
Typing Unmarshalling without Marshalling Types

Typing Unmarshalling without Marshalling Types

Grégoire Henry
CNRS, PPS, UMR 7126

Univ Paris Diderot
Sorbonne Paris Cité

F-75205 Paris, France
henry@pps.univ-paris-diderot.fr

Michel Mauny
ENSTA-ParisTech

32, boulevard Victor,
F-75739 Paris Cedex 15, France

Michel.Mauny@ensta.fr

Emmanuel Chailloux
LIP6 - UMR 7606

Université Pierre et Marie Curie
Sorbonne Universités
75005 Paris, France

Emmanuel.Chailloux@lip6.fr

Pascal Manoury
Université Pierre et Marie Curie

PPS, UMR 7126 CNRS
Univ Paris Diderot
Sorbonne Paris Cité

F-75205 Paris, France
Pascal.Manoury@pps.univ-paris-diderot.fr

Abstract
Unmarshalling primitives in statically typed language require, in
order to preserve type safety, to dynamically verify the compat-
ibility between the incoming values and the statically expected
type. In the context of programming languages based on parametric
polymorphism and uniform data representation, we propose a rela-
tion of compatibility between (unmarshalled) memory graphs and
types. It is defined as constraints over nodes of the memory graph.
Then, we propose an algorithm to check the compatibility between
a memory graph and a type. It is described as a constraint solver
based on a rewriting system. We have shown that the proposed al-
gorithm is sound and semi-complete in presence of algebraic data
types, mutable data, polymorphic sharing, cycles, and functional
values, however, in its general form, it may not terminate. We have
implemented a prototype tailored for the OCaml compiler [17] that
always terminates and still seems sufficiently complete in practice.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Input/Output; F.3.3
[Logics and Meanings of Program]: Studies of Program Con-
structs—Type structure

General Terms Languages, Safety

Keywords Type-safe marshalling, OCaml

1. Introduction
Marshalling is the process of transforming the memory represen-
tation of a value into a linear form, suitable for communication or
storage. Unmarshalling is the reverse operation, importing external

[Copyright notice will appear here once ’preprint’ option is removed.]

data as values in a running program. In the context of functional
languages with parametric polymorphism, we can distinguish two
main categories of verification mechanisms used to preserve type
safety when unmarshalling data.

The first category relies on an ad hoc external representation
of values and a couple of ad hoc functions for marshalling and un-
marshalling: for a given type the unmarshalling function may either
reconstruct a well-typed value or fail if the input is unexpected.
This approach suits well the Haskell type-class mechanism which
allows the multiple ad hoc functions to be hidden behind a unique
name. Many Haskell libraries reuse the principles proposed in [14]
to automatically derive the (un)marshalling functions from an alge-
braic type definition. Such libraries also exist in SML [7] or OCaml
[21, 26] with less convenient interfaces.

The second category of verification mechanisms relies on the
introduction of run-time type representations. In such mechanisms,
marshalling primitives are generic functions that traverse the mem-
ory graph representing a value, and linearize it as a sequence of
bytes. To ensure type safety, a value is usually marshalled together
with its type and the unmarshalling primitives will accept to re-
construct the memory graph only when the marshalled type corre-
sponds to the statically expected one. This category include mech-
anisms based on a dynamic type [1, 9, 16]. When the marshalling
primitives are used to communicate values between different pro-
grams on different hosts, the main difficulty is to choose a common
representation for the types [5].

We propose in this paper a third approach, also based on generic
(un)marshalling functions but without adding more type informa-
tion in the external representation than those already required to
rebuild the corresponding memory graph. To ensure type safety,
the initial idea is to check the compatibility of the reconstructed
memory graph with the expected type. In other words, we check
whether the memory graph may actually represent a value of that
type. In a first approach, this can be achieved by recursively travers-
ing the graph and the type together. In a more general way, we have
defined an algorithm for checking the compatibility of a memory
graph against classical algebraic data types (sums and records), but
also against generalized algebraic data types or closures—that may
introduce existential types—and against mutable record types or ar-

Submitted to ICFP ’12 1 2012/3/12

rays. This algorithm is efficient: it is linear in the size of the graph
in presence of monomorphic or polymorphic sharing and quasi-
linear in presence of cycles. The proposed algorithm is sound and
semi-complete, however, in the most general case, it may not ter-
minates. In practice, we have implemented a prototype tailored for
the OCaml compiler that always terminates and seems sufficiently
complete.

In section 2, we informally describe the algorithm in terms of
graph traversal. In section 3 we define the compatibility relation
between a memory graph and a type, then in section 4 we de-
scribe the algorithm as a rewriting system and study its soundness
and completeness with respect to the previous compatibility rela-
tion. In section 5 we compare our proposal with other type-safe
(un)marshalling primitives.

2. Type-checking a memory graph: discussion
Our algorithm has been initially conceived for the OCaml runtime
which uses a tagged, uniform representation for values. The de-
scription of the algorithm will be done for such a representation
but in section 4.5 we will discuss how it may be reused in a run-
time with different representations for values.

Uniform representation The uniform representation of OCaml
runtime values uses a bit tag that allows distinction between an im-
mediate value and a pointer to an allocated value (a memory block).
Furthermore, every allocated value has a generic header containing
its size and a tag. The tag is a small integer mainly used to discrimi-
nate between cases of an algebraic data type (hereafter abbreviated
ADT) but there are also some tags reserved for specific allocated
values such as character strings, closures or boxed floats[15]. The
latter tags specify that the content of the value does not follow the
uniform representation and hence should not be traversed by the
garbage collector.

More precisely, integers are represented by immediate values
and characters are represented by immediate values lower than 256.
Records and tuples are represented by allocated values of tag 0. A
constant constructor is represented as an immediate value that is
the position of the constructor in the corresponding type definition.
A non-constant constructor is an allocated value whose tag also
depends on the position of the constructor in the corresponding
type definition. For example, consider the following list of rational
numbers:
type Rlist =
| Nil
| IC of Int ∗ Int ∗ Rlist
| FC of Float ∗ Rlist
let l : Rlist = FC (3.14, IC (22, 7, Nil))

It is represented by the memory graph in figure 1 where the tags of
allocated blocks are represented with a symbolic name instead of
an integer.

FC
2

IC
3 22 7 0

float
2 3.14

Concrete tags: IC = 0; FC = 1; float = 253.

Figure 1. Uniform data representation in OCaml

Generic (un)marshalling primitives With the uniform tagged
representation used by OCaml, a marshalling primitive could be
implemented with a generic depth-first traversal of the memory
graph. And a type-safe unmarshalling primitive could be concep-
tually split into two steps: a generic function that rebuilds a well

formed memory graph, with respect to the invariants assumed by
the garbage collector, and a function that traverses the reconstructed
graph to check its compatibility with the expected type.

A simple recursive algorithm Checking the compatibility of a
well formed graph against primitive data types is simple—an in-
teger should be an immediate value, a float should be an allocated
value whose tag is the one specific to boxed float, etc.—and check-
ing the compatibility against a classical ADT is easily achieved
with a recursive algorithm that test if the size and the tag of the
value correspond to a constructor in the type definition, then de-
duce the expected type for sub-values and recurse. For example,
consider the following parametric definition of list:
type List(α) = Nil | Cons of α ∗ List(α)

A memory graph is compatible with List(Int) if and only if:

• it is the immediate value 0 (representing Nil), or
• it is an allocated value of tag 0 and size 2 (repr. Cons), where:

the first element is compatible with Int, i. e. its an immedi-
ate value,

the 2nd element is recursively compatible with List(Int).

This recursive algorithm is extended in section 2.1 to efficiently
handle sharing and cycles in the memory graph. In the presence of
polymorphic sharing and polymorphic recursion, as introduced re-
spectively by the generalizing let and let rec constructions[18],
this will require to traverse the graph in topological order and to
recompute, from all the types expected for a shared value, an ap-
proximation of its inferred polymorphic type in the source code.
This is the main difference with a classical type inference algo-
rithm: while checking the memory graph corresponding to a pro-
gram let x = e1 in e2, our algorithm traverses e2—in order to
collect all the expected types for x—before traversing e1.

Section 2.2 describes a simple extension that allows the verifica-
tion of mutable data, and section 2.3 extends the algorithm to han-
dle generalized algebraic data types (hereafter abbreviated GADT)
and function types. This will require the introduction of existential
types and the use of unification to instantiate them. This will also
complexify the order in which the graph is traversed: the verifica-
tion of a value against an existential type is postponed until the type
is instantiated.

2.1 Topological traversal and anti-unification
In terms of soundness, checking the compatibility of a memory
graph with neither cycles nor mutable data could be achieved by
checking shared values multiple times, with possibly different ex-
pected types. However, given that compilers tend not to introduce
more sharing in the memory graph than is explicitly introduced
by the programmer with let constructions and functional abstrac-
tions, those multiple verifications seem redundant. In fact, to obtain
a complete algorithm it should be sufficient to check shared values
only once with the type of the corresponding variable in the original
source code.

In the absence of polymorphic sharing or polymorphic recur-
sion, a shared value in the source code has a monomorphic type.
Then, in such a situation, we can assume while checking a mem-
ory graph that all the expected types for that shared value are equal
to that monomorphic type. Hence, we can obtain an efficient algo-
rithm by marking values with their expected types when traversing
them for the first time; and, when checking a previously marked
value, only test the equality between the new expected type and the
memorized one.

Polymorphic sharing in the absence of cycle In the presence of
polymorphic sharing, we can only assume that the original type of

Submitted to ICFP ’12 2 2012/3/12

a shared value is more general than all the expected types for that
value. If we can definitely not recompute the original type, we can
still try to recompute a type “minimally more general” than every
expected type, hence compatible with this node of the memory
graph. With a language based on parametric polymorphism like
OCaml, a type that satisfies those conditions is the principal anti-
unifier of the expected types [13, 19] (see section 4.2 for a formal
definition). Then, in the absence of cycles in the memory graph, we
obtain an efficient algorithm by using the following strategy:

• traverse the graph in a topological order, hence collecting all the
types expected for a shared value before traversing it,
• check a shared value only once against the anti-unifier of all its

expected types.

For example, consider the following values and the corresponding
memory graph in figure 2.
type Tree(α) =
| Leaf of String
| Node of Tree(α) ∗ α ∗ Tree(α)

let leaf : ∀α. Tree(α) = Leaf ”..”
let trees : (Tree(Int) ∗ Tree(Char)) =
(Node (leaf, 3, leaf), Node (leaf, ’A’, leaf))

The set of expected types collected for leaf while checking the
compatibility of trees against the type (Tree(Int) ∗ Tree(Char))
is {Tree(Int); Tree(Char)}. Their anti-unifier is ∀α. Tree(α).

tuple
2

Leaf
1

string
1 ”..”

Node
3 3

Node
3 65

Concrete tags: tuple = Leaf = 0; Node = 1; string = 252.

Figure 2. Sharing in the memory graph

Cycles In an algorithm like ours, which recursively traverses the
memory graph and the expected type together, it is not possible
to collect all expected types for a value involved in a cycle with-
out traversing that value. Hence, we have to elaborate a specific
treatment for such cyclic values. One possibility is to mark them
with their expected type when traversing them for the first time;
and then, when checking a previously marked value against a type
that is not an instance of the memorized one, to recheck the value
against the anti-unifier of the two types, while marking the value
with the anti-unifier. That process will reach a fixed point: each
anti-unification reduces the size of the memorized type1 and the
smallest type is the empty type: ∀α. α. Hence, the number of itera-
tions for a value is limited by the size of the first expected type.

The proposed process is complete even in the presence of poly-
morphic recursion but is not easy to implement efficiently. Fur-
thermore, in the absence of polymorphic recursion in the source
language, it should not be necessary to check values involved in
a cycle twice: the types collected from outside the strongly con-
nected components (hereafter abbreviated SCC) should allow the
algorithm to recompute a sufficiently general type for the roots of
the SCC. Hence, we initially restrict ourselves to monomorphic re-
cursion and in our prototype implementation we apply the follow-
ing strategy, assuming that the graph has been previously annotated
with the number of references towards a shared value:

1 at least as long as we do not consider recursive type expression.

(a) traverse the graph in topological order using a reference counter
and anti-unify all the expected types before traversing a value;
if some expected types could not be collected, then the graph
contains cycles: proceed with (b).

(b) identify the SCCs and sort them in topological order; for each
SCC proceed with (c).

(c) mark the values of the current SCC for which types were col-
lected, anti-unify all the expected types and proceed recursively
with (a) for all the marked values, considering the graph re-
duced to the current SCC.

(d) while checking a previously marked value, fail if the expected
type is not equal to the memorized one.

We propose in section 4.4 an extension of that strategy that handles
polymorphic recursion.

2.2 Mutable fields
OCaml allows the definition of mutable fields in record types.
However, mutability is known only at compile time: the runtime
representation of records does not distinguish mutable fields from
immutable ones. However, as we traverse a graph and its expected
type in parallel, we can add a specific treatment when the expected
type requires that a field of the corresponding value has to be
considered as mutable. In that case, we check that the expected
type for the mutable field is monomorphic, in order to avoid the
well-know soundness problem of polymorphic references.

As the mutation of record fields is achieved in-place, the
proposed verification for mutable records is only allowed if the
checked memory graph could only be manipulated with the veri-
fied type. It is the case in the context of an unmarshalling function
but it would not be the case in a cast function that does not dupli-
cate the memory graph first. Otherwise, if a value with a mutable
type is cast into an immutable type, nothing warrants that a mutated
value would still be compatible with the checked type.

2.3 Existential types
The simple recursive algorithm described at the beginning of sec-
tion 2 allows the verification of compatibility of a value against
classical ADT. In this section we describe the different difficulties
introduced by the existential types of GADT and how our algorithm
handles them. In a second step, the mechanisms introduced to han-
dle existential types will be reused for the verification of polymor-
phic closures.

Unification The version 4.0 of OCaml includes GADTs. Their
memory representation is the same as the classical ADTs. In par-
ticular, they do not contain witness for existential types. To recon-
struct the existential types, the recursive algorithm is extended with
a unification mechanism. More concretely, the algorithm proceeds
according to the following steps: test if the size and the tag of the
value correspond to a constructor in the type definition; unify the
expected type with the return type of the constructor; deduce the
expected type for sub-values and recurse. For example, consider
the following simple type definition:
type T1(_) =
| Int : Int→ T1(Int)
| Char : Char→ T1(Char)
| Bin : T1(α) ∗ T1(α)→ T1(α)

Checking the compatibility of an allocated value of tag 1 and size
1, representing the constructor Char, against type T1(Int) will
fail while unifying T1(Int) with the return type of the construc-
tor Char, i. e. T1(Char). On the contrary, while checking the com-
patibility of an allocated value of tag 2 and size 2, representing
Bin, against type T1(Int), the unification allows the instantiation

Submitted to ICFP ’12 3 2012/3/12

of α and the recursive checking of the sub-values against the type
T1(Int).

In a more general way, the unification allows the instantiation
of the existential types introduced by GADT. For example, con-
sider the following type definition:
type T2(_) =
| Int : Int→ T2(Int)
| Char : Char→ T2(Char)
| Couple : T2(α) ∗ T2(β)→ T2(α ∗ β)
| Fst : T2(α ∗ β)→ T2(α)

While checking the compatibility of an allocated value of tag 3 and
size 1, representing Fst, against the type T2(Int), the unification
leaves the β uninstantiated. Then, the recursive call has to verify
that there exists a type β such that the argument of Fst is com-
patible with T2(Int ∗ β). If this argument is the representation of
Couple (Int 1, Char ’A’), it is decomposed in two independent
checks:

• is the representation of Int 1 compatible with T2(Int)?
• is the representation of Char ’A’ is compatible with T2(β)?

The latter will instantiate β as Char.

Delayed verification In the presence of existential types, not ev-
ery memory graph can be verified with a simple recursive algo-
rithm. For example, consider the following type definition of dy-
namic types reduced to three constant constructors:
type Ty(_) =
| TBool : Ty(Bool)
| TInt : Ty(Int)
| TChar : Ty(Char)
type Dyn = Dyn : α ∗ Ty(α)→ Dyn

Testing the representation of Dyn (65, TInt) against the type Dyn
with the recursive algorithm leads to the following question: is there
a type β such that:

• the immediate value 65 is compatible with β, and
• the representation of TInt is compatible with Ty(β) ?

There are at least two possible instantiations of β that could satisfy
the former part of the question, that is: Int and Char; but only Int
would also satisfy the latter part. Hence, while traversing this value,
it is important to check the compatibility of TInt—and instantiate
β as Int by unification—before traversing 65. For this purpose,
the algorithm must be able to delay the verification of some values
until the expected type has been instantiated.

Universal types Some existential types can not be instantiated by
unification. Consider the following type definition, similar to T2(_)
but where the constructors Int and Char have been replaced by a
generic constructor Const:
type T3(_) =
| Const : α→ T3(α)
| Couple : T3(α) ∗ T3(β)→ T3(α ∗ β)
| Fst : T3(α ∗ β)→ T3(α)

While checking the compatibility of a memory graph representing
Fst (Couple (Const 3, Const ’A’)) against T3(Int), the test
will be reduced to:

• is there a type β such that the immediate value 65, representing
the character ’A’, is compatible with β?

While answering this question on the paper is trivial, our algorithm
could not delay the verification anymore nor instantiate β by uni-
fication. However, in the same way Goldberg [10] shows that a
garbage collector based on type reconstruction can collect values
for which it can not reconstruct the type, we can ignore such values

without breaking the soundness of the host language. For formal-
izing this situation in section 3, we will introduce an abstract type,
named universal type, that is compatible with every memory graph.
It will be used at the end of the traversal to instantiate the remaining
type variables.

Functional types We now extend the algorithm to allow the ver-
ification of closures. We suppose that the compiler is able to pro-
vide an association table that stores for each code pointer, the static
type of the corresponding lambda-abstraction in the source code
and the typing environment required to type the function. For ex-
ample, consider the following piece of code:
let one : Int = 1
let succ : Int→ Int = λx. x + one
let delayed_apply : (α→ β)→ α→ Unit→ β =
λf. λx.
let apply : Unit→ β = λ(). (f x) in
apply

The static type associated to the three named lambda-abstractions
succ, delayed_apply, and apply are the following types, where the
typing environment is written inside square brackets:

σsucc = [one 7→ Int]→ Int→ Int
σdelayed_apply = ∀αβ. []→ (α→ β)→ α→ Unit→ β

σapply = ∀αβ. [f 7→ (α→ β); x 7→ α]→ Unit→ β

Now consider the following partial application of delayed_apply
and the corresponding closure in figure 3 where dashed arrows
represent code pointers and their associated static types:
let dsucc : Unit→ Int = delayed_apply succ 52

The code pointer of the closure representing dsucc corresponds to
the code of apply. Hence, the static type associated to dsucc is
σapply and while checking the compatibility of dsucc against the
type Unit → Int the exact type of the environment has been lost
and must be recomputed by our algorithm:

[f 7→ (Int→ Int); x 7→ Int]→ Unit→ Int

Given this static type information, checking the compatibility
of a closure against a functional type could be achieved with a
mechanism similar to those introduced for handling GADTs. In our
algorithm this is achieved in three steps: instantiate the associated
static type schema by replacing universally quantified type variable
with existential types; unify the expected type with the instantiated
static type; recursively check the environment.

fun
3 52

fun
2 1{

f 7→ (α→ β)
x 7→ α

}
` λ(). fx : Unit→ β

{one 7→ Int} ` λx. x+one : Int→ Int

Concrete tags: fun = 249.

Figure 3. Representation of the function dsucc

2.4 Existential types in presence of sharing
When we try to implement in the presence of existential types
the topological traversal proposed in section 2.1, two facets still
require attention: how to anti-unify existential types and how to
avoid “deadlocks” between the topological sort and the delayed
verification.

Submitted to ICFP ’12 4 2012/3/12

Parallel propagation of types When the set of collected types for
a shared value contains existential types, it is not always possible to
compute their anti-unifier. For example, if the set of expected types
contains α → Int and Bool → β where α and β are existential
types, the anti-unifier depends on the future instantiation of α and
β: if α is later instantiated in Int and β in Bool, the anti-unifier
is ∀γ.γ → γ; but if α in instantiated in Bool and β in Int, it is
Bool → Int; and for any other substitutions, it is ∀γδ.γ → δ.
There is no other choice than to check the compatibility of the
shared values against every collected type.

For this situation, we have extended our algorithm to check the
compatibility of a value against a set of types and stated that it
will accept the value if and only if it is compatible with the anti-
unifier of the set. This allows two optimizations. Firstly, given a
set, all types must have the same head constructors, otherwise their
anti-unifier is the empty type and no value could be accepted; this
allows partial instantiation of some existential types. Secondly, the
set of types that is computed for sub-values of an allocated value
may not contain existential types and it could be simplified by anti-
unification.

The same difficulties arise in the presence of cycles: the equal-
ity test between the expected types for a marked value and all the
possible anti-unifiers of the memorized set of types, is not com-
plete. For example, if the expected type is ∀α. α → α and the set
of memorized types contains α → Int and Bool → β, the test
is valid only if α is later instantiated as Int and β in Bool but is
invalid otherwise. In this situation, the test may be postponed until
the end of the traversal. At that stage, remaining type variables can
be instantiated with the universal type and the set of expected types
can be anti-unified.

Explicit decomposition For some specific cases, delaying the
verification of a value when the expected type is an existential type
does not always allow the collection of all the expected types for
shared values. Consider for example the following piece of code
and the corresponding memory graph in figure 4:
type T = None | Some of (T→ Int)

let f : T→ Int = λx. match x with
| None→ 0
| Some g→ g None
let h : Unit→ Int = delayed_apply f (Some f)

Verifying the compatibility of the closure h against the type
Unit → Int will be recursively decomposed into the question
of knowing if there is an α such that:

• the representation of f is compatible with α→ Int, and
• the representation of Some f is compatible with α?

If we try to follow the proposed strategy for graph traversals then
the verification is stuck at this step: we can not traverse f to solve
the first part of the question until the second expected type for f is
collected; and we can not traverse Some f to solve the second part
until α is instantiated. In such situation, our algorithm forces the
verification of Some f by introducing an existential type for every
sub-value of the allocated block representing Some f—here it will
introduce an existential type β for f—and it memorizes an explicit
constraint to be solved when α is instantiated: is an allocated
value with the tag of Some and with a single sub-value of type β
compatible with α?

3. A type system for heap values
Before formally describing our algorithm in section 4, we define
in this section the syntax of values and the compatibility relation,
between the representation of a value in memory and a type, on
which the algorithm is based. The syntax of values relies on the

fun
3

Some
1

fun
1{

f 7→ (α→ β)
x 7→ α

}
` λ(). fx : Unit→ β

∅ ` λx. ... : T→ Int

Concrete tags: Some = 0; fun = 249.

Figure 4. Representation of the function h

notion of heap to allow the explicit description of sharing and cycle.
Then, the compatibility relation is defined as a classical type system
for heap values. We do not prove in this paper the soundness of
this type system with respect to the operational semantics of a
programming language. However, our language of values and its
type system are very similar to the OCaml ones and we assume
their soundness.

Syntax of types and values In order to simplify the formalization
of the proposed algorithm while still covering all the situations
described in section 2, we restrict ourselves to the following type
algebra:

τ ::= Bool | Int | Unit | (τ ∗ τ) | List(τ) | τ → τ
| Ref(τ) reference
| α type variable
| ? universal type

The universal type is a type compatible with every immediate
value and allocated block. It is required to instantiate the existential
variables that could not be instantiated by unification (see section
2.4). We write fv(τ) the set of variables of τ and we write τ1 4 τ2
when τ2 is an instance of τ1, meaning there exists a substitution θ
such that θ(τ1) = τ2.

A value is represented by a couple (w, µ) where w is a word
and µ is a heap. A word w is either an integer or a pointer:

w ::= i integer
| ` pointer

A heap µ is a partial function from pointers to allocated values.
An allocated value h is either a block containing two words or a
closure:

h ::= Blk(w,w) block
| 〈τ, w〉 closure

To simplify the formal presentation of the algorithm, references
are represented by blocks of size 2 whose second element is the
immediate value 0.

A closure is represented by the static type of the original code
(see section 2.3) and a single word w for the environment. We will
write fp(img(µ)) for the set of pointers occurring in the image of
µ. A value (`, µ) is well defined when fp(img(µ))∪{`} is included
in the domain of µ.

Typing rules A typing environment Ψ is a partial function from
pointer to types. Typing judgments for words w and allocated
values h are respectively written Ψ ` w : τ and Ψ ` h : τ . We will
say that a pointer ` is compatible with a type τ in an environment
Ψ if τ is an instance of Ψ(`).

Ψ(`) 4 τ

Ψ ` ` : τ
[W-LABEL]

Submitted to ICFP ’12 5 2012/3/12

The compatibility of an integer with a type is abstracted by a func-
tion Imm(τ) that returns the set of immediate values compatible
with τ . It is defined by case analysis on the head type constructor:

Imm(Unit) = {0} [IMM-UNIT]
Imm(List(τ)) = {0} [IMM-EMPTYLIST]

Imm(Bool) = {0; 1} [IMM-BOOL]
Imm(Int) = {. . . ;−1; 0; 1; . . . } [IMM-INT]

Imm(?) = {. . . ;−1; 0; 1; . . . } [IMM-UNIV]
Imm(τ) = ∅ otherwise

i ∈ Imm(τ)

Ψ ` i : τ
[W-INT]

The compatibility of a block Blk(w1,w2) with a type uses a
function Arg(τ) that returns the types expected for the components
of a block of type τ . It is defined by case analysis of the head type
constructor2.

Arg(List(τ)) = [τ ; List(τ)] [ARG-LIST]
Arg((τ1 ∗ τ2)) = [τ1 ; τ2] [ARG-COUPLE]

Arg(Ref(τ)) = [τ ; Unit] [ARG-REF]

Arg(τ) = [τ1 ; τ2] Ψ ` w1 : τ1 Ψ ` w2 : τ2

Ψ ` Blk(w1,w2) : τ
[H-BLK]

A block is compatible with the universal type only if, for each of
its components, there exists a type that is compatible with it 3.

Ψ ` w1 : τ1 Ψ ` w2 : τ2

Ψ ` Blk(w1,w2) : ?
[H-UNIV]

A closure 〈τ, w〉 is compatible with a type τ1 → τ2 if there exists
a type τenv compatible with the captured environment and such that
τenv → τ1 → τ2 is an instance of the static type of the original
code.

τ 4 τenv → τ1 → τ2 Ψ ` w : τenv

Ψ ` 〈τ, w〉 : τ1 → τ2
[H-CLOS]

To prove some intermediate steps of the type verification al-
gorithm, we will have to manipulate partially typed heaps and to
distinguish the type hypothesis for the pointers of a heap from the
actual type of those pointers. In that case, we will say that a heap µ
is partially compatible with type environment Ψ under the hypoth-
esis Ψ′, and we will write Ψ′ ` µ : Ψ, if and only if:

• dom(Ψ) ⊆ dom(µ)

• fp(img(µ)) ⊆ dom(Ψ′)

• for all pointers ` ∈ dom(Ψ) then Ψ′ ` µ(`) : Ψ(`),
• for all pointers ` ∈ dom(Ψ′) such that Ψ′(`) = Ref(τ), then
τ is closed.

We will say that a heap µ is compatible with an environment Ψ
and we will write µ : Ψ if and only if Ψ ` µ : Ψ. We will say
that a value (w, µ) is compatible with a type τ if there exists an
environment Ψ such that µ : Ψ and Ψ ` w : τ .

4. Rewriting system
The order in which the algorithm described in section 2 traverses a
memory graph depends on the structure of the graph but also on

2 On a concrete setting, the function Arg(_) receives also the tag of the block
being checked and returns the types of the components of the corresponding
data constructor.
3 Requiring the existence of types compatible with the components slightly
restricts the set of memory graphs compatible with a type. However, it
simplifies the algorithm in the situation described in section 2.4 where it
is required to force the verification of a block against existential types.

the expected types. To formally describe this complex traversal,
we used a rewriting system (sections 4.1 and 4.2) inspired from
a constraint-based algorithm for ML type inference[20]. In a first
step, the set of rewriting rules allows us to prove the soundness
and the semi-completeness of the algorithm independently of the
traversal order (section 4.3). In a second step, a rewriting strategy
allows us to precise the traversal order (section 4.4). In its general
form, the algorithm does not terminate, but we show its termination
in the absence of cycle, as well as in the absence of existential
types. To conclude we propose a variant of the algorithm that
always terminates and still seems sufficiently complete in concrete
situation.

4.1 Syntax of constraints
Terms of the rewriting system are called constraints. They are
defined by the following grammar detailed afterwards:

C ::= True trivial constraint
| False failure
| C ∧ C conjunction
| (µ,Φ). C heap fragment and memorized types
| w : {τ ; . . . } type constraint
| ∃α̇. C existential quantification
| τ = τ unification
| arg(τ) = [τ ; τ] ADT decomposition
| ♦{τ ; . . . } head type constructors homogeneity

where Φ is an environment that associates a set of types to a pointer:
it allows the memorization of the already checked types for an
allocated value. In the rewriting rules, we will write Φ ∪ {` :
{τ ; . . . }} to denote the environment obtained by replacing in Φ
the set associated to ` by the extended one Φ(`)∪ {τ ; . . . }, i.e. the
environment Φ⊕ {` : Φ(`) ∪ {τ ; . . . }}.

A type constraint w : {τ ; . . . } represents the set of yet
unchecked types for the value w. Hence, the initial constraint for
checking a value (w, µ) against a type τ is:

(µ, ∅). w : {τ}
The normal forms will be the constraints True and False.

The existential quantification ∃α̇. C binds a type variable in C.
The existentially qualified type variables are syntactically distin-
guished with an upper dot. The other type variables—that appear in
a constraint without being explicitly bound by an existential quanti-
fier—represent empty types. We will call them universal type vari-
ables. We will write fev(τ) (respectively fuv(τ)) the set of existen-
tial (resp. universal) variables of a type.

Equalities τ1 = τ2 will be resolved by a unification procedure,
that will consider universal variables as fixed types and produce a
substitution for existential variables. We will write such a substitu-
tion θ̇.

The ADT decomposition arg(τ) = [τ ; τ] and the head type
constructor homogeneity ♦{τ ; . . . } are required when forcing the
verification of a block against an existential type variable.

The construction (µ,Φ). C binds the pointer from dom(µ) into
C and into the image of µ. This explicit introduction of the heap
in the syntax of constraints will allow in section 4.4 the split of a
heap into fragments corresponding to SCCs and the expression of
a rewriting strategy based on a topological sort.

4.2 Rewriting rules
Rewriting rules are writtenC1 � C2, meaning that a constraintC1

could be rewritten into C2 in any context. We present progressively
the set of rewriting rules, starting with those for handling sharing
and cycles. We then present the set of rules allowing the verification
of immediate values and allocated blocks, and finally those required
for closures and existential types.

Submitted to ICFP ’12 6 2012/3/12

Allocated values

(µ,Φ′). (` : {τ1..n} ∧ C) � ∃α̇1..m. β̇1..m.

♦{τ1..m}∧
i=1..m arg(τi) = [α̇i ; β̇i]

(µ,Φ′ ∪ {` : {τ1..n}}). (w′ : {α̇1..m} ∧ w′′ : {β̇1..m} ∧ C)
[R-BLK]

if µ(`) = Blk(w′,w′′) and Φ′(`) = {τn+1..m}
and {α̇1..m ; β̇1..m}# fev({τ1..m}) ∪ fev(Φ′) ∪ fev(C)

(µ,Φ′). (` : {τ1..n} ∧ C) � ∃ ¯̇α1..m.

{ ∧
i=1..m τi = τ̇ ′i → τ̇ ′′i

(µ,Φ′ ∪ {` : {τ1..n}}). (C ∧ w : {τ̇ env
1..m})

[R-CLOS]

if µ(`) = 〈τ env → τ ′ → τ ′′, w〉 and fv(τ env → τ ′ → τ ′′) = ᾱ
and Φ′(`) = {τn+1..m} and ¯̇α1..m # fev(τ1..m) ∪ fev(Φ′) ∪ fev(C)

Parametricity

∃ ¯̇αi
¯̇
β ¯̇γ.♦{α̇1..n} ∧ ♦{Ref(τ)} ∧ arg(β̇) = [τ ′ ; τ ′′] ∧ i : {γ̇} � True if fuv(τ) = ∅ [R-UNIV]

Figure 5. Rewriting rules

We let implicit some trivial rules such as associativity and com-
mutativity of the conjunction and commutativity and hoisting of
existential quantification. In general, we write constraints in the fol-
lowing form, where overlines denote sets:

∃ ¯̇α. τ = τ ∧ ♦{τ̄} ∧ arg(τ) = [τ ; τ] ∧ (µ,Φ).
(
` : {τ̄}

)
Anti-unification The formalization of the algorithm uses the def-
inition of principal anti-unifiers proposed by Huet [13]. It supposes
the existence of a bijection au(τ, τ ′) from the set of distinct couple
of types without existential variables to a subset of universal type
variables. We write τ f τ ′ for the anti-unifier of τ and τ ′ defined
by the following rules of congruence:

Int f Int = Int
Unit f Unit = Unit

List(τ) f List(τ ′) = List(τ f τ ′)
Ref(τ) f Ref(τ ′) = Ref(τ f τ ′)

(τ1 ∗ τ2) f (τ ′1 ∗ τ ′2) = ((τ1 f τ ′1) ∗ (τ2 f τ ′2))
(τ1 → τ2) f (τ ′1 → τ ′2) = (τ1 f τ ′1)→ (τ2 f τ ′2)

τ f τ ′ = au(τ, τ ′) otherwise

Modulo a renaming of the produced type variables, the definition
of anti-unification is associative and commutative. Given a set of
types τ1..n, we write

c
{τ1..n} for its principal anti-unifier.

Property 4.1. We have (τ1 f τ2) 4 τ1 and (τ1 f τ2) 4 τ2.

Property 4.2. If τ 4 τ1 and τ 4 τ2, then τ 4 (τ1 f τ2).

Sharing The rewriting rule [R-MERGE] allows the merge of two
sets of expected types for the same allocated value, while the
[R-AUNIF1] allows the simplification of a set of expected types
by replacing two of its types by their principal anti-unifier. The
latest applies only if the anti-unifier is independent of the future
instantiation of existential type variables.

` : {τ1..n} ∧ ` : {τn+1..m} � ` : {τ1..m} [R-MERGE]
w : {τ1 ; τ2 ; τ3..n} � w : {τ ; τ3..n} [R-AUNIF1]

if ∀θ̇. θ̇(τ) = θ̇(τ1) f θ̇(τ2)

The rewriting rule [R-AUNIF2] allows the simplification of the
set of memorized types for an allocated value by replacing two
of the types by their principal anti-unifier. As for the rule [R-
AUNIF1], it applies only if the anti-unifier is independent of the
future instantiation of existential type variables.

(µ,Φ′ ∪ {` : {τ1 ; τ2}}). C � [R-AUNIF2]
(µ,Φ′ ∪ {` : {τ}}). C

if ∀θ̇. θ̇(τ) = θ̇(τ1) f θ̇(τ2)

The rule [R-REMOVE] allows the removal of type constraints that
are instances of previously checked types. More precisely, this

rule applies only if, for any substitution θ̇, the anti-unifier of the
instantiations of the expected types by θ̇ is an instance of the anti-
unifier of the instantiations of the memorized types by θ̇.

(µ,Φ′). (` : {τ1..n} ∧ C) � (µ,Φ′). C [R-REMOVE]
if ` ∈ dom(Φ′)

and ∀θ̇.
c
{θ̇(Φ′(`))} 4

c
{θ̇(τ1..n)}

Immediate values The rewriting rules for immediate values sim-
ply reflect the function Imm(τ) and state that the verification
against an existential type is delayed.
i : {τ} � True if i ∈ Imm(τ) [R-INT]
i : {τ} � False if τ 6≡ α̇ and i /∈ Imm(τ) [R-INT-FAIL]
While checking an immediate value against a set of expected types
that can not be anti-unified because of existential type variable, it
is sufficient to ensure its compatibility against one of the types and
to ensure that all the types share the same head type constructor.
As the function Imm(_) is defined by case analysis of the head
constructor of its type argument, this will ensure that the value is
compatible with the anti-unifier of the expected types.
i : {τ1..n} � ♦{τ1..n} ∧ i : {τ1} if n ≥ 2 [R-INT-SET]

Blocks The rewriting rule [R-BLK] described in figure 5, al-
lows the verification of an allocated block Blk(w′,w′′). It intro-
duces two existential variables α̇i and β̇i for each expected type
τi and ensures that they correspond to the types expected for the
arguments of a block of type τi, as computed by the function
Arg(τi). It also generates types constraints w′ : {α̇1; . . . ; α̇n} and
w′′ : {β̇1; . . . ; β̇n}.

The explicit introduction of the constraint arg(τi) = [α̇i ; β̇i]
allows the application of the rule [R-BLK] even when the set
of expected types only contains existential types variables. This
constraint is resolved by the rules [R-ARG] and [R-ARG-FAIL]
that simply reflect the function Arg(τ) and state that the verification
against an existential type is delayed.
arg(τ) = [τ ′ ; τ ′′] � τ ′ = τ1 ∧ τ ′′ = τ2 [R-ARG]

if Arg(τ) = [τ1 ; τ2]
arg(τ) = [τ ′ ; τ ′′] � False [R-ARG-FAIL]

if τ 6≡ α̇ and τ /∈ dom(Arg)

The rule [R-BLK] also adds the set of expected types τi in
the environment of memorized types Φ. Without specific rewriting
strategy, it is possible to start the verification of a block without
collecting all the expected types. Then, to handle the situation
where a block is checked for the second time (or more), the rule
[R-BLK] checks the block against the new expected types and
the previously checked types. This is required in the presence of
existential types to verify that the block is compatible with the anti-
unifier of all those types.

Submitted to ICFP ’12 7 2012/3/12

Consider the following heap containing two closures and two
blocks—it corresponds to the memory graph in figure 4 where the
closure’s environment has been boxed in an allocated block:

µ = { `1 7→ 〈(α ∗ (α→ β))→ Unit→ β, `2〉
`2 7→ Blk(`3,`4)
`3 7→ Blk(`4,0)
`4 7→ 〈Unit→ T→ Int, 0〉 }

And consider the following type environments that will be used as
aliases for memorized types in the rewriting sequence:

Φ1 = { `1 7→ { Unit→ Int } }
Φ2 = Φ1 ∪ { `2 7→ { (α̇ ∗ (α̇→ Int)) } }
Φ3 = Φ2 ∪ { `3 7→ { α̇ } }
Φ4 = Φ3 ∪ { `4 7→ { β̇ ; α̇→ Int } }
Φ′

4 = Φ1 ∪ { `2 7→ { (T ∗ (T→ Int)) } ;
`3 7→ { T } ;
`4 7→ { T→ Int; T→ Int } }

To allow the verification of value of type T, the functions Imm(_)
and Arg(_) are extended with the following cases:

Imm(T) = {0}
Arg(T) = [(T→ Unit) ; Unit]

A possible rewriting sequence for checking the compatibility of the
value (`1, µ) against the type Unit→ Int begins by checking the
closure µ(`1) = 〈(α ∗ (α→ β))→ Unit→ β, `2〉:

(µ, ∅). (`1 : {Unit→ Int})

[R-CLOS] � ∃α̇β̇.
{

Unit→ Int = Unit→ β̇

(µ,Φ1). (`2 : {(α̇ ∗ (α̇→ β̇))})
[R-UNIF] � ∃α̇. (µ,Φ1). (`2 : {(α̇ ∗ (α̇→ Int))})

Continue by checking the block µ(`2) = Blk(`3,`4).

[R-BLK] � ∃α̇β̇γ̇.

♦{(α̇ ∗ (α̇→ Int))}
arg(α̇ ∗ (α̇→ Int)) = [β̇ ; γ̇]

(µ,Φ2). (`3 : {β̇} ∧ `4 : {γ̇})

[R-♦] � ∃α̇β̇γ̇.
{

arg(α̇ ∗ (α̇→ Int)) = [β̇ ; γ̇]

(µ,Φ2). (`3 : {β̇} ∧ `4 : {γ̇})

[R-ARG] � ∃α̇β̇γ̇.
{
β̇ = α̇ ∧ γ̇ = α̇→ Int
(µ,Φ2). (`3 : {β̇} ∧ `4 : {γ̇})

[R-UNIF] � ∃α̇. (µ,Φ2). (`3 : {α̇} ∧ `4 : {α̇→ Int})

Start the verification of block µ(`3) = Blk(`4,0).

[R-BLK] � ∃α̇β̇γ̇.

♦{α̇} ∧ arg(α̇) = [β̇ ; γ̇]

(µ,Φ3).

 `4 : {β̇}
`4 : {α̇→ Int}
0 : {γ̇}

[R-MERGE] � ∃α̇β̇γ̇.

 ♦{α̇} ∧ arg(α̇) = [β̇ ; γ̇]

(µ,Φ3).

{
`4 : {β̇; α̇→ Int}
0 : {γ̇}

Postpone the verification of constraints ♦ and arg(_) and con-
tinue by checking the closure µ(`4) = 〈Unit→ T→ Int, 0〉.

[R-CLOS] � ∃α̇β̇γ̇.

♦{α̇} ∧ arg(α̇) = [β̇ ; γ̇]

β̇ = T→ Int
α̇→ Int = T→ Int

(µ,Φ4).

{
0 : {Unit; Unit}
0 : {γ̇}

[R-UNIF] � ∃γ̇.

♦{T} ∧ arg(T) = [T→ Int ; γ̇]

(µ,Φ′
4).

{
0 : {Unit; Unit}
0 : {γ̇}

Conclude by checking the postponed constraints.
[R-♦] � ∃γ̇. (. . .)

[R-ARG] � ∃γ̇. (γ̇ = Unit ∧ . . .)
[R-UNIF] � (µ,Φ4). (0 : {Unit; Unit} ∧ 0 : {Unit})
[R-HEAP] � 0 : {Unit; Unit} ∧ 0 : {Unit}

[R-AUNIF1] � 0 : {Unit} ∧ 0 : {Unit}
[R-INT] � 0 : {Unit}
[R-INT] � True

Figure 6. An example of rewriting sequence

To ensure the compatibility of a block with the anti-unifier of
the expected types, it is required to check that all the expected
types share the same head type constructor (lemma 4.3). For that
purpose, the rule [R-BLK] introduces an homogeneity constraint
♦{τ1 ; . . . ; τn}. This constraint is resolved by the rewriting rule
[R-♦] where T is a type constructor distinct from Ref.
♦{T(τ1, . . . , τn) ; τ ′1..m} � [R-♦]
∃α̇(1,1)..(n,m).

∧
i=1..m(τ ′i = T(α̇(1,i), . . . , α̇(n,i)))

if α̇(1,1)..(n,m) # fv({τ ′1..m}) and T 6≡ Ref
The homogeneity constraint is also used to ensure that the expected
type for a mutable field does not contain any universal variable.
The rule [R-♦-REF] could not be applied if the type τ contains
existential variables.
♦{Ref(τ)} � True if fv(τ) = ∅ [R-♦-REF]
♦{Ref(τ)} � False if fuv(τ) 6= ∅ [R-♦-REF-FAIL]
♦{Ref(τ) ; τ1..n} � [R-♦-REF-SET]

♦{Ref(τ)} ∧
∧
i=1..n(τi = Ref(τ))

Closures The rewriting rule [R-CLOS], described in figure 5,
allows the verification of a closure 〈τ env → τ ′ → τ ′′, w〉. To test
the existence for every expected type τi of a type τ env

i such that
τ env
i → τi is an instance of the closure static type τ env → τ ′ → τ ′′,

the rewriting rule introduces a unification constraint between τi
and an instance of τ ′ → τ ′′ where every type variable has been
replaced by an existential type variable. This instance is written

τ̇ ′i → τ̇ ′′i ; the corresponding instance of τ env is written τ̇ env
i and the

set of existential variable of τ̇ env
i → τ̇ ′i → τ̇ ′′i is written ¯̇αi. The

unification constraints are resolved using the two following rules.

∃ ¯̇α. τ1 = τ2 ∧ C � θ̇(C) [R-UNIF]
if θ̇ is the m.g.u of τ1 and τ2, and if dom(θ̇) = ¯̇α

∃ ¯̇α. τ1 = τ2 ∧ C � False [R-NUNIF]
if τ1 and τ2 do not unify

As for the rule [R-BLK], when a closure is checked for the second
time (or more), the rule [R-CLOS] checks the closure against the
new expected types and the previously checked types.

Administrative rules To complete the set of rewriting rules there
are also four administrative rules that respectively allow the propa-
gation of a failure [R-FALSE], the removal of the trivial constraint
[R-TRUE], the removal of heap fragment when there is no more
type constraints over the bound pointers [R-HEAP], and the instan-
tiation of the remaining existential variables with the universal type
[R-UNIV] (fig. 5).

C ∧ False � False [R-FALSE]
C ∧ True � C [R-TRUE]
(µ,Φ). C � C if fp(C) # dom(µ) [R-HEAP]

Example A complete example is given in figure 6.

Submitted to ICFP ’12 8 2012/3/12

4.3 Rewriting system properties
We have shown that the rewriting system is sound and semi-
complete with respect to the relation of compatibility between a
value and a type that is defined in section 3.

Theorem 4.1 (Soundness). If (µ, ∅). (` : {τ})� True then there
exists a typing environment Ψ such that µ : Ψ and Ψ(`) 4 τ .

Theorem 4.2 (Semi-completeness). If (µ, ∅). (` : {τ}) � False
then there exists no typing environment Ψ such that µ : Ψ and
Ψ(`) 4 τ .

To prove those theorems, we will use two distinct invariant ex-
pressed with a notion of constraint satisfiability.

Constraint satisfiability The first notion of constraint satisfiabil-
ity allows the proof of soundness of the rewriting system. It is
parametrized by a substitution θ̇ for the free existential variables
of the constraint and a typing environment Ψ for the free pointers.
We write θ̇,Ψ |= C when a constraint C is satisfied by θ̇ and Ψ.

The constraint True is always satisfied and a conjunction C1 ∧
C2 is satisfied whenever both C1 and C2 are satisfied. The con-
straint False can not be satisfied.

[C-TRUE]
θ̇,Ψ |= True

[C-AND]
θ̇,Ψ |= C1 θ̇,Ψ |= C2

θ̇,Ψ |= C1 ∧ C2

An existential constraint ∃α̇. C is satisfied by θ̇ and Ψ if and only
if there exists a type τ such that C is satisfied by θ̇ extended with a
substitution α̇ 7→ τ and Ψ.

[C-EXISTS]
θ̇ ⊕ {α̇ 7→ τ},Ψ |= C

θ̇,Ψ |= ∃α̇. C

A type constraint w : {τ1..n} is satisfied by θ̇ and Ψ if and only if
under the environment Ψ the word w is compatible with the anti-
unifier of the instantiations of τ1..n by θ̇.

[C-QUESTION]
Ψ ` w :

c
{θ̇(τ1..n)}

θ̇,Ψ |= w : {τ1..n}

An equality constraint τ1 = τ2 is satisfied by θ̇ if and only if after
instantiation by θ̇ the types are syntactically equal. In the same way,
an ADT decomposition constraint arg(τ) = [τ1 ; τ2] is satisfied by
θ̇ if and only if after instantiation by θ̇ it corresponds to a case of the
function Arg(_); and a head type constructor constraint ♦{τ1..n} is
satisfied by a substitution θ̇ if and only if after instantiation by θ̇ all
the type share the same head type constructor.

[C-EQUAL]
θ̇(τ1) = θ̇(τ2)

θ̇,Ψ |= τ1 = τ2

[C-ARG]
Arg(θ̇(τ)) = [θ̇(τ ′) ; θ̇(τ ′′)]

θ̇,Ψ |= arg(τ) = [τ ′ ; τ ′′]

[C-♦]
∀i = 1..n, θ̇(τi) = T1(τ1i , . . . , τ

m
i)

θ̇,Ψ |= ♦{τ1..n}

[C-♦-REF]
∀i = 1..n, θ̇(τi) = Ref(τ ′i) fv(τ ′i) = ∅

θ̇,Ψ |= ♦{τ1..n}

And the satisfiability of a constraint (µ,Φ′). C is defined by the
following rule, where Ψ′ =

c
{θ̇(Φ′)}fΨ′′ is a type environment

such that for all ` ∈ dom(Ψ′′):

Ψ′(`) =

{
Ψ′′(`) if ` /∈ dom(Φ′)

(
c
{θ̇(τ) | ∀τ ∈ Φ′(`)}) fΨ′′(`) otherwise

[C-HEAP]
dom(Ψ′′) = dom(µ) Ψ′ =

c
{θ̇(Φ′)} fΨ′′

Ψ⊕Ψ′ ` µ : Ψ′′ θ̇,Ψ⊕Ψ′ |= C

θ̇,Ψ |= (µ,Φ′). C

In other words, a constraint (µ,Φ′). C is satisfied when:

• there exists a typing environment Ψ′ more general than the
memorized types, that allows the satisfaction of C, and
• there exists a typing environment Ψ′′ compatible with µ under

the hypothesis Ψ′, such that:

Ψ′′(`) is an instance of Ψ′(`) for all pointers ` of dom(µ)
for which there are memorized types, and

Ψ′′(`) is equal to Ψ′(`) for all the other pointers of dom(µ).

Soundness The satisfiability of the initial constraint correspond
to the relation of compatibility between a value and a type (lemma
4.1) and for each rewriting rule, the satisfiability of the right con-
straint implies the satisfiability of the left constraint (lemma 4.2).
These two lemmata allow the proof of soundness of the rewriting
system (theorem 4.1).

Lemma 4.1. ∅, ∅ |= (µ, ∅). (` : {τ}) if and only if there exists a
typing environment Ψ such that µ : Ψ and Ψ(`) 4 τ .

Lemma 4.2. If C1 � C2 and θ̇,Ψ |= C2 then θ̇,Ψ |= C1.

To prove the soundness of the rule [R-BLK], we have to check that
the function Arg(τ) is stable by anti-unification (lemma 4.3).

Lemma 4.3. If, given a set of types τ1..n sharing all the same head
constructor, there exists τ ′i and τ ′′i such that Arg(τi) = [τ ′i ; τ ′′i],
then Arg(

c
{τ1..n}) = [

c
{τ ′1..n} ;

c
{τ ′′1..n}].

Semi-completeness The first definition of constraint satisfiability
allows the proof of semi-completeness of the rewriting system
only if we add an extra application condition for the rules [R-
BLK] and [R-CLOS] stating that the types to be checked are not
instances of previously checked types. However, in presence of
existential types such a condition is not the exact negation of the
application condition of the rule [R-REMOVE] and some constraint
may remain stuck in a non-trivial form. For example, consider the
following constraint:

Cstuck = (µ, {` 7→ {Int→ Int}}).(` : {α̇→ α̇})

We can not decide, without instantiating the variable α̇, whether the
expected type α̇→ α̇ is an instance or not of the memorized types
Int → Int. We choose not to add this extra condition, allowing
the introduction in section 4.4 of rewriting strategies that “unstuck”
this constraint by applying the rule [R-CLOS].

To prove the semi-completeness without adding the extra con-
dition to the rules [R-BLK] and [R-CLOS], we introduce a sec-
ond definition of constraint satisfiability, called strict satisfiability
and written θ̇,Ψ s|= C. The set of strictly satisfied constraints is the
subset of satisfied constraints for which the memorized types is ac-
tually compatible with the heap. More precisely, it can be defined
by replacing the rule [C-HEAP] by the following rule:

[C’-HEAP]
dom(Ψ′′) = dom(µ) Ψ′ =

c
{θ̇(Φ′)} fΨ′′

Ψ⊕Ψ′ ` µ : Ψ′ θ̇,Ψ⊕Ψ′ s|= C

θ̇,Ψ s|= (µ,Φ′). C

Submitted to ICFP ’12 9 2012/3/12

The strict satisfiability of the initial constraint still corresponds
to the relation of compatibility between a value and a type (lemma
4.4) and for every rewriting rule, the satisfiability of the left con-
straint implies the satisfiability of the right constraint (lemma 4.5).
Those two lemmata allow the proof of semi-completeness of the
rewriting system (theorem 4.2).

Lemma 4.4. ∅, ∅ s|= (µ, ∅). (` : {τ}) if and only if there exists a
typing environment Ψ such that µ : Ψ and Ψ(`) 4 τ .

Lemma 4.5. If C1 � C2 and θ̇,Ψ s|= C1 then θ̇,Ψ s|= C2.

The second notion of satisfiability does not allow the soundness
proof of the rule [R-HEAP].

Termination In the presence of cycles in the memory graph, the
rewriting system described in section 4.2 may not terminate. One
trivial way to create an infinite rewriting sequence is to apply the
rule [R-BLK] or [R-CLOS] whenever the rule [R-REMOVE] is ap-
plicable. Such infinite sequences are easily avoided by using rewrit-
ing strategies that prefer the latter rule over the former; however, it
is not sufficient to avoid all infinite sequences as shown by the fol-
lowing example. Consider, the heap4:

µ = {`0 7→ 〈σapply, {f : `0 ; x : 0}〉}

Checking the compatibility of µ against the type Unit→ Int will
lead to following infinite sequence:

(µ, ∅). (`0 : {Unit→ Int})
[R-CLOS]
[R-UNIF] � ∃α̇. (µ,Φ1).

{
`0 : {α̇→ Int}
0 : {α̇}

[R-CLOS]
[R-UNIF] � ∃α̇β̇γ̇. (µ,Φ2).

{
`0 : {β̇ → Int; γ̇ → Int}
0 : {α̇} ∧ 0 : {β̇ ; γ̇}

[R-CLOS] � . . .

where:

Φ1 = {`0 7→ {Unit→ Int}}
Φ2 = {`0 7→ {Unit→ Int ; α̇→ Int}}

When applying the rule [R-CLOS] for the second time, and like the
constraint Cstuck, it is not possible to decide without instantiating α̇
whether α̇→ Int is an instance of Unit→ Int or not.

If we can not prove the termination of the rewriting system in
the general case, we have proved its termination in two specific
situations: in the absence of cycle (theorem 4.3) and in the absence
of existential types (theorem 4.4) as introduced by GADTs or
polymorphic closures. We propose in section 4.4 an extension of
the rewriting system that terminates but may not be complete in the
presence of cycles and existential types.

Theorem 4.3. In a heap µ that contains no cycle, a constraint
(µ, ∅).(` : {τ}) is rewritten in True or False in a finite number of
steps.

Theorem 4.4. In a heap µ that contains no polymorphic closure
that may introduce existential types, a constraint (µ, ∅).(` : {τ})
is rewritten in True or False in a finite number of step.

To prove the termination in presence of cycles, but in the ab-
sence of existential types, we defined the size of a constraint and

4 This heap may represent A.loop in the OCaml program:

module rec A : sig
val loop : Unit→ α

end = struct
let delay f x = fun ()→ f x
let loop = delay A.loop ()

end

showed that, for every rewriting rule, the right constraint is smaller
than the left constraint. More precisely, the size of a constraint is
a 6-uple, sorted in lexicographic order, and composed of the num-
ber of pointers without memorized type, the number of type con-
structors in the anti-unifiers of memorized type’s sets, the number
of type constraints, the number of types in the sets of memorized
types and in the sets of types constraints, the number of homogene-
ity and decomposition constraints, and the number of unification
constraints.

4.4 Rewriting strategy
In order to express precisely the topological traversal of the graph
and to enable termination in presence of cycles and existential
types, we now add one rewriting rule in order to topologically sort
the heap, and two rules dedicated to ensure termination. The two
latter rules imply loosing completeness.

Topological sort To express the topological traversal proposed in
section 2.1 as a rewriting strategy, the following rule allows the split
of the heap in fragments corresponding to SCCs.
(µ,Φ). C � (µ1,Φ1). (µ2,Φ2). C [R-SORT]

if µ1] µ2 = µ
and fp(img(µ1)) # dom(µ2)

and Φi = Φ|dom(µi)

When a heap is decomposed in SCCs, the rules [R-BLK] and [R-
CLOS] syntactically forbid to check a value that does not belong to
the current SCC. Once a SCC has been checked, it can be removed
from the constraints with the rule [R-HEAP].

Monomorphic recursion As shown in section 2.1, when we re-
strict ourselves to monomorphic recursion, it is not necessary to
check an allocated cyclic value twice when the memory graph is
traversed in a topological order: it is sufficient to check the equal-
ity between the expected type and the memorized one. Hence,
we never apply the rules [R-BLK] or [R-CLOS] for previously
checked pointers, and we replace the rule [R-REMOVE] by the fol-
lowing rule, that allows the unification of the expected type with
the memorized one:
(µ,Φ′). (` : {τ ′} ∧ C) � [R-FORCEUNIF]

τ = τ ′ ∧ (µ,Φ′). C
if Φ′(`) = {τ}

This rule is sound (as for lemma 4.2) but not semi-complete (as for
lemma 4.5).

If a set of expected types or a set a memorized types could
not be simplified by anti-unification, the following rule allows the
instantiation of an existential variables with the universal type.

∃α̇. C � ∃α̇. (C ∧ α̇ = ?) [R-FORCEINST]
This rule is obviously not semi-complete, hence it is applied only
when no other rules apply.

Polymorphic recursion If we want to accept polymorphic recur-
sion, we may need to check cyclic values several times, and ac-
cept that the types expected from inside the SCC be instances of
the memorized types. In order to do so, we allow the usage of the
rule [R-REMOVE]. Guaranteeing termination may then be obtained
by allowing multiple checks of cyclic values (rules [R-BLK] and
[R-CLOS]) only when we may anti-unify5 the expected types with
memorized types.

4.5 Type-safe (un)marshalling primitives
We have implemented a prototype of this algorithm for the OCaml
compiler. This provides a type-safe unmarshalling function based

5 Remember that the anti-unifier may not always be computed in the pres-
ence of existential type variables.

Submitted to ICFP ’12 10 2012/3/12

on the unsafe marshalling mechanism available in the OCaml stan-
dard library without changing the external representation of data.
The current unsafe (un)marshalling functions of the standard li-
brary have the following type signatures, where the type String
is used as a sequence of bytes:
val marshall : α→ String
val unmarshall : String→ α

The type-safe unmarshalling function has the following prototype:
val safe_unmarshall : Ty(α)→ String→ α

where Ty(τ) is the classical singleton type whose unique value is a
runtime representation of the type τ [6, 12].

Adapting our algorithm to other runtimes The compatibility
algorithm works on a memory graph where pointers and immediate
values can be distinguished. In situations where the runtime does
not make such a distinction but still uses an exact garbage collection
mechanism that traverse precisely the memory graph, our algorithm
remains applicable. We would ask the generic marshalling function
to add the necessary information to the external representation of
data. Our algorithm would then be applied on an intermediate form
of the memory graph.

For checking the compatibility of closures, our algorithm asks
the running program to provide the static type of the code pointers
being unmarshalled. This has been implented in our prototype.

Note that type-safe unmarshalling of closures allows mar-
shalling unevaluated lazy values.

The OCaml external representation of closures is composed of a
raw code pointer and the representation of the environment. Hence,
the unmarshalling of a closure can only take place in different
instances of the same compiled program. In situations where the
runtime uses dynamic loading of code and relinking when unmar-
shalling closures, we would again delegate this task to the generic
unmarshaller, and check type compatibility on the resulting mem-
ory graph.

5. Related work
Type-safe (un)marshalling in OCaml When compared to ex-
isting OCaml libraries that provide type-safe marshalling mecha-
nisms, our proposal is the first to provide both the ability to commu-
nicate safely with un-trusted peers—such as a web browser for an
HTTP server—and to handle GADTs and closures with the help of
existential type variables. The Deriving library[26] use the Camlp4
preprocessor to generate ad hoc functions from data type defini-
tions. As other mechanisms based on ad hoc functions we know
of, it allows the communication with un-trusted peers but do not
handle closures and existential types.

Our proposal does not allow the (un)marshalling of abstract data
types introduced by the OCaml module system, whereas the Hash-
Caml [5] compiler or the Quicksilver library [21] do. The Hash-
Caml compiler is an extension of the OCaml compiler, that adds
runtime type representations. It contains a safe (un)marshalling
mechanism that keeps the type of a value in its external representa-
tion. For representing abstract types, it computes a hash of the type
definition and of the source code of the associated function. Quick-
silver is another Camlp4 based marshalling library that generates
ad hoc (un)marshalling functions. It allows the user to associate a
cryptographic key to each abstract type and to encrypt the external
representation of an abstract value.

Polytypic programming Another approach to type-safe serializa-
tion is polytypic programming [24]. To motivate a programming
language that allows the explicit manipulation and analysis of type
expressions in a typed manner, Weirich [25] uses a generic mar-
shalling function that recursively analyzes the type of the value.

This typed approach has the obvious advantage of not requiring an
external proof of soundness. However, it may not be possible to
handle polymorphic sharing with anti-unification of the expected
types.

Type reconstruction The idea of traversing a memory graph in
parallel with its type has been previously used to build tag-free
garbage collectors [3, 4, 10, 23] or to implement debuggers [2]. In
these contexts, the memory graph is known to be compatible with
the type. Our algorithm may also be used to pretty-print values in
a debugger. Our approach has the advantage of being less intrusive
and does not require to keep runtime type information in the stack
or inside the values.

Interoperability The TypedRacket programming language [22]
is a statically typed version of Racket. Both languages share the
same runtime and they use dynamic type compatibility checking
to make sure that untyped data can be safely imported in typed
parts of a program. The main differences with our algorithm is that
compatibility checking is based on contracts [8] and checking of
functional values is delayed until their application.

6. Conclusion
We have presented a type compatibility checking algorithm for
ML-like programming languages, that handles algebraic data types,
mutable data, cyclic data, GADTs and closures. We gave a for-
mal description of the problem, and presented the verification as
a rewriting system, the algorithm being essentially a particular
rewriting strategy.

This systematic approach greatly simplifies the proof of sound-
ness: the soundness of each rewriting rule is proved independently.
The naive strategy being incomplete, the presentation as a rewriting
system enables the precise identification of where completeness is
lost and what step to follow in order to minimize the chances of
rejecting correct data in a finite time.

The obtained algorithm is efficient and has been implemented
in a prototype version of the OCaml compiler. It needs no type
information in the data representation and can be used to import,
in a statically typed program, external data built by untyped or
differently-typed programs.

References
[1] M. Abadi, L. Cardelli, B. C. Pierce, and D. Rémy. Dynamic typing

in polymorphic languages. Journal of Functional Programming, 5(1):
111–130, Jan. 1995.

[2] S. Aditya and A. Caro. Compiler-directed type reconstruction for
polymorphic languages. In FPCA ’93: Proceedings of the Conference
on Functional Programming Languages and Computer Architecture,
pages 74–82, June 1993.

[3] S. Aditya, C. H. Flood, and J. E. Hicks. Garbage collection for
strongly-typed languages using run-time type reconstruction. In LFP
’94: Proceedings of the 1994 ACM Conference on LISP and Func-
tional Programming, pages 12–23, June 1994.

[4] A. W. Appel. Runtime tags aren’t necessary. Lisp and Symbolic
Computation, 2(2):153–162, July 1989.

[5] J. Billings, P. Sewell, M. R. Shinwell, and R. Strnisa. Type-safe
distributed programming for OCaml. In ML’06: Proceedings of the
ACM Workshop on ML, pages 20–31, Sept. 2006.

[6] K. Crary, S. Weirich, and G. Morrisett. Intensional polymorphism
in type-erasure semantics. In ICFP’98: Proceedings of the 3rd ACM
International Conference on Functional Programming, volume 34(1)
of SIGPLAN Not., pages 301–312, Sept. 1998.

[7] M. Elsman. Type-specialized serialization with sharing. In TFP’05:
Revised Selected Papers from the Sixth Symposium on Trends in Func-
tional Programming, pages 47–62, Sept. 2005.

Submitted to ICFP ’12 11 2012/3/12

[8] R. B. Findler and M. Felleisen. Contracts for higher-order functions.
In ICFP’02: Proceedings of the 7th ACM International Conference
on Functional Programming, volume 37(9) of SIGPLAN Not., pages
48–59, Sept. 2002.

[9] J. Furuse and P. Weis. Input/output of caml values (in french). In
JFLA’00: Journées Francophones des Langages Applicatifs. INRIA,
Jan. 2000.

[10] B. Goldberg and M. Gloger. Polymorphic type reconstruction for
garbage collection without tags. SIGPLAN Lisp Pointers, V(1):53–65,
1992.

[11] G. Henry. Typing unmarshalling without marshalling types (in
french). PhD thesis, Univ Paris Diderot, 2011. URL http://tel.
archives-ouvertes.fr/tel-00624156/PDF/these.pdf.

[12] M. Hicks, S. Weirich, and K. Crary. Safe and flexible dynamic
linking of native code. In R. Harper, editor, Workshop on Types in
Compilation, volume 2071 of Lecture Notes in Computer Science,
pages 147–176. Springer-Verlag, 2000.

[13] G. Huet. Résolution d’équations dans des langages d’ordre 1,2,. . . , ω.
PhD thesis, Université Paris 7, 1976.

[14] A. J. Kennedy. Pickler combinators. Journal of Functional Program-
ming, 14(6):727–739, 2004.

[15] X. Leroy. Efficient data representation in polymorphic languages.
In PLILP’90: 2nd International Workshop on Programming Lan-
guage Implementation and Logic Programming, volume 456 of Lec-
ture Notes in Computer Science, pages 255–276. Springer, Aug. 1990.

[16] X. Leroy and M. Mauny. Dynamics in ML. Journal of Functional
Programming, 3(4):431–463, 1993.

[17] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The
Objective Caml system release 3.12, June 2011.

[18] A. Mycroft. Polymorphic type schemes and recursive definitions. In
ISP’84: Proceedings of the 6th International Symposium on Program-
ming, volume 167 of Lecture Notes in Computer Science, pages 217–
228. Springer, 1984.

[19] G. Plotkin. A note on inductive generalization. Machine Intelligence,
5:153–163, 1970.

[20] F. Pottier and D. Rémy. The Essence of ML Type Inference. In
B. C. Pierce, editor, Advanced Topics in Types and Programming
Languages, chapter 10, pages 389–489. MIT Press, 2005.

[21] H. Sutou and E. Sumii. Quicksilver/OCaml: A poor man’s type-safe
and abstraction-secure communication library. Unpublished, 2007.

[22] S. Tobin-Hochstadt and M. Felleisen. The design and implementation
of Typed Scheme. In POPL’08: Proceedings of the 35th ACM Sympo-
sium on Principles of Programming Languages, pages 395–406, Jan.
2008.

[23] A. P. Tolmach. Tag-free garbage collection using explicit type param-
eters. In LFP ’94: Proceedings of the 1994 ACM Conference on LISP
and Functional Programming, pages 1–11, June 1994.

[24] S. Weirich. Higher-order intensional type analysis. In ESOP’02:
Proceedings of the 11th European Symposium on Programming, pages
98–114, 2002.

[25] S. Weirich. Type-safe run-time polytypic programming. Journal of
Functional Programming, 16(10):681–710, Nov. 2006.

[26] J. Yallop. Practical generic programming in OCaml. In ML’07:
Proceedings of the ACM Workshop on ML, pages 83–94, Sept. 2007.

Submitted to ICFP ’12 12 2012/3/12

