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Overview 
  Large-scale distributed applications 

  Application structure: multi-tier with scalable DB backend 
  Distribution structure: peer-to-peer or cloud-based 

  DHTs and transactions 
  Basics of DHTs 
  Data replication and transactions 
  Scalaris and Beernet 

  Programming model and applications 
  CompOz library and Kompics component model 
  DeTransDraw and Distributed Wikipedia 

  Future work 
  Mobile applications, cloud computing, data-intensive computing 
  Programming abstractions for large-scale distribution  



Application structure 
  What can be a general architecture for large-scale 

distributed applications? 
  Start with a database backend (e.g., IBM’s “multitier”) 

  Make it distributed with distributed transactional interface 
  Keep strong consistency (ACID properties) 
  Allow large numbers of concurrent transactions 

  Horizontal scalability is the key 
  Vertical scalability is a dead end 
  “NoSQL”: Buzzword for horizontally scalable databases that 

typically don’t have a complete SQL interface 
  Key/value store   or column-oriented 

↑ our choice (simplicity) 



The NoSQL Controversy 
  NoSQL is a current trend in non-relational databases 

  May lack table schemas, may lack ACID properties, no join 
operations 

  Main advantages are excellent performance, with good 
horizontal scalability and elasticity (ideal fit to clouds) 
  SQL databases have good vertical scalability but are not 

elastic 

  Often only weak consistency guarantees, such as 
eventual consistency (e.g., Google BigTable) 
  Some exceptions: Cassandra also provides strong 

consistency, Scalaris and Beernet provide a key-value store 
with transactions and strong consistency  



Distribution structure 
  Two main infrastructures for large-scale applications 
  Peer-to-peer:  use of client machines 

  Very popular style, e.g., BitTorrent, Skype, Wuala, etc. 
  Different degrees of organization (unstructured to structured) 
  Supports horizontal scalability 

  Cloud-based: use of datacenters (another good choice) 
  Becoming very popular too, e.g., Amazon EC2, Google AppEngine, 

Windows Azure, etc. 
  Supports horizontal scalability 
  Also supports elasticity 

  Hybrids will appear 
  Combine elasticity & high availability of clouds with 

high aggregate bandwidth & low latency of peer-to-peer 

← our choice (loosely coupled)  



DHT on 
P2P overlay 

Transactions  

Replication 

Key/Value Store 
(simple DBMS) 

 ACID 

Architecture 

  This is the final 
architecture that we have 
built for large-scale 
distributed applications 
  Distributed transactions 
provide consistency and 
fault tolerance 
  The whole is built in 
modular fashion using 
concurrent components 
  Each layer has self-
managing properties 
  We explain how it works 
and give some of the 
applications 



Distributed 
Hash Tables 



DHTs: third generation of P2P 
  Hybrid (client/server) 

  Napster 

  Unstructured overlay 
  Gnutella, Kazaa, 

Morpheus, Freenet, … 
  Uses flooding 

  Structured overlay 
  Exponential network with 

augmented ring structure 
  DHT (Distributed Hash 

Table), e.g., Chord, DKS, 
Scalaris, Beernet 

  Self-organizes upon node 
join/leave/failure 

R = N-1 (hub) 

R = 1 (others) 

H = 1 

R = ? (variable) 

H = 1…7 

(but no guarantee) 

R = log N 

H = log N 

(with guarantee) 



  A dynamic distribution of a hash table onto a set of cooperating 
nodes 

Key Value 

1 Algorithms 

9 Routing 

11 DS 

12 Peer-to-Peer 

21 Networks 

22 Grids 

•  Hash table: get/set/delete operations  
•  Each node has a routing table  

•  Pointers to some other nodes 
•  Typically, a constant or a logarithmic number of pointers 

•  Fault tolerance: reorganizes upon node join/leave/failure 

node A 

node D 

node B 

node C 

→ Node D : get(9) 

DHT functionality 



A DHT Example: Chord 

Nodes 

  Ids of nodes and items are 
arranged in a circular space 

  An item id is assigned to the 
first node id that follows it on 
the circle. 

  The node at or following an id 
on the space (circle) is called 
the successor.  This gives a 
connected ring. 

  Not all possible ids are actually 
used (sparse set of ids, e.g., 
2128)! 

  Extra links, called fingers, are 
added to provide efficient 
routing 
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DHT self-maintenance 
  In all ring-based DHTs inspired by Chord, self-

organization is done at two levels: 
  The ring ensures connectivity: it must always exist despite 

joins, leaves, and failures 
  The fingers provide efficient routing: they may be 

temporarily in an imperfect state, but this affects only the 
efficiency of routing, not the correctness 

  We now explain how routing works 
  We will explain connectivity maintenance later when we 

introduce the relaxed ring 
  The relaxed ring has much simpler connectivity 

maintenance than Chord 



  Routing table size: M, 
where N = 2M 

  Every node n knows 
successor (n + 2 i-1) , 
for i = 1..M 

  Routing entries = log2(N) 
  log2(N) hops from any 

node to any other node  
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  From node 1, it takes 
3 hops to node 0 
where item 15 is 
stored 

  For 16 nodes, the 
maximum is log2(16) 
= 4 hops between any 
two nodes 
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DHT-based 
Application 

Infrastructure 



DHT-based 
application infrastructure 
  We use the DHT as a foundation for building large-scale 

distributed applications 
  Using a concurrent component model with message passing 
  First layer: ring maintenance, efficient routing maintenance 
  Second layer: communication and storage 
  Third layer: replication and transactions 

  A scalable decentralized application can be built on top 
of the transaction layer 

  We built several applications using this architecture 
  Collaborative drawing (DeTransDraw), Distributed Wikipedia 
  As student project in a course: they complain it is too easy! 



Scalaris and Beernet 
  Scalaris and Beernet are key/value 

stores developed in the SELFMAN 
project (www.ist-selfman.org)  

  They provide transactions and strong 
consistency on top of loosely coupled 
peers using the Paxos uniform 
consensus algorithm for atomic 
commit 

  They are scalable to hundreds of 
nodes; with ten nodes they have 
similar performance as MySQL 
servers 

  Scalaris won first prize in the IEEE 
Scalable Computing Challenge 2008 

  We focus on these two systems and 
the applications we have built on them 

DHT on 
P2P Overlay 

Transactions  

Replication 

Key/Value Store 
(simple DBMS) 

ACID 



Detailed architecture 
  Layered architecture 

  Relaxed ring and routing 
  Reliable message sending 
  DHT (basic storage) 
  Replication and transactions 

  The relaxed ring maintains 
connectivity and efficient 
routing despite node failures, 
joins, and leaves 

  The DHT provides basic 
storage without replication 

  This figure shows the Beernet 
architecture; Scalaris is similar 



Simplified ring maintenance 
  We now continue our discussion of how DHTs work 
  Ring maintenance is not a trivial issue 

  Peers can join and leave at any time 
  Peers that crash are like peers that leave without notification 
  Temporarily broken links create false failure suspicions 

  Crucial properties to be guaranteed 
  Lookup consistency 
  Ring connectivity 

  We define a relaxed ring which gives a very simple 
ring maintenance compared to Chord 
  E.g., no periodic stabilization needed like in Chord and many 

related structures 



The relaxed-ring architecture 

  The relaxed ring is the basis 
of the Beernet DHT 

  The ring is based on a 
simple invariant: 
  Every peer is in the same ring 

as its successor 

  Relaxed ring maintenance is 
completely asynchronous 
(no locking) 
  Joining is done in two steps, 

each involving two peers 
(instead of locking algorithm for 
insertion involving three peers 
as in Chord and DKS) 

  After first step, the node is in 

(0) 

(1) 

(2) 



Example of a relaxed ring 
  It looks like a ring with “bushes” 

sticking out 
  The bushes are long only for 

many failure suspicions 
  Average size of branch is less 

than one in typical executions 
  There always exists a core ring 

(in red) as a subset of the 
relaxed ring. No branches 
means core ring = perfect ring. 

  The relaxed ring is always 
converging toward a perfect 
ring 
  The size of bushes existing at 

any time depends on the churn 
(rate of change of the ring, 
failures/joins per time) 



Lookup consistency 
  Definition: Lookup consistency means that at any instant of time there is 

only one responsible node for a particular key k 
  In the case of temporary failures (imperfect failure detection) lookup consistency 

cannot always be guaranteed: we may temporarily have more than one 
responsible node 

  Failure model: nodes may fail permanently and network links may fail temporarily, 
with eventually perfect failure detector (eventually accurate: false suspicion is 
possible, but only temporarily, strongly complete: failed nodes are always 
detected) 

  Theorem: When there are no failures, the relaxed-ring join algorithm 
guarantees lookup consistency at any time for multiple joining peers 
  This is not true for Chord 

  In realistic situations with false failure suspicions, the time interval for 
inconsistency is greatly reduced with respect to Chord 

  Let us now explain the replication scheme, which practically eliminates 
inconsistency for data items  



Symmetric replication 
  Example network with 16 nodes 

and replication factor r = 4 
  Load spread over ring; replica 

nodes can be accessed in 
decentralized fashion 

  A client initiates a transaction by 
asking its nearest node, which 
becomes a transaction manager. 
Other nodes that store data are 
transaction participants. 

  There are r transaction 
managers and r replicas for the 
other items  



Transaction commit protocol 

  Non-blocking commit protocol based on adapted Paxos that uses replicated 
transaction managers and replicated transaction participants 
  Paxos ≈ uniform consensus protocol for asynchronous systems assuming majority correct 

  Assumes a majority of transaction managers {TM,RTMi} and a majority of 
replicas {TPi with r replicas} for each item are correct 



Scalaris performance 

  Number of read-modify-write transactions per second 
  Each server has two dual-core Intel Xeons at 2.66 GHz (4 cores in all) 

and 8 GB of main memory, with Gigabit Ethernet interconnection 
  Total of 16 or 32 Scalaris nodes in the ring with replication factor of 4 



Programming Model 



Programming model 
  One of the goals of SELFMAN was to explore the programming 

support for self-managing applications 
  Both Scalaris and Beernet are implemented using concurrent 

component models with message passing and failure detection 
  Scalaris in Erlang and Beernet in Oz 

  We also explored more sophisticated component models inspired 
by the Fractal framework 
  Components have management interface 
  CompOz library, Kompics component model 

  This work is only the first step toward languages for large-scale 
distributed systems 

28 



CompOz 
  Complete self-configuration library written in Oz 
  Three complementary parts 

  Component construction and deployment (FructOz library) 
  Supports distribution, self configuration, lazy and dynamic 

deployment 
  Lifecycle control including termination and failures 

  Navigation and monitoring of dynamic architectures (LactOz 
library) 
  Distributed event bus, architecture as dynamic graph, filters 

  Distributed workflows (composing tasks) (WorkflOz library) 
  Libraries of workflow patterns as higher-order combinators 
  Can be monitored using LactOz 

29 



Kompics 
  Concurrent event-driven component model implemented 

in Java (open-source software) 
  Supports multi-core execution and comes with full set of utility 

components (publish/subscribe, life-cycle management, failure 
handling) 

  Supports dynamic reconfiguration 
  Protocol composition and hot software update 

  Dual implementation for reproducible simulation / real 
execution of unmodified Kompics programs 
  Java-based DSL for experiment scenarios 
  Complete implementation of Chord P2P and Cyclon membership 

management 

30 



Self-management architecture 
implemented in Kompics 



Explanation of the design 
1.  Encapsulate communication inside 

Network abstraction 
2.  Encapsulate timeout and alarm inside 

Timer abstraction 
3.  Encapsulate failure detection inside a 

Failure Detector 
4.  Decompose SON into Ring, Router, 

and Merger 
5.  Encapsulate all so far into a Virtual 

Peer component 
6.  Allow enclosing Peer Manager to add 

and remove Virtual Peers 
7.  Peer Manager can now be driven by a 

Discrete Event Simulator 
8.  Encapsulate bootstrapping into the 

Bootstrap Client 

9.  Enable Web-based visualization with 
Web Server component 

10.  Collect global state from new Peer 
Monitor component 

11.  Share Network, Timer, and Web 
Server among Virtual Peers 

12.  Inside Virtual Peer, add proxy Peer 
Network and Web Handler 

13.  The three SON components can be 
replaced 

14.  Add protocol components: 
Transactional DHT, Fast Paxos, 
Replication, and Group Multicast 

15.  Add new pillar inside Virtual Peer, to 
provide other useful services: Peer 
Supervisor, Broadcast Trees, etc. 



Applications 



DeTransDraw Application 
  DeTransDraw is a collaborative drawing 

application 
  Each user sees exactly the same drawing space 
  Users update the drawing space using transactions 
  For quick response time, the transaction is initiated 

concurrently with the display update 
  Prototype application implemented on top of 

Beernet 
  Beernet written in Oz using Mozart, ported to gPhone 

with Android operating system (binary compatibility) 



DeTransDraw – Getting Locks 



DeTransDraw – Propagating Update 



 DTD and DTDid architecture 



Distributed Wikipedia 
with Scalaris 



Wikipedia: A top 10 Web site 

50.000 requests/sec 
  95% answered by squid proxies  
   ~18 squid servers   
  2,000 req./sec hit the backend  
   12 MySQL DB, ~158 Apache servers 

 Distributed Wikipedia built by ZIB using Scalaris 
(written in Erlang) 



Wikipedia System Architecture 

 web servers 

search servers 

NFS 

other 

 Not state-of-the-art: 
•  difficult to maintain 
•  does not scale 



Data Model 
Wikipedia 

  SQL DB 

Scalaris 
  Key-Value Store 

Map Relations to Key-Value Pairs 
  (Title, List of Wikitext for all 

Versions) 
  (CategoryName, List of 

Titles) 
  (BackLinkTitle, List of Titles) 

CREATE	
  TABLE	
  /*$wgDBprefix*/page	
  (	
  
page_id	
  int	
  unsigned	
  NOT	
  	
  
	
   NULL	
  auto_increment,	
  	
  
page_namespace	
  int	
  NOT	
  NULL,	
  
...	
  



Data Model  
(Simple Query Layer) 

void	
  updatePage(string	
  title,	
  int	
  oldVersion,	
  string	
  newText)	
  
{	
  
	
   //new	
  transaction	
  
	
   Transaction	
  t	
  =	
  new	
  Transaction();	
  
	
   //read	
  old	
  version	
  
	
   Page	
  p	
  =	
  t.read(title);	
  
	
   //check	
  for	
  concurrent	
  update	
  
	
   if(p.currentVersion	
  !=	
  oldVersion)	
  
	
   	
  	
  	
  	
  t.abort();	
  
	
   else{	
  
	
   	
  	
  	
  	
  //write	
  new	
  text	
  
	
   	
  	
  	
  	
  t.write(p.add(newText));	
  
	
   	
  	
  	
  	
  //update	
  categories	
  
	
   	
  	
  	
  	
  foreach(Category	
  c	
  in	
  p)	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  t.write(t.read(c.name).add(title));	
  
	
   	
  	
  	
  	
  //commit	
  
	
   	
  	
  	
  	
  t.commit();	
  
	
   }	
  
}	
  



Self-* Architecture 
Database: 
  Chord# 
  Mapping 

  Wiki -> Key-Value Store 

Renderer: 
  Java 

  Tomcat 
  Plog4u 

  Jinterface 
  Interface to Erlang 



Our Approach: P2P with 
Transaction Layer 
Benefits 
  distributed 
  scalable 

  because of peer 
concept 

  fault tolerance 
  because of replication 

Challenges 
  need synchronization 

  concurrency control 
  need atomicity 

  in face of churn 
  need transactions 

DHT + Transactions = Scalable, Reliable, Efficient Key/Value Store 



System Solutions 

 DHT 

 Wikipedia 

 Transaction  

 Chord#, log (N) routing,  
 no hashing, range queries  

 Symmetric Replication in P2P 
 Replica locations can be calculated locally 

 Replication 

 Key/Value Store 
  (simple DBMS) 


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 Adapted Paxos Algorithm 
 Read  1 access to majority of replicas 
 Write   3 rounds accessing the replicas 

 Map Wiki to key / value,  
 render wiki text to HTML 

 Simple data read/write interface 



Demonstration 
Two independent instances are set up: 

Cluster:  
 640 peers on 20 x 8 cores 

PlanetLab:  
 about 150 peers  
 distributed worldwide 



Boot-Server: P2P management 
interface 
  store keys 

  search keys 

  see the P2P ring 

  statistics 

  debug data 



Wikipedia Frontend 
  Wikipedia on top of  

scalable key/value 
store  

  installed a dump of 
Simple English 

  interface language is 
static (Bavarian) 

  no images  
 URLs not in dump 
  browse links 
  no fulltext search 



Outlook 



Conclusions 
  DHTs are a good foundation for large-scale 

distributed applications 
  Horizontally scalable distributed transaction store 

  Scalaris and Beernet 
  Robust implementations with applications 
  Written in Erlang (Scalaris) and Oz (Beernet) 

  Support for fine-grain concurrency, message passing, and 
transparent distribution 

  Some applications 
  DeTransDraw 
  Distributed Wikipedia 



Some future directions 
  Support mobile applications with large numbers of collaborators 

  Some form of consistency is important 
  Transactional DHT can be a good foundation 

  Combine cloud computing and data-intensive applications 
  Horizontal scalability makes it a perfect fit 
  Elasticity enables new kinds of applications 
  DHTs support elasticity very well 

  New language to simplify programming large-scale applications 
  In course project, students complained Beernet is too easy  
  Program for the whole system, not for single machines 

  Design for global behavior? 
  Partitions, failures, security 
  Design with the CAP theorem, not against the CAP theorem 

WISEMAN proposal (ANR) 



Data-intensive applications 
  Computing science is changing fundamentally 
  It is becoming focused on programming with large data sets 

  Elastic data-intensive algorithms running on clouds are realizing 
one by one the old dreams of artificial intelligence 

  The canonical example is Google Search using PageRank 
  It extracts useful information from the Web link graph 

  Many other applications are now following this path: data mining 
(e.g., recommendation systems), machine learning, statistical 
language translation, image recognition, visualization, complex 
problem solving, etc. 

  This is where most of the innovation will happen in Internet 
applications in the next decade 
  Elastic data-intensive algorithms on clouds and P2P systems 
  Domain knowledge is the key! 

Opinion 


