HirondML PROJECT
(Supervisor : Emmanuel Chailloux)

Verlaguet Julien

15 septembre 2004

Contents

1 Presentation
1.1 Abstract

2 The librairy

2.1 Thefairthreads
2.2 Therestrictions e
2.3 Thesemantic i
2.4 Capturing global variables

3 All you need to know

1 Presentation

1.1 Abstract

In this report we present an Objective Caml librairy implementing migrating
fair threads. The aim of HirondML project is to define a semantic for distributed
and concurrent programming which would be efficient and easy to understand.

The current implementation is experimental, many weaknesses will need to be
discussed in a further work.

2 The librairy
2.1 The fair threads

It is important to note that HirondML is based on Fair Threads, a reactive like
cooperative thread library.

2.2 The restrictions

The migrate librairy won’t work if you don’t respect the following rules
1. All the computers have to be Linux 32 bit platforms

They all have to execute the same binarie file

All the librairies used in the program have to be static

The program has to be compiled with ocamlopt (and not ocamlc)

A

All the I/O operations have to use the replacement functions from the
Migrate library (don’t use Unix, neither Pervasives).

6. Please note that number of I/O replacement functions implemented is
incredibly high (= 2) (cf Migrate.read line and read).

2.3 The semantic

So, what is all that about, to make short let’s make a simple example

let chat home=
let s=Migrate.read_line () in
Migrate.migrate other_comp
output_string s ;
flush stdout;
chat home

Let’s have a look at this program. Basically to understand all what you need
to know is that “Migrate.migrate computer nbr” means : I want the current
continuation to be executed on the computer computer nbr.

Of course, the first question that comes in your mind is : but how are all the
variables going to be to be linked ? Some of them have to be copied!!

The answer is pretty simple, if u want to know if a variable is going to be copied,
just question yourself : does this variable exist on the targeted computer ? If not,
then you know you are working on a copy.

This implies many precautions that the programmer should take when using
the Migrate library. You have to be aware that if you are declaring a variable on
one computer that you wish to use on another computer it will cost you time.
To be more precise, the variable is going to be marshallized and sent on the
network. Here is an example to illustrate that problem :

What you shouldn’t do :

let test home=
let tab=Array.make 1000 1 in
Migrate.migrate other_comp
output_int s.(0) ;
flush stdout

L

What you should do :

let test home=
let tab=Array.make 1000 1 in
let x=s.(0) in
Migrate.migrate other_comp
output_int x;
flush stdout

L

In the first case the entire array (tab) is marshallized, when in the second case
the only variables sent on the network is x.

2.4 Capturing global variables

Assume now that all the local variables from the current continuation are copied
during a migration. The global variables exist on all of the connected computers,
they won’t be serialized when a migration takes place. If a global variable of a
particular computer is required, the simplest way to capture it (perhaps to work
on another computer with it), is to create a local reference on it.

Here is a little example to illustrate the global variable capturing mechanism
(note that Migrate.computer is a reference to the computer where the execution
takes place) :

let global_tab=Array.make 10 !Migrate.computer; ;
let test home=
let tab=ref global_tab in
we are capturing the global_tab of this computer
Migrate.migrate other_comp ;
tab is now a reference to a copy of global_tab
output_bool (!(tab).(0) =!Migrate.computer) ;
this prints false
flush stdout

20

3 All you need to know

Here is all what u need to know to make your program work.

Write a text file with the addresses of all the computers you wish to connect to
your network. Example :

127.0.0.1 :12345
168.92.0.1 :13423

Assume now that the computer 0 has the address 127.0.0.1 (port 12345), the
computer 1 the address 168.92.0.1 ...

now to launch a thread on a particular computer all you need to type is :

Migrate.create (fun home -> ...) comp_nbr;

where ... is the code of your thread and comp nbr is the number of the computer
where you wish to launch it. Be aware that comp nbr is passed as an argument
to the thread function.

Here is a few function that might be usefull (for more details see doc/index.html) :
cooperate, link, create scheduler, computer (the reference to the computer

where u are), nbr _comp (a reference to the number of computer launched)

And finally, here is how to launch the programs. On the first computer (!computer
= 0), type :

./your_program -mynum 0 -list file with the computer addresses

On the second one, just change the -mynum to 1, ..., til all the computer are
launched. Be aware that the order is important!!

