 bi for all i. Recall that the result qo(pl, . . . , pn) of the specializa- 
tion (Xi ,..*,x,) - (PI,..., ,un) in a polynomial cp E su* = k[Xi, . . . ,X,1 is denoted 

by 6 

Theorem 15. Let 0 be a pr~mirive invarjant for a subgroup H of 6,. Let % be the 

conjugacy class of H in 6,. Put e = [G n : H]. For all j E I[l, ej, denote by aj the 
n~ber of the simple irreducjble falters over k of -r%leJ,f having degree j. Then: 

(a) rf all these simple irreducible factors are separable, then 

(al,..., a,> 5 4a,w (12) 



34 J.-M. Arnaudiks, A. Valibouzei Journal oj' Pure and Applied Algebra I17&118 (1997) 23-40 

(b) If _Yo,~ is separable, then 

(@I,..., a,) = @,V). (13) 

Proof. Take a left transversal (~1,. . , , ye) of 6, mod H so that y1 = Id, For m E 

[Len, put H, = ymHyml; 0, = ym jl 0; 0, = 6, (so, HI = H; 01 = 0, and 

H, = StabGn( em) for all m). Then 

For j E 11, en, let Nj the number of those integers m E [I, eJ for which [r : r fl 

I&J =j. By Proposition 12, we obtain: ru(&,%Q = (Nt/l,.. .,iQ’e). 

(a) Fix j E (El, en. Take an irreducible simple manic factor P over k of $Pe,,f having 

degree j. By hypothesis, P is separable. Hence, there is a subset J of cardinality j 

in I[l,eJ such that P = n,,,(X - 0,). For all m E J, the degree j of P equals 

[r : r II I&] since 0, is a simple root of 20,~ (this comes from Theorem 9). There 

are exactly CQ such polynomials P. Thus, the set-union of the corresponding J’s gives 

jam integers m ~lfilling [r : r n H,] = j. This implies jOlj 5 A$. SO, OLD < ~j/j for 

all j, 1 5 j 5 e, as asserted. 

(b) As BO,J is separable, now cT__t jaj = e. This obviously forces the inequality 

(12) to be an equality. q 

We now return to our problem of finding the Galois group r = Gal (E/k) of f. 

Here we take as group G the group 6,. We will fix an ordering (gi, . . . , Ws) for the 

conjugacy classes of subgroups of 6,, as explained just after Proposition 10, and we 

will use the corresponding partition matrix 9~” = [a(%!~,~j))l 
{ Z;Z: 

For each j E 

[El,sJ, write ej = [6, : Hj], choose a subgroup Hj E Q?j and a primitive invariant Oj 

of Hj. Let CQ,~ be the number of irreducible factors over k of degree / of YQ,,~ (1 5 

e 2 ej). The following result is immediate from (13). 

Theorem 16. Assume that all the above invariants Oj are f-separable. The conjugacy 
class of r in 6, is V,., where r is such that the rth row of the partition matrix 9~~ 

coincides with (91,. . . , qs), where vj = (aj, I,. . . , aj,e, ). 

Now, the chasing’ resolvents method runs as follows: first of all, the partition matrix 

YG, is displayed (we have found it entirely for n 5 7 using the software GAP). Then, 

f-separable primitive invariants Oj are determined, and the corresponding specialized 

resolve&s Z~,,J are computed; it remains to factorize these resolvents over the base 

field and to apply Theorem 16. (Note that the existence of such Oj’s is made sure 

by Theorem 6 when k has characteristic zero.) When running the chasing’ resolvents 

method, it is convenient to view the above subgroups Hj as test groups (keeping in 

mind that only their conjugacy classes are relevant). They correspond to the columns 

of gl~,. On the other hand, the rows of 9~,, which also correspond to the classes gje,, 
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Table 1 

Representative subgroups for the conjugacy ciasses of $ 

Nature Id4 Id2 x CZ2 Gz Id x 2f3 E$’ V, C4 Id x B3 34 ‘u4 G4 

Size I 2 2 3 4 4 4 6 8 12 24 
Invariant X ’ X2X3 

2 3 
&&X,’ 03 63 XIX2 06 07 Xl 09 64 I 

must be viewed as the candidate sa~group classes, because one and only one of them 
comes from r. 

The importance method should not fail to strike the reader, owing to its applicability 
to polynomials f assumed solely to be separable, not necessarily irreducible over the 
base field k. 

3.3. Improvements to the chasing’ resolvents method 

Of course, if all the @j’s and all the Y 0,~‘s had to be computed, this would be an 
almost insuperable task. Fortunately, it appears that only very few of them are needed 
for explicit calculations. For example, if it is known that f is i~educible over k, then 
only the columns of 9~” relative to transitive subgroup classes of G, are required. 
(By a transitive class, we mean a class of transitive subgroups of G,,.) Moreover, far 
from all test groups are needed, as shown by direct examination of the actual partition 
matrices at our disposal. The heavy hypotheses of separability can be enlarged too. 
Finally, in many cases, the whole resolvents are not needed: some suitable factors of 
them may suffice. 

Example 17 (Degree 4). We shall display the chasing’ resolvents method for n = 4, 
which will suffice for a good understanding (the complete partition matrices are avail- 
able for all n < 7; partial partition matrices relative to trunsitiue candidates are avail- 
able up to degree 11; we cannot give any of them here, for the sake of their exces- 
sive lengths). For our present purpose, we assume the characteristic of k is neither 2 
nor 3. By using GAP, we first obtain groups Hj representative of the 11 conjugacy 
classes in Gq, ordered as explained above (see Table 1). In Table 1, 0s = XIX,“+X&, 
07 = XIX; I-X&: +&Xi +X&Y:, 09 = X,X2 +X-+X& 06 = (Xt -&)(X3 -X2), and 
6, = n, <i< j<,(Xi - Xj). Finally, still by using GAP, we display the partition matrix 
9~6~ in Tible-2; for brevity, we write dr’ , . . . , d: for the partition [(VI, dl ), . . . , (vr, d,)]; 

recall that the groups of the top line must be viewed as test groups, and the groups 
of the left column as candidate groups. 

3.4. Sorting 

Returning now to the general notation of Theorems 15 and 16, for all integers Y 
and j in %l,s], denote by %j,, the set of integers m E [l,s]l for which w(V,,,,%j) = 
w(‘%~,, %‘j). We will say that a subset J of [[l,s] sorts the class %?,. if and only if 
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Table 2 

The partition matrix 8~~ 

HI H2 I-13 6 ff5 fGi fh ffs ff9 %I &I 

HI 124 
H2 2’2 

ff3 2’2 

ff4 

H5 
:I 

& 44 

ffl 46 

f&Z 

H9 ;; 

HI0 1Z2 

61 24 

1’2 1’2 

12 

26’ 25 26 14 

34 34’ 

24 

I2 62 

12 12 

42 234 12 4 

’ 2,6 32 

i3 

6 

8 234 23 2,4 

4’ 6 32 6 

8 6 6 6 

I4 
12,2 

22 

;;’ 

4 

4 

1,3 
4 

4 
4 

13 12 1 

1,2 2 1 

13 12 I 
3 12 1 

1.2 2 1 
13 I* 1 

I,2 2 1 
3 2 1 
1,2 2 1 

3 12 1 

3 2 1 

njE:J@j,r = {rl. Th is amounts to requiring that in the submatrix of P?~G, obtained by 
cancelling the columns whose index is not in J, the rows of index distinct from r are 
all different from the rth. Clearly, when r happens to belong to “e,, in order to find r, 
the chasing’ resolvents method will work with only the knowledge of the resolvents 
_S?~,,J where j is in any set J sorting Vr. As an example, look again at Table 2: it is 

seen that the invariant 09, classically used for solving equations of degree 4, is a very 
bad one as far as sorting is concerned. On the contrary, the pair (Xi.&Y~,S4) suffices 
for sorting any conjugacy class of subgroups of 64. 

4. Relative resolvents 

In this section, we fix a subgroup Lo of G,, containing r, and we put eo = [G, : LO]. 

We denote by &IrLol the conjugacy class of r = Gal (E/k) in Lo. It follows read- 
ily from (11) that (p E k for all 9 E &‘L,. Now, let H be a subgroup of t;,. Then 
the field Inv(H) is a separable extension of Inv(Ls), having degree e = [La : H]. 

When k is infinite, this extension field admits primitive homogeneous elements belong- 
ing to &‘H = & n Inv(H). For instance, take any homogeneous primitive invariant 
of H. 

Definition 18. The notation and hypotheses being as above (no hypothesis being made 
on k), we will call relative primitive (generic) invariant of H with respect to Lo any 
primitive element of the extension field Inv(H)/Inv(La) belonging to &H. The minimal 
polynomial over Inv(Lo) of such an element 0 will be called relative generic resolvent 
associated with (O,H, Lo), and denoted by S??‘. 

Of course, we recover the previous notion of resolvent when taking LO = 6,. The 
latter will be called absolute resolvents. Let 0 be a relative primitive invariant as in the 
above definition. The Lo-orbit w of 0 has e = [La : H] elements. Let o = { 01,. . . , @,}, 
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with 01 = 0. Then 

2p’(X) = fi(X - Oi). 
1=l 

(14) 

Clearly, Y?‘(X) E JzJ~~[X]. Specializing (through the morphism cp H $), we get an 

element of k[X], which we will denote 2’:$, given by 

9;;; = fi(X - Oi). (15) 
i=l 

Hence, 6Rt$( X divides the absolute resolvent _Ye,r(X) in k[X]. Putting H’ = ) 

Stabc,(O), one has H’ fl LO = H, deg (0490,f(X)) = [6, : H’], and 

e+‘)n:Lo]=[H’:H]+5,,:H’]. (16) 

Definition 19. The polynomial _YILol @,JX) E k[X] defined in (15) will be called relative 

resolvent of f associated to (0, H,Lo) (see [14]). The primitive invariant 0 will be 

said f-separable (or, more precisely, (La, f)-separable) if and only if 8:$(X) is 

separable. 

Remark 20. Even in the case where H = StabG,(O), the relative resolvent @$(X) 

may be separable without the absolute resolvent 20,~ being so. Hence, dealing with 

suitable relative resolvents may be a way of throwing out multiple factors in absolute 

resolvents. 

In view of an extension of the chasing’ resolvents method to relative resolvents, we 

need a sharper version of Theorem 9. The notation and hypotheses are those in (14) 

and (15). 

Theorem 21. Let 8 = 0. Denote by v the multiplicity of 6 us a root of @$~(X). 

Let J be the set G E ll,el] 1 Oj = 0); let M = StabL,({Oj}jEJ). Then: 
(a) Gal (E/k(O)) = r n A4 and 

TnHcTnM; [r:rnH]<v.[k(B):k]; [k(B):k]=[r:rnM]. 

(b) In particular, if v = 1, one has Gal (E/k(O)) = r n H and [k(B) : k] = [r : 

r n H]. Consequently, 8 E k if and only if r c H. 

Proof. Assertion (b) follows immediately from assertion (a) by taking v = 1. So we 

prove (a). 

Let g E r. Fixing any j E J, the condition g(0) = 0 means g(Oj) = Oj, i.e. 

gF@, = Oj (see (11)). But r C LO, which implies g * Oj E { 01,. . . , O,}, so the 

condition g(0) = 8 is equivalent to 
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As this works for every j E J, our condition on g amounts to g E M. Moreover, if 

relation (17) is true for a particular j E J, it implies that g E M. Taking j = 1, this 

gives that (g(0) = 0) implies g E M, whence r II H c r n M. Hence, it is proved 

that Gal (E/k(8)) = r n M and r n H c r fl M. 

It remains to establish the inequality involving v. Note that v = card(J). Put Y = 

{@/)&GJ* From the above, Stabrn,@) = r n H, and Orbw (o> = Y. Hence, [TnM : 
r n H] = card (Orbr”M (0)) I card(Orb, (0)) = v. On the other hand, [r : TnM] = 

[k(B) : k], so we finally get 

Now we can extend our main theorem. Keeping 0, H and LO as above, for all 

j E [Tl,ej, denote by aj the number of the k-irreducible simple factors of .Y$$(X). 

(Hence when the latter is separable, (al,. . , a,) is a partition of e.) Recall that 6 ILo 

stands for the conjugacy class of r in L o. The conjugacy class of H in La will be 

denoted Wol. Using Theorem 21, the following can be established without difficulty 

by reasoning similarly as in Theorem 15. 

Theorem 22. (a) One has (~1,. . . ,a,) 3 m(EILol,@Lol). 

(b) Moreover, if 0 is (LO, f )-separable, then 

(Q,..., a,) = ziJ(& [Lo], q+l ). (18) 

For stating the relative version of our main theorem, choose an ordering VP’, . . . , 

G&2’ for the distinct conjugacy classes of subgroups of Lo, so that their indices decrease 

(so, q, ‘&’ = {{Id}} and &$‘I = {LO}). For each integer j E [l,so& let Hj be a 

subgroup in the class %@” 
J ’ 

and let 0, a primitive relative invariant for Hj with respect 

to La. Denote ej = [Lo : Hi], and for 1 5 C‘ < ej, let oIj,/ be the number of the simple 

k-irreducible factors of the relative resolvent S$p’,, , . Using (18), it is easily proved, in 

a way analogous to Theorem 16. 

Theorem 23. Assume that all the above @j’s are (LO, f )-separable. Then the conju- 

gacy class 6 &I of r in LO is S&“, where r is the integer such that the rth row of 

the partition matrix 

coincides with (‘$31, . . . . Qp,,), where cpi=(aj,i,...,uj,e,). 

As a nice application of relative resolvents, we mention the completely general 

determination of the Galois group for a polynomial of degree 4. It must be noticed 

that the above resolvent _!Z’Q~,~, which looked so bad, becomes a very good one when 

a suitable relative resolvent is joined to it. In addition, _Ypo,,f is always separable when 

f is (see [l, 61). 
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5. Some theoretical properties of resolvents 

5.1. Metacyclic extensions and resolvents 

In this section, p designates an odd prime integer. Let M be a finite group of 

cardinality p(p - 1). Denote by C the unique p-Sylow subgroup of 44. It is a char- 

acteristic subgroup, so the factor group M/C acts on C through the automorphisms 

c -+ c, x +-+ /_lxp-1, where p E M. This action will be called the natural action of 

M on C. 

Definition 24. The above group M is said to be metacyclic of degree p if and only if 

it fulfills the two following conditions: the factor group M/C is cyclic, and its natural 

action on C is faithful. 

Recall some well-known facts: 

(I) A metacyclic group M of degree p is isomorphic to the group of similarities 

of the field FP = Z/p& i.e. the permutation group of FP consisting of the bijections 

x++ux+b (aEFi:, bEIFp). 
(II) The set of the metacyclic subgroups of degree p in GP is a conjugacy class 

of subgroups. Its elements are the subgroups of cardinality p(p - 1) of GP; they are 

maximal transitive solvable subgroups. Every transitive solvable subgroup of 6, is 

contained in at least one metacyclic subgroup of degree p. 

Definition 25. The metacyclic subgroups of degree p in 6, are called the maximal 
transitive metacyclic subgroups of 6,. 

We take n = p, the degree of the separable polynomial f. The two theorems below 

show how easy it is to compute the involved resolvents: 

Theorem 26. Assume p 2 5. 
(a) [f r is p-cyclic, then the k-irreducible non-linear factors of the various sepa- 

rable resolvents off have degree p. 
(b) Let 0 = X&j. Assume that the resolvent _Yo,/ is separable and that all its 

k-irreducible factors have degree p. Then r is p-cyclic. 

Note that whenever the condition of (b) is fulfilled, then 23’0,~ is the product of 

p - 1 k-irreducible factors of degree p. 

Theorem 27. Assume p 2 5. Let 0 = X,X; and @ = X,X22X:, Assume that 0 and 
Qi are f-separable. The Galois group T is metacyclic of degree p tf and only if 
3’0,~ is irreducible, and 3’ Q,J is the product of p - 2 irreducible factors of degree 

P(P - 1). 
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5.2. Specialization of Galois groups 

By means of resolvents, the classical Dedekind theorem about specialization of 
Galois groups can be highly improved. In fact, assuming that some separable irre- 
ducible resolvents remain separable irreducible under specialization, we have proved 
that Galois groups remain the same. In comparison, the Dedekind theorem gives only 
sufficient conditions under which the specialized Galois group will be a subgroup of 
the initial Galois group. For details, see [Z]. 
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