
Building large-scale
distributed applications on

top of self-managing
transactional stores

June 3, 2010

Peter Van Roy
 with help from SELFMAN partners

Overview
  Large-scale distributed applications

  Application structure: multi-tier with scalable DB backend
  Distribution structure: peer-to-peer or cloud-based

  DHTs and transactions
  Basics of DHTs
  Data replication and transactions
  Scalaris and Beernet

  Programming model and applications
  CompOz library and Kompics component model
  DeTransDraw and Distributed Wikipedia

  Future work
  Mobile applications, cloud computing, data-intensive computing
  Programming abstractions for large-scale distribution

Application structure
  What can be a general architecture for large-scale

distributed applications?
  Start with a database backend (e.g., IBM’s “multitier”)

  Make it distributed with distributed transactional interface
  Keep strong consistency (ACID properties)
  Allow large numbers of concurrent transactions

  Horizontal scalability is the key
  Vertical scalability is a dead end
  “NoSQL”: Buzzword for horizontally scalable databases that

typically don’t have a complete SQL interface
  Key/value store or column-oriented

↑ our choice (simplicity)

The NoSQL Controversy
  NoSQL is a current trend in non-relational databases

  May lack table schemas, may lack ACID properties, no join
operations

  Main advantages are excellent performance, with good
horizontal scalability and elasticity (ideal fit to clouds)
  SQL databases have good vertical scalability but are not

elastic

  Often only weak consistency guarantees, such as
eventual consistency (e.g., Google BigTable)
  Some exceptions: Cassandra also provides strong

consistency, Scalaris and Beernet provide a key-value store
with transactions and strong consistency

Distribution structure
  Two main infrastructures for large-scale applications
  Peer-to-peer: use of client machines

  Very popular style, e.g., BitTorrent, Skype, Wuala, etc.
  Different degrees of organization (unstructured to structured)
  Supports horizontal scalability

  Cloud-based: use of datacenters (another good choice)
  Becoming very popular too, e.g., Amazon EC2, Google AppEngine,

Windows Azure, etc.
  Supports horizontal scalability
  Also supports elasticity

  Hybrids will appear
  Combine elasticity & high availability of clouds with

high aggregate bandwidth & low latency of peer-to-peer

← our choice (loosely coupled)

DHT on
P2P overlay

Transactions

Replication

Key/Value Store
(simple DBMS)

 ACID

Architecture

  This is the final
architecture that we have
built for large-scale
distributed applications
  Distributed transactions
provide consistency and
fault tolerance
  The whole is built in
modular fashion using
concurrent components
  Each layer has self-
managing properties
  We explain how it works
and give some of the
applications

Distributed
Hash Tables

DHTs: third generation of P2P
  Hybrid (client/server)

  Napster

  Unstructured overlay
  Gnutella, Kazaa,

Morpheus, Freenet, …
  Uses flooding

  Structured overlay
  Exponential network with

augmented ring structure
  DHT (Distributed Hash

Table), e.g., Chord, DKS,
Scalaris, Beernet

  Self-organizes upon node
join/leave/failure

R = N-1 (hub)

R = 1 (others)

H = 1

R = ? (variable)

H = 1…7

(but no guarantee)

R = log N

H = log N

(with guarantee)

  A dynamic distribution of a hash table onto a set of cooperating
nodes

Key Value

1 Algorithms

9 Routing

11 DS

12 Peer-to-Peer

21 Networks

22 Grids

•  Hash table: get/set/delete operations
•  Each node has a routing table

•  Pointers to some other nodes
•  Typically, a constant or a logarithmic number of pointers

•  Fault tolerance: reorganizes upon node join/leave/failure

node A

node D

node B

node C

→ Node D : get(9)

DHT functionality

A DHT Example: Chord

Nodes

  Ids of nodes and items are
arranged in a circular space

  An item id is assigned to the
first node id that follows it on
the circle.

  The node at or following an id
on the space (circle) is called
the successor. This gives a
connected ring.

  Not all possible ids are actually
used (sparse set of ids, e.g.,
2128)!

  Extra links, called fingers, are
added to provide efficient
routing

8

2

6

7

4

3

5

10
9

11

14

13

15

Items

0 1

12

DHT self-maintenance
  In all ring-based DHTs inspired by Chord, self-

organization is done at two levels:
  The ring ensures connectivity: it must always exist despite

joins, leaves, and failures
  The fingers provide efficient routing: they may be

temporarily in an imperfect state, but this affects only the
efficiency of routing, not the correctness

  We now explain how routing works
  We will explain connectivity maintenance later when we

introduce the relaxed ring
  The relaxed ring has much simpler connectivity

maintenance than Chord

  Routing table size: M,
where N = 2M

  Every node n knows
successor (n + 2 i-1) ,
for i = 1..M

  Routing entries = log2(N)
  log2(N) hops from any

node to any other node

8

2

6

7

4

3

5

10
9

14

15 0 1

11

13

12

Get(15) Chord routing (1/4)

  Routing table size: M,
where N = 2M

  Every node n knows
successor (n + 2 i-1) ,
for i = 1..M

  Routing entries = log2(N)
  log2(N) hops from any

node to any other node

8

2

6

7

4

3

5

10
9

14

15 0 1

11

13

12

Get(15) Chord routing (2/4)

  Routing table size: M,
where N = 2M

  Every node n knows
successor(n + 2 i-1) ,
for i = 1..M

  Routing entries = log2(N)
  log2(N) hops from any

node to any other node

8

2

6

7

4

3

5

10
9

14

15 0 1

11

13

12

Get(15) Chord routing (3/4)

  From node 1, it takes
3 hops to node 0
where item 15 is
stored

  For 16 nodes, the
maximum is log2(16)
= 4 hops between any
two nodes

8

2

6

7

4

3

5

10
9

14

15 0 1

11

13

12

Get(15) Chord routing (4/4)

DHT-based
Application

Infrastructure

DHT-based
application infrastructure
  We use the DHT as a foundation for building large-scale

distributed applications
  Using a concurrent component model with message passing
  First layer: ring maintenance, efficient routing maintenance
  Second layer: communication and storage
  Third layer: replication and transactions

  A scalable decentralized application can be built on top
of the transaction layer

  We built several applications using this architecture
  Collaborative drawing (DeTransDraw), Distributed Wikipedia
  As student project in a course: they complain it is too easy!

Scalaris and Beernet
  Scalaris and Beernet are key/value

stores developed in the SELFMAN
project (www.ist-selfman.org)

  They provide transactions and strong
consistency on top of loosely coupled
peers using the Paxos uniform
consensus algorithm for atomic
commit

  They are scalable to hundreds of
nodes; with ten nodes they have
similar performance as MySQL
servers

  Scalaris won first prize in the IEEE
Scalable Computing Challenge 2008

  We focus on these two systems and
the applications we have built on them

DHT on
P2P Overlay

Transactions

Replication

Key/Value Store
(simple DBMS)

ACID

Detailed architecture
  Layered architecture

  Relaxed ring and routing
  Reliable message sending
  DHT (basic storage)
  Replication and transactions

  The relaxed ring maintains
connectivity and efficient
routing despite node failures,
joins, and leaves

  The DHT provides basic
storage without replication

  This figure shows the Beernet
architecture; Scalaris is similar

Simplified ring maintenance
  We now continue our discussion of how DHTs work
  Ring maintenance is not a trivial issue

  Peers can join and leave at any time
  Peers that crash are like peers that leave without notification
  Temporarily broken links create false failure suspicions

  Crucial properties to be guaranteed
  Lookup consistency
  Ring connectivity

  We define a relaxed ring which gives a very simple
ring maintenance compared to Chord
  E.g., no periodic stabilization needed like in Chord and many

related structures

The relaxed-ring architecture

  The relaxed ring is the basis
of the Beernet DHT

  The ring is based on a
simple invariant:
  Every peer is in the same ring

as its successor

  Relaxed ring maintenance is
completely asynchronous
(no locking)
  Joining is done in two steps,

each involving two peers
(instead of locking algorithm for
insertion involving three peers
as in Chord and DKS)

  After first step, the node is in

(0)

(1)

(2)

Example of a relaxed ring
  It looks like a ring with “bushes”

sticking out
  The bushes are long only for

many failure suspicions
  Average size of branch is less

than one in typical executions
  There always exists a core ring

(in red) as a subset of the
relaxed ring. No branches
means core ring = perfect ring.

  The relaxed ring is always
converging toward a perfect
ring
  The size of bushes existing at

any time depends on the churn
(rate of change of the ring,
failures/joins per time)

Lookup consistency
  Definition: Lookup consistency means that at any instant of time there is

only one responsible node for a particular key k
  In the case of temporary failures (imperfect failure detection) lookup consistency

cannot always be guaranteed: we may temporarily have more than one
responsible node

  Failure model: nodes may fail permanently and network links may fail temporarily,
with eventually perfect failure detector (eventually accurate: false suspicion is
possible, but only temporarily, strongly complete: failed nodes are always
detected)

  Theorem: When there are no failures, the relaxed-ring join algorithm
guarantees lookup consistency at any time for multiple joining peers
  This is not true for Chord

  In realistic situations with false failure suspicions, the time interval for
inconsistency is greatly reduced with respect to Chord

  Let us now explain the replication scheme, which practically eliminates
inconsistency for data items

Symmetric replication
  Example network with 16 nodes

and replication factor r = 4
  Load spread over ring; replica

nodes can be accessed in
decentralized fashion

  A client initiates a transaction by
asking its nearest node, which
becomes a transaction manager.
Other nodes that store data are
transaction participants.

  There are r transaction
managers and r replicas for the
other items

Transaction commit protocol

  Non-blocking commit protocol based on adapted Paxos that uses replicated
transaction managers and replicated transaction participants
  Paxos ≈ uniform consensus protocol for asynchronous systems assuming majority correct

  Assumes a majority of transaction managers {TM,RTMi} and a majority of
replicas {TPi with r replicas} for each item are correct

Scalaris performance

  Number of read-modify-write transactions per second
  Each server has two dual-core Intel Xeons at 2.66 GHz (4 cores in all)

and 8 GB of main memory, with Gigabit Ethernet interconnection
  Total of 16 or 32 Scalaris nodes in the ring with replication factor of 4

Programming Model

Programming model
  One of the goals of SELFMAN was to explore the programming

support for self-managing applications
  Both Scalaris and Beernet are implemented using concurrent

component models with message passing and failure detection
  Scalaris in Erlang and Beernet in Oz

  We also explored more sophisticated component models inspired
by the Fractal framework
  Components have management interface
  CompOz library, Kompics component model

  This work is only the first step toward languages for large-scale
distributed systems

28

CompOz
  Complete self-configuration library written in Oz
  Three complementary parts

  Component construction and deployment (FructOz library)
  Supports distribution, self configuration, lazy and dynamic

deployment
  Lifecycle control including termination and failures

  Navigation and monitoring of dynamic architectures (LactOz
library)
  Distributed event bus, architecture as dynamic graph, filters

  Distributed workflows (composing tasks) (WorkflOz library)
  Libraries of workflow patterns as higher-order combinators
  Can be monitored using LactOz

29

Kompics
  Concurrent event-driven component model implemented

in Java (open-source software)
  Supports multi-core execution and comes with full set of utility

components (publish/subscribe, life-cycle management, failure
handling)

  Supports dynamic reconfiguration
  Protocol composition and hot software update

  Dual implementation for reproducible simulation / real
execution of unmodified Kompics programs
  Java-based DSL for experiment scenarios
  Complete implementation of Chord P2P and Cyclon membership

management

30

Self-management architecture
implemented in Kompics

Explanation of the design
1.  Encapsulate communication inside

Network abstraction
2.  Encapsulate timeout and alarm inside

Timer abstraction
3.  Encapsulate failure detection inside a

Failure Detector
4.  Decompose SON into Ring, Router,

and Merger
5.  Encapsulate all so far into a Virtual

Peer component
6.  Allow enclosing Peer Manager to add

and remove Virtual Peers
7.  Peer Manager can now be driven by a

Discrete Event Simulator
8.  Encapsulate bootstrapping into the

Bootstrap Client

9.  Enable Web-based visualization with
Web Server component

10.  Collect global state from new Peer
Monitor component

11.  Share Network, Timer, and Web
Server among Virtual Peers

12.  Inside Virtual Peer, add proxy Peer
Network and Web Handler

13.  The three SON components can be
replaced

14.  Add protocol components:
Transactional DHT, Fast Paxos,
Replication, and Group Multicast

15.  Add new pillar inside Virtual Peer, to
provide other useful services: Peer
Supervisor, Broadcast Trees, etc.

Applications

DeTransDraw Application
  DeTransDraw is a collaborative drawing

application
  Each user sees exactly the same drawing space
  Users update the drawing space using transactions
  For quick response time, the transaction is initiated

concurrently with the display update
  Prototype application implemented on top of

Beernet
  Beernet written in Oz using Mozart, ported to gPhone

with Android operating system (binary compatibility)

DeTransDraw – Getting Locks

DeTransDraw – Propagating Update

 DTD and DTDid architecture

Distributed Wikipedia
with Scalaris

Wikipedia: A top 10 Web site

50.000 requests/sec
  95% answered by squid proxies
  ~18 squid servers
  2,000 req./sec hit the backend
  12 MySQL DB, ~158 Apache servers

 Distributed Wikipedia built by ZIB using Scalaris
(written in Erlang)

Wikipedia System Architecture

 web servers

search servers

NFS

other

 Not state-of-the-art:
•  difficult to maintain
•  does not scale

Data Model
Wikipedia

  SQL DB

Scalaris
  Key-Value Store

Map Relations to Key-Value Pairs
  (Title, List of Wikitext for all

Versions)
  (CategoryName, List of

Titles)
  (BackLinkTitle, List of Titles)

CREATE	
 TABLE	
 /*$wgDBprefix*/page	
 (

page_id	
 int	
 unsigned	
 NOT	
 	

	
 NULL	
 auto_increment,	
 	

page_namespace	
 int	
 NOT	
 NULL,	

...	

Data Model
(Simple Query Layer)

void	
 updatePage(string	
 title,	
 int	
 oldVersion,	
 string	
 newText)	

{	

	
 //new	
 transaction	

	
 Transaction	
 t	
 =	
 new	
 Transaction();	

	
 //read	
 old	
 version	

	
 Page	
 p	
 =	
 t.read(title);	

	
 //check	
 for	
 concurrent	
 update	

	
 if(p.currentVersion	
 !=	
 oldVersion)	

	
 	
 	
 	
 	
 t.abort();	

	
 else{	

	
 	
 	
 	
 	
 //write	
 new	
 text	

	
 	
 	
 	
 	
 t.write(p.add(newText));	

	
 	
 	
 	
 	
 //update	
 categories	

	
 	
 	
 	
 	
 foreach(Category	
 c	
 in	
 p)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 t.write(t.read(c.name).add(title));	

	
 	
 	
 	
 	
 //commit	

	
 	
 	
 	
 	
 t.commit();	

	
 }	

}	

Self-* Architecture
Database:
  Chord#
  Mapping

  Wiki -> Key-Value Store

Renderer:
  Java

  Tomcat
  Plog4u

  Jinterface
  Interface to Erlang

Our Approach: P2P with
Transaction Layer
Benefits
  distributed
  scalable

  because of peer
concept

  fault tolerance
  because of replication

Challenges
  need synchronization

  concurrency control
  need atomicity

  in face of churn
  need transactions

DHT + Transactions = Scalable, Reliable, Efficient Key/Value Store

System Solutions

 DHT

 Wikipedia

 Transaction

 Chord#, log (N) routing,
 no hashing, range queries

 Symmetric Replication in P2P
 Replica locations can be calculated locally

 Replication

 Key/Value Store
  (simple DBMS)


 W

rit
te

n
 in

 E
rla

ng

 Adapted Paxos Algorithm
 Read  1 access to majority of replicas
 Write  3 rounds accessing the replicas

 Map Wiki to key / value,
 render wiki text to HTML

 Simple data read/write interface

Demonstration
Two independent instances are set up:

Cluster:
 640 peers on 20 x 8 cores

PlanetLab:
 about 150 peers
 distributed worldwide

Boot-Server: P2P management
interface
  store keys

  search keys

  see the P2P ring

  statistics

  debug data

Wikipedia Frontend
  Wikipedia on top of

scalable key/value
store

  installed a dump of
Simple English

  interface language is
static (Bavarian)

  no images
 URLs not in dump
  browse links
  no fulltext search

Outlook

Conclusions
  DHTs are a good foundation for large-scale

distributed applications
  Horizontally scalable distributed transaction store

  Scalaris and Beernet
  Robust implementations with applications
  Written in Erlang (Scalaris) and Oz (Beernet)

  Support for fine-grain concurrency, message passing, and
transparent distribution

  Some applications
  DeTransDraw
  Distributed Wikipedia

Some future directions
  Support mobile applications with large numbers of collaborators

  Some form of consistency is important
  Transactional DHT can be a good foundation

  Combine cloud computing and data-intensive applications
  Horizontal scalability makes it a perfect fit
  Elasticity enables new kinds of applications
  DHTs support elasticity very well

  New language to simplify programming large-scale applications
  In course project, students complained Beernet is too easy 
  Program for the whole system, not for single machines

  Design for global behavior?
  Partitions, failures, security
  Design with the CAP theorem, not against the CAP theorem

WISEMAN proposal (ANR)

Data-intensive applications
  Computing science is changing fundamentally
  It is becoming focused on programming with large data sets

  Elastic data-intensive algorithms running on clouds are realizing
one by one the old dreams of artificial intelligence

  The canonical example is Google Search using PageRank
  It extracts useful information from the Web link graph

  Many other applications are now following this path: data mining
(e.g., recommendation systems), machine learning, statistical
language translation, image recognition, visualization, complex
problem solving, etc.

  This is where most of the innovation will happen in Internet
applications in the next decade
  Elastic data-intensive algorithms on clouds and P2P systems
  Domain knowledge is the key!

Opinion

