
Rust: SystemsRust: Systems
Programming forProgramming for

EveryoneEveryone
Leo Testard, MozillaLeo Testard, Mozilla

1 of 53

Why Rust...?Why Rust...?

2 of 53

Why use Rust?Why use Rust?
Fast code, low memory footprint

Go from bare metal (assembly; C FFI) ...

... to high-level (collections, closures, generic

containers) ...

with zero cost (no GC, unboxed closures,

monomorphization of generics)

Safety and Parallelism

3 of 53

Safety and ParallelismSafety and Parallelism
SafetySafety

No segmentation faults

No undefined behavior

No data races

4 of 53

Why would Mozilla sponsor Rust?Why would Mozilla sponsor Rust?
Hard to prototype research-y browser changes atop C++ code base

Rust ⇒ Servo, WebRender
Want Rust for next-gen infrastructure (services, IoT)

5 of 53

Where is Rust now?Where is Rust now?
1.0 release was back in May 2015

Rolling release cycle (up to Rust 1.8 as of May 2nd 2016)

Open source from the begining
https://github.com/rust-lang/rust/

Open model for future change (RFC process)
https://github.com/rust-lang/rfcs/

Awesome developer community (~1,000 people in #rust, ~250
people in #rust-internals, ~1,300 unique commiters to rust.git)

6 of 53

Talk planTalk plan
"Why Rust"

How we build safe abstractions in Rust:

ownership & borrowing

Example 1: Pointers and allocation

Example 2: Concurrency

7 of 53

Ownership: aOwnership: a
metaphormetaphor

8 of 53

"Ownership is intuitive""Ownership is intuitive"
Let's buy a car

let money: Money = bank.withdraw_cash();
let my_new_car: Car = dealership.buy_car(money);

let second_car = dealership.buy_car(money); // <-- cannot reuse

money transferred into dealership, and car transferred to us.

9 of 53

"Ownership is intuitive""Ownership is intuitive"
Let's buy a car

let money: Money = bank.withdraw_cash();
let my_new_car: Car = dealership.buy_car(money);
// let second_car = dealership.buy_car(money); // <-- cannot reuse

money transferred into dealership, and car transferred to us.

my_new_car.drive_to(home);
garage.park(my_new_car);

my_new_car.drive_to(...) // now doesn't work

(can't drive car without access to it, e.g. taking it out of the garage)

10 of 53

"Ownership is intuitive""Ownership is intuitive"
Let's buy a car

let money: Money = bank.withdraw_cash();
let my_new_car: Car = dealership.buy_car(money);
// let second_car = dealership.buy_car(money); // <-- cannot reuse

money transferred into dealership, and car transferred to us.

my_new_car.drive_to(home);
garage.park(my_new_car);
// my_new_car.drive_to(...) // now doesn't work

(can't drive car without access to it, e.g. taking it out of the garage)

let my_car = garage.unpark();
my_car.drive_to(work);

...reflection time...

11 of 53

Ownership is importantOwnership is important
Ownership enables: which removes:

RsAII-style destructors a source of memory leaks (or fd leaks, etc)

no dangling pointers many resource management bugs

no data races many multithreading heisenbugs

Do I need to take ownership here, accepting the
associated resource management responsibility?

Would temporary access suffice?

Good system developers ask this already!

‶The pointer may subsequently be used as an argument to the
function free(3).″ STRDUP(2)

Rust forces function signatures to encode the answers, and they are
checked by the compiler.12 of 53

Problem: Ownership is intuitive,Problem: Ownership is intuitive,
except for programmers ...except for programmers ...

(copying data like integers, and characters, and .mp3's, is "free")

... and anyone else who ... and anyone else who namesnames things things
If ownership were all we had, car-purchase slide seems nonsensical

Does this transfer home into the car?

Do I lose access to my home, just because I drive to it?

We must distinguish an object itself from ways to name that object

home must be some kind of reference to a Home

my_new_car.drive_to(home);

13 of 53

So we will need referencesSo we will need references
We can solve any problem by introducing an extra

level of indirection

-- David J. Wheeler

14 of 53

Sharing Data:Sharing Data:
Ownership andOwnership and

ReferencesReferences

15 of 53

Rust typesRust types
Move Copy Copy if T:Copy

Vec<T>, String, ... i32, char, ... [T; n], (T1,T2,T3), ...

struct Car { color: Color, engine: Engine }

fn demo_ownership() {
let mut used_car: Car = Car { color: Color::Red,

 engine: Engine::BrokenV8 };
let apartments = ApartmentBuilding::new();

references to data (&mut T, &T):

let my_home: &Home; // <-- an "immutable" borrow
let christine: &mut Car; // <-- a "mutable" borrow

 my_home = &apartments[6]; // (read `mut` as "exclusive")
let neighbors_home = &apartments[5];

 christine = &mut used_car;
 christine.engine = Engine::VintageV8;
}

16 of 53

Why multiple Why multiple &&-reference types?-reference types?
Distinguish exclusive access from shared access

Enables safe, parallel API's

17 of 53

Borrowing: ABorrowing: A
MetaphorMetaphor

(continued)(continued)
18 of 53

(reminder: metaphors(reminder: metaphors
never work 100%)never work 100%)

19 of 53

let christine = Car::new();

This is "Christine"

pristine unborrowed car

(apologies to Stephen King)

20 of 53

let read_only_borrow = &christine;

single inspector (immutable borrow)

21 of 53

read_only_borrows[2] = &christine;
read_only_borrows[3] = &christine;
read_only_borrows[4] = &christine;

many inspectors (immutable borrows)

22 of 53

When inspectors are finished, we are left again with:

pristine unborrowed car

23 of 53

let mutable_borrow = &mut christine; // like taking keys ...
give_arnie(mutable_borrow); // ... and giving them to someone

driven car (mutably borrowed)

24 of 53

Can't mix the two in safe code!Can't mix the two in safe code!

Otherwise: (data) races!Otherwise: (data) races!

25 of 53

read_only_borrows[2] = &christine;
let mutable_borrow = &mut christine;
read_only_borrows[3] = &christine;
// ⇒ CHAOS!

mixing mutable and immutable is illegal

26 of 53

Mixing mutable and immutable isMixing mutable and immutable is
illegalillegal

Reminder: this does not apply only to concurrency (iterator invalidation,
etc.)

std::vector<int> v = {1};
int &i = v[0];
std::cout << i << std::endl; // prints 1

v.push_back(2);

std::vector<int> v2 = {2};
std::cout << i << std::endl; // prints 2

27 of 53

Ownership T

Exclusive access &mut T ("mutable")

Shared access &T ("read-only")

Now let's see how we can apply that to build safe abstractions

28 of 53

Pointers, Smart andPointers, Smart and
OtherwiseOtherwise

29 of 53

Stack allocationStack allocation
let b = B::new();

stack allocation

30 of 53

let b = B::new();

let r1: &B = &b;
let r2: &B = &b;

stack allocation and immutable borrows

(b has lost write capability)

31 of 53

let mut b = B::new();

let w: &mut B = &mut b;

stack allocation and mutable borrows

(b has temporarily lost both read and write capabilities)

32 of 53

Heap allocation: Heap allocation: BoxBox
let a = Box::new(B::new());

pristine boxed B

a (as owner) has both read and write capabilities

33 of 53

Immutably borrowing a boxImmutably borrowing a box
let a = Box::new(B::new());
let r_of_box: &Box = &a; // (not directly a ref of B)

let r1: &B = &*a;
let r2: &B = &a; // <-- coercion!

immutable borrows of heap-allocated B; a retains read capabilities (has
temporarily lost write)

34 of 53

Mutably borrowing a boxMutably borrowing a box
let mut a = Box::new(B::new());

let w: &mut B = &mut a; // (again, coercion happening here)

mutable borrow of heap-allocated B

a has temporarily lost both read and write capabilities

35 of 53

Heap allocation: Heap allocation: VecVec
let mut a = Vec::new();
for i in 0..n { a.push(B::new()); }

vec, filled to capacity

36 of 53

Vec ReallocationVec Reallocation
...
a.push(B::new());

before after

37 of 53

Slices: borrowing Slices: borrowing partsparts of an array of an array

38 of 53

Basic Basic VecVec
let mut a = Vec::new();
for i in 0..n { a.push(B::new()); }

pristine unborrowed vec

(a has read and write capabilities)

39 of 53

Immutable borrowed slicesImmutable borrowed slices
let mut a = Vec::new();
for i in 0..n { a.push(B::new()); }
let r1 = &a[0..3];
let r2 = &a[7..n-4];

mutiple borrowed slices vec

(a has only read capability now; shares it with r1 and r2)

40 of 53

Safe overlap between Safe overlap between &[..]&[..]
let mut a = Vec::new();
for i in 0..n { a.push(B::new()); }
let r1 = &a[0..7];
let r2 = &a[3..n-4];

overlapping slices

41 of 53

Basic Basic VecVec again again

pristine unborrowed vec

(a has read and write capabilities)

42 of 53

Mutable slice of whole vecMutable slice of whole vec
let w = &mut a[0..n];

mutable slice of vec

(a has no capabilities; w now has read and write capability)

43 of 53

Mutable disjoint slicesMutable disjoint slices
let (w1,w2) = a.split_at_mut(n-4);

disjoint mutable borrows

(w1 and w2 share read and write capabilities for disjoint portions)

44 of 53

Sharing Work:Sharing Work:
Parallelism /Parallelism /
ConcurrencyConcurrency

45 of 53

Big IdeaBig Idea
3rd parties identify (and provide) new abstractions for
(safe) concurrency and parallelism unanticipated in

std lib.

46 of 53

Example: Example: rayonrayon's scoped's scoped
parallelismparallelism

47 of 53

rayonrayon demo 1: map reduce demo 1: map reduce
SequentialSequential

fn demo_map_reduce_seq(stores: &[Store], list: Groceries) -> u32 {
let total_price = stores.iter()

 .map(|store| store.compute_price(&list))
 .sum();

return total_price;
}

Parallel (Parallel (potentiallypotentially))
fn demo_map_reduce_par(stores: &[Store], list: Groceries) -> u32 {

let total_price = stores.par_iter()
 .map(|store| store.compute_price(&list))
 .sum();

return total_price;
}

48 of 53

rayonrayon demo 2: quicksort demo 2: quicksort
fn quick_sort<T:PartialOrd+Send>(v: &mut [T]) {

if v.len() > 1 {
let mid = partition(v);
let (lo, hi) = v.split_at_mut(mid);

 rayon::join(|| quick_sort(lo),
 || quick_sort(hi));
 }
}

fn partition<T:PartialOrd+Send>(v: &mut [T]) -> usize {
// see https://en.wikipedia.org/wiki/
// Quicksort#Lomuto_partition_scheme

 ...
}

49 of 53

rayonrayon demo 3: buggy quicksort demo 3: buggy quicksort
fn quick_sort<T:PartialOrd+Send>(v: &mut [T]) {

if v.len() > 1 {
let mid = partition(v);
let (lo, hi) = v.split_at_mut(mid);

 rayon::join(|| quick_sort(lo),
 || quick_sort(hi));
 }
}

fn quick_sort<T:PartialOrd+Send>(v: &mut [T]) {
if v.len() > 1 {

let mid = partition(v);
let (lo, hi) = v.split_at_mut(mid);

 rayon::join(|| quick_sort(lo),
 || quick_sort(lo));

// ~~ data race!
 }
}

(See blog post "Rayon: Data Parallelism in Rust" bit.ly/1IZcku4)

50 of 53

Threading APIs (plural!)Threading APIs (plural!)
std::thread

dispatch : OS X-specific "Grand Central Dispatch"

crossbeam : Lock-Free Abstractions, Scoped "Must-be" Concurrency

rayon : Scoped Fork-join "Maybe" Parallelism (inspired by Cilk)

(Only the first comes with Rust out of the box)

51 of 53

Final WordsFinal Words

52 of 53

ThanksThanks
www.rust-lang.org

Hack Without Fear

53 of 53

