
Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Structure Aware Version Control

Victor C. Miraldo and Wouter Swierstra

University of Utrecht

13th of October, 2016

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

The Problem

Imagine Prof. Pink keeps track of his students mark in a CSV file.
She finds a mistake in Alice’s grade and corrects it. At the same
time, Prof. Green decides it is a good idea to add a new column to
the CSV file, in order to track surnames.

Name , Surname , Number , Grade
Alice , Lane , 440 , 7.5
Bob , Wright , 593 , 6.5

Carroll , Clark , 168 , 8.5

A line-based diff will recognize this as a conflict, where it is clearly
not.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

The Problem

Imagine Prof. Pink keeps track of his students mark in a CSV file.
She finds a mistake in Alice’s grade and corrects it. At the same
time, Prof. Green decides it is a good idea to add a new column to
the CSV file, in order to track surnames.

Name , Surname , Number , Grade
Alice , Lane , 440 , 7.5
Bob , Wright , 593 , 6.5

Carroll , Clark , 168 , 8.5

A line-based diff will recognize this as a conflict, where it is clearly
not.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Introduction
Version Control, today

• There are lots of tools, with all sorts of different interfaces.

• The majority of these tools use a line-based diff algorithm,
which are good in keeping track of changes in some
situations, but bad in merging changes together.

• Hence, merging changes almost always requires human
interaction.

• Programmers spent a lot of time solving unnecessary conflicts.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Structure of the Presentation

• We will start by giving an informal specification of what
diffing should consist in.

• We proceed to show how could one diff lists according to the
LCS.

• From lists we go to Binary Trees and towards a generalization.

• We (briefly) mention how we implemented these algorithms
for the universe of Context Free types.

• We then point to a major problem in our implementation.
And address some possible fixes.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Structure of the Presentation

• We will start by giving an informal specification of what
diffing should consist in.

• We proceed to show how could one diff lists according to the
LCS.

• From lists we go to Binary Trees and towards a generalization.

• We (briefly) mention how we implemented these algorithms
for the universe of Context Free types.

• We then point to a major problem in our implementation.
And address some possible fixes.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Structure of the Presentation

• We will start by giving an informal specification of what
diffing should consist in.

• We proceed to show how could one diff lists according to the
LCS.

• From lists we go to Binary Trees and towards a generalization.

• We (briefly) mention how we implemented these algorithms
for the universe of Context Free types.

• We then point to a major problem in our implementation.
And address some possible fixes.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Structure of the Presentation

• We will start by giving an informal specification of what
diffing should consist in.

• We proceed to show how could one diff lists according to the
LCS.

• From lists we go to Binary Trees and towards a generalization.

• We (briefly) mention how we implemented these algorithms
for the universe of Context Free types.

• We then point to a major problem in our implementation.
And address some possible fixes.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Structure of the Presentation

• We will start by giving an informal specification of what
diffing should consist in.

• We proceed to show how could one diff lists according to the
LCS.

• From lists we go to Binary Trees and towards a generalization.

• We (briefly) mention how we implemented these algorithms
for the universe of Context Free types.

• We then point to a major problem in our implementation.
And address some possible fixes.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Diffing
An intuitive specification

Intuitively, a Patch A is an object that describes certain changes
that when applied to certain values a : A will produce other values
of type A.

• Given two values a1 a2 : A, we expect to be able to compute
a patch diff a1 a2 : Patch A.

• Given one value a : A and a patch p : Patch A, we expect to
be able to apply it and maybe get another element of type A,
hence apply p a : Maybe A.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

The Trivial Diff

According to our specification, we can already define a trivial diff:

Patch : Set → Set
Patch A = A × A

diff : {A : Set } → A → A → Patch A
diff x y = (x , y)

apply : {A : Set } {| x : Eq A |}
→ Patch A → A → Maybe A

apply {| cmp |} p x
= if cmp (fst p) x

then just (snd p)
else nothing

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Diffing
A Better Specification

We need a better specification!

• A Patch A should describe the minimal transformation
between two elements of type A.

• We must have efficient algorithms for creating and applying
patches.

The previous trivial implementation keeps too much information.

We will use A’s structure to avoid storing duplicate information.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Diffing Lists

Assuming we have a Patch, diff and apply for type A; Take:

data List (A : Set) : Set where
[] : List A

:: : A → List A → List A

Diffing lists has been well studied. It is exactly the Longest

Common Subsequence (LCS) problem [3].

The edit operations we can make in a list are:

data PatchList (A : Set) : Set where
Nil : PatchList A
Ins : A → PatchList A → PatchList A
Del : A → PatchList A → PatchList A
Mod : Patch A → PatchList A → PatchList A

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Diffing Lists

Assuming we have a Patch, diff and apply for type A; Take:

data List (A : Set) : Set where
[] : List A

:: : A → List A → List A

Diffing lists has been well studied. It is exactly the Longest

Common Subsequence (LCS) problem [3].

The edit operations we can make in a list are:

data PatchList (A : Set) : Set where
Nil : PatchList A
Ins : A → PatchList A → PatchList A
Del : A → PatchList A → PatchList A
Mod : Patch A → PatchList A → PatchList A

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

The algorithm

Computing an element of PatchList A given two List A is not
difficult:

diff : List A → List A → PatchList A
diff [] [] = Nil
diff (x :: xs) [] = Del x (diff xs [])
diff [] (y :: ys) = Ins y (diff [] ys)

diff (x :: xs) (y :: ys)
= let d1 = Del x (diff xs (y :: ys))

d2 = Ins y (diff (x :: xs) ys)
d3 = Mod (diff x y) (diff xs ys)

in choose (d1 :: d2 :: d3 :: [])

Selecting a patch in the non-trivial case is not so straight forward.
This notion will be clarified later, with a better example.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

The algorithm

Computing an element of PatchList A given two List A is not
difficult:

diff : List A → List A → PatchList A
diff [] [] = Nil
diff (x :: xs) [] = Del x (diff xs [])
diff [] (y :: ys) = Ins y (diff [] ys)

diff (x :: xs) (y :: ys)
= let d1 = Del x (diff xs (y :: ys))

d2 = Ins y (diff (x :: xs) ys)
d3 = Mod (diff x y) (diff xs ys)

in choose (d1 :: d2 :: d3 :: [])

Selecting a patch in the non-trivial case is not so straight forward.
This notion will be clarified later, with a better example.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

The algorithm

Computing an element of PatchList A given two List A is not
difficult:

diff : List A → List A → PatchList A
diff [] [] = Nil
diff (x :: xs) [] = Del x (diff xs [])
diff [] (y :: ys) = Ins y (diff [] ys)

diff (x :: xs) (y :: ys)
= let d1 = Del x (diff xs (y :: ys))

d2 = Ins y (diff (x :: xs) ys)
d3 = Mod (diff x y) (diff xs ys)

in choose (d1 :: d2 :: d3 :: [])

Selecting a patch in the non-trivial case is not so straight forward.
This notion will be clarified later, with a better example.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Let’s run it!
Let’s expand the call tree for diff [tt , ff] [ff , ff]

diff [] [ff , ff]

diff [ff] [ff , ff]

Del 22

Mod //
Ins

,,

diff [] [ff]

diff [ff] [ff]

diff [] [ff]

diff [tt , ff] [ff , ff]

Del

88

Mod //

Ins

&&

diff [ff] [ff]

Del 22

Mod //
Ins

,,

diff [] []

diff [ff] []

diff [ff] [ff]

diff [tt , ff] [ff]

Del 22

Mod //
Ins

,,

diff [ff] []

diff [tt,ff] []

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Diffing Binary Trees

Assuming we have a Patch, diff and apply for type Maybe A, let
us now look at how one would define diffing for binary trees of A’s.

data Tree (A : Set) where
Leaf : Tree A
Node : A → Tree A → Tree A → Tree A

Well, although slightly more complicated than Lists, Trees are also
the least-fixpoint of a functor!

TreeF : Set → Set → Set
TreeF A X = Maybe (A × (X × X))

Fix : (Set → Set) → Set
Fix F = F (Fix F)

Tree A ≈ Fix (TreeF A)

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Diffing Binary Trees

Assuming we have a Patch, diff and apply for type Maybe A, let
us now look at how one would define diffing for binary trees of A’s.

data Tree (A : Set) where
Leaf : Tree A
Node : A → Tree A → Tree A → Tree A

Well, although slightly more complicated than Lists, Trees are also
the least-fixpoint of a functor!

TreeF : Set → Set → Set
TreeF A X = Maybe (A × (X × X))

Fix : (Set → Set) → Set
Fix F = F (Fix F)

Tree A ≈ Fix (TreeF A)

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Binary Trees as (least) Fixpoints

The important detail here is that Tree A is, in fact, the least
fixpoint of TreeF A X !

It is not hard to see that TreeF A 1 ≈ Maybe A, we call this the
head of the tree. Hence, we can always represent a Tree A by
List (TreeF A 1) ≈ List (Maybe A).

hd : Tree A → Maybe A
hd Leaf = nothing
hd (Node x) = just x

ch : Tree a → List (Tree a)
ch Leaf = []
ch (Node l r) = l :: (r :: [])

serialize :: Tree A → List (Maybe A)
serialize x = hd x :: concat (map serialize (ch x))

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Binary Trees as (least) Fixpoints

The important detail here is that Tree A is, in fact, the least
fixpoint of TreeF A X !

It is not hard to see that TreeF A 1 ≈ Maybe A, we call this the
head of the tree. Hence, we can always represent a Tree A by
List (TreeF A 1) ≈ List (Maybe A).

hd : Tree A → Maybe A
hd Leaf = nothing
hd (Node x) = just x

ch : Tree a → List (Tree a)
ch Leaf = []
ch (Node l r) = l :: (r :: [])

serialize :: Tree A → List (Maybe A)
serialize x = hd x :: concat (map serialize (ch x))

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Diffing Serialized Trees

Now, the question becomes: which transformations a list (of heads
of a fixpoint) can undergo?

Well, we can just borrow the definition for diff of Lists, following
the lines of Lempsink’s [1] work.

data PatchTree (A : Set) : Set where
Nil : PatchTree A
Ins : Maybe A → PatchTree A → PatchTree A
Del : Maybe A → PatchTree A → PatchTree A
Mod : Patch (Maybe A)

→ PatchTree A → PatchTree A

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Diffing Serialized Trees

Now, the question becomes: which transformations a list (of heads
of a fixpoint) can undergo?

Well, we can just borrow the definition for diff of Lists, following
the lines of Lempsink’s [1] work.

data PatchTree (A : Set) : Set where
Nil : PatchTree A
Ins : Maybe A → PatchTree A → PatchTree A
Del : Maybe A → PatchTree A → PatchTree A
Mod : Patch (Maybe A)

→ PatchTree A → PatchTree A

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Diffing Binary Trees

Since ch produces a list of trees, a small adaptation to the previous
algorithm is needed:

diff : List (Tree A) → List (Tree a) → PatchTree A
diff [] [] = Nil
diff (x :: xs) [] = Del (hd x) (diff (ch x ++ xs) [])
diff [] (y :: ys) = Ins (hd y) (diff [] (ch y ++ ys))

diff (x :: xs) (y :: ys)
= let d1 = Del (hd x) (diff (ch x ++ xs) (y :: ys))

d2 = Ins (hd y) (diff (x :: xs) (ch y ++ ys))
d3 = Mod (diff (hd x) (hd y))

(diff (ch x ++ xs) (ch y ++ ys))
in choose (d1 :: d2 :: d3 :: [])

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Diffing Binary Trees

Since ch produces a list of trees, a small adaptation to the previous
algorithm is needed:

diff : List (Tree A) → List (Tree a) → PatchTree A
diff [] [] = Nil
diff (x :: xs) [] = Del (hd x) (diff (ch x ++ xs) [])
diff [] (y :: ys) = Ins (hd y) (diff [] (ch y ++ ys))

diff (x :: xs) (y :: ys)
= let d1 = Del (hd x) (diff (ch x ++ xs) (y :: ys))

d2 = Ins (hd y) (diff (x :: xs) (ch y ++ ys))
d3 = Mod (diff (hd x) (hd y))

(diff (ch x ++ xs) (ch y ++ ys))
in choose (d1 :: d2 :: d3 :: [])

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

The notion of Cost

Focusing on the last case of the diff function, we find we have to
choose between three patches: choose (d1 :: d2 :: d3 :: []).

Our specification mentions we want our patches to be minimal.

Our notion of minimality is expressed by the means of a cost
function,

cost : Patch A → N

Whereas cost p < cost q iff p expresses the actual changes more
precisely than q.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Example

Let p be a patch, imagine we want to transform a Leaf into a
Node x , for some x . There are two patches that could do it:

i) Del (hd Leaf) (Ins (hd (Node x)) p)

ii) Mod (diff (hd Leaf) (hd (Node x))) p

We want patch (i) to have lower cost than (ii), as it clearly
expresses that the structure of the tree changed! Whereas patch
(ii) gives the impression that the contents of a Node changed.

We can calculate a cost function that will select patch (i) instead
of patch (ii) and, moreover, makes dist x y = cost (diff x y) into
a metric.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Example

Let p be a patch, imagine we want to transform a Leaf into a
Node x , for some x . There are two patches that could do it:

i) Del (hd Leaf) (Ins (hd (Node x)) p)

ii) Mod (diff (hd Leaf) (hd (Node x))) p

We want patch (i) to have lower cost than (ii), as it clearly
expresses that the structure of the tree changed! Whereas patch
(ii) gives the impression that the contents of a Node changed.

We can calculate a cost function that will select patch (i) instead
of patch (ii) and, moreover, makes dist x y = cost (diff x y) into
a metric.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

The Generic Diff

Universe of Regular Tree Types:

T ,U ::= >
| ⊥
| T + U

| T × U

| N
| (T U)

| µT

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Generic Functions and Patch

The definition of Patch T follows by induction on T . For example,
if T ≡ U + V ,

Patch (U + V) ≈ (U + V)× (U + V)

≈ U2 + 2× U × V + V 2

≈ Patch U + Patch V + U × V + V × U

In order to handle fixpoints generically, we serialize them just like
we did with Trees.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Generic Functions and Patch

The definition of Patch T follows by induction on T . For example,
if T ≡ U + V ,

Patch (U + V) ≈ (U + V)× (U + V)

≈ U2 + 2× U × V + V 2

≈ Patch U + Patch V + U × V + V × U

In order to handle fixpoints generically, we serialize them just like
we did with Trees.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Our Contributions (so far)

A short summary of our contributions:

• A notion (and a indexed-datatype) of Patch for the universe
of RTT.

• Development of a generic diff and apply for the universe of
RTT.

• Definition of a notion of residual, that allows for structural
merging. This is what we are currently working on.

• Correctness proofs of our algorithms.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

The UNIX diff

Looking at the very favorite diffing tool out there, we see that their
approach to patches is drastically different!
The typical output from UNIX diff will contain a list of:

1. A line number,

2. an edit operation,

3. new content that needs to be inserted.

The line number is the crucial part!

Since files can be seen as Lists of Lines, the edit operations are
seen as editing lines and the location is the line number!

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

The UNIX diff

Looking at the very favorite diffing tool out there, we see that their
approach to patches is drastically different!
The typical output from UNIX diff will contain a list of:

1. A line number,

2. an edit operation,

3. new content that needs to be inserted.

The line number is the crucial part!

Since files can be seen as Lists of Lines, the edit operations are
seen as editing lines and the location is the line number!

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Patches as Locations and Changes

We would then expect to be able to write our patches in a similar
fashion to the UNIX diff:

Patch T ≈ List (∃ty . ty 6 T × Change ty)

For some suitable sub-type predicate 6 . Where a proof
p : ty 6 T would specify a location of ty inside type T .

We are left to specify what Change should be!

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Patches as Locations and Changes

We would then expect to be able to write our patches in a similar
fashion to the UNIX diff:

Patch T ≈ List (∃ty . ty 6 T × Change ty)

For some suitable sub-type predicate 6 . Where a proof
p : ty 6 T would specify a location of ty inside type T .

We are left to specify what Change should be!

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Patches as Locations and Changes

We would then expect to be able to write our patches in a similar
fashion to the UNIX diff:

Patch T ≈ List (∃ty . ty 6 T × Change ty)

For some suitable sub-type predicate 6 . Where a proof
p : ty 6 T would specify a location of ty inside type T .

We are left to specify what Change should be!

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Changes inside a Tree

First we fix a t : Tree A and study which transformations it can
undergo.

i) We can always add or remove subtrees from t.

ii) If t is a Node with a value x : A inside, we can modify x and
recursively diff the two subtrees of t.

Now it is a matter of writing a type Change (Tree A) and
algorithms that detect and apply these transformations!

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Changes inside a Tree

First we fix a t : Tree A and study which transformations it can
undergo.

i) We can always add or remove subtrees from t.

ii) If t is a Node with a value x : A inside, we can modify x and
recursively diff the two subtrees of t.

Now it is a matter of writing a type Change (Tree A) and
algorithms that detect and apply these transformations!

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Changes inside a Tree

First we fix a t : Tree A and study which transformations it can
undergo.

i) We can always add or remove subtrees from t.

ii) If t is a Node with a value x : A inside, we can modify x and
recursively diff the two subtrees of t.

Now it is a matter of writing a type Change (Tree A) and
algorithms that detect and apply these transformations!

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Changes inside a Tree

Going back to our Tree type, a suitable definition of Change could
be:

data Change : Set → Set where
Atom : A → A → Change A
Ins : Ctx (Tree A) → Change (Tree A)
Del : Ctx (Tree A) → Change (Tree A)

Here Ctx stands for one-hole contexts,

Insertions and deletions represent the structural modifications over
our Tree and Atomic changes are those that change an A inside
the tree.

Locations in a tree are trivial: one can go left or right into a
subtree or stay here and take the contents of a Node.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Changes inside a Tree

Going back to our Tree type, a suitable definition of Change could
be:

data Change : Set → Set where
Atom : A → A → Change A
Ins : Ctx (Tree A) → Change (Tree A)
Del : Ctx (Tree A) → Change (Tree A)

Here Ctx stands for one-hole contexts,

Insertions and deletions represent the structural modifications over
our Tree and Atomic changes are those that change an A inside
the tree.

Locations in a tree are trivial: one can go left or right into a
subtree or stay here and take the contents of a Node.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Problem!

If we try to translate a PatchTree to this location-based view we
get a problem: it is very hard to extract the contexts of insertions
and deletions.

a

◦ ◦
⇒

a

b ◦

◦ ◦

Three patches can work here:

• Cpy a (Ins b (Ins ◦ (Cpy ◦ (Cpy ◦ Nil))))

• Cpy a (Ins b (Cpy ◦ (Ins ◦ (Cpy ◦ Nil))))

• Cpy a (Ins b (Cpy ◦ (Cpy ◦ (Ins ◦ Nil))))

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Problem!

If we try to translate a PatchTree to this location-based view we
get a problem: it is very hard to extract the contexts of insertions
and deletions.

a

◦ ◦
⇒

a

b ◦

◦ ◦

Three patches can work here:

• Cpy a (Ins b (Ins ◦ (Cpy ◦ (Cpy ◦ Nil))))

• Cpy a (Ins b (Cpy ◦ (Ins ◦ (Cpy ◦ Nil))))

• Cpy a (Ins b (Cpy ◦ (Cpy ◦ (Ins ◦ Nil))))

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Problem!

If we try to translate a PatchTree to this location-based view we
get a problem: it is very hard to extract the contexts of insertions
and deletions.

a

◦ ◦
⇒

a

b ◦

◦ ◦

Three patches can work here:

• Cpy a (Ins b (Ins ◦ (Cpy ◦ (Cpy ◦ Nil))))

• Cpy a (Ins b (Cpy ◦ (Ins ◦ (Cpy ◦ Nil))))

• Cpy a (Ins b (Cpy ◦ (Cpy ◦ (Ins ◦ Nil))))

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

A Possible Solution

Modify the patch type:

data PatchTree (A : Set) : Set where
Mod : (x y : (TreeF A 1)) (hip : arity x ≡ arity y)

→ Vec (PatchTree A) (arity x)
→ PatchTree A

Ins : Ctx (Tree A) → PatchTree A → PatchTree A
Del : Ctx (Tree A) → PatchTree A → PatchTree A

Define diff over a single Tree A and use an oracle to align one
Tree A against a list of Tree A.

diff : Tree A → Tree A → PatchTree A
O : Tree A → List (Tree A) → Ctx (Tree A)

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

A Possible Solution

Modify the patch type:

data PatchTree (A : Set) : Set where
Mod : (x y : (TreeF A 1)) (hip : arity x ≡ arity y)

→ Vec (PatchTree A) (arity x)
→ PatchTree A

Ins : Ctx (Tree A) → PatchTree A → PatchTree A
Del : Ctx (Tree A) → PatchTree A → PatchTree A

Define diff over a single Tree A and use an oracle to align one
Tree A against a list of Tree A.

diff : Tree A → Tree A → PatchTree A
O : Tree A → List (Tree A) → Ctx (Tree A)

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

The new algorithm

The adapted algorithm follows in pseudo-code:

diff x y
= choose ({Ins (O x (ch y)) (diff x (O x (ch y)B y))

| if arity y > 0}
∪ {Del (O y (ch x)) (diff (O y (ch x)B x) y)

| if arity x > 0}
∪ {Mod (hd x) (hd y) (zipWith diff (ch x) (ch y)

| if arity x ≡ arity y)}

We denote by ctx B y the operation of matching the ctx with y
and extracting what is in the hole.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Which Algorithm, then?

It is fairly easy to frame this new algorithm in a generic fashion;
The functions that manipulate patches become much more
complicated, though.

Having an isomorphism between Patches and a list of locations
with changes would be great, nevertheless!

Not only type-theory tells us it’s all about the structure (which we
lose when we serialize the fixpoint in the first approach), but we
can borrow many concepts from Separation Logic to reason about
Patches.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

A Taste of Separation Logic

In the work of Swierstra and Loh [2], we can see how the concept
of a separating conjunction is very useful in the context of version
control.

Abstractly, given a model M we say

M � P ∗ Q iff ∃M0,M1. M = M0 ∪̇ M1

∧ M0 � P ∧M1 � Q

Reading it out: A model M satisfies the separating conjunction of
P and Q iff it can be written as the disjoint union of two models
which satisfy the respective predicates.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

A Taste of Separation Logic

If we take the model to be (a suitable representation of) the object
under version control and look at the frame rule:

{P} c {Q}
{P ∗ R} c {Q ∗ R} mod(c) ∩ addr(R) = ∅

where

• mod(c) is the set of locations modified by a patch c

• addr(R) is the set of locations referenced by a formula
(depends on the underlying logic).

We see we can only borrow from Separation Logic if we have a way
of looking at patches as localized changes.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

A Taste of Separation Logic

If we take the model to be (a suitable representation of) the object
under version control and look at the frame rule:

{P} c {Q}
{P ∗ R} c {Q ∗ R} mod(c) ∩ addr(R) = ∅

where

• mod(c) is the set of locations modified by a patch c

• addr(R) is the set of locations referenced by a formula
(depends on the underlying logic).

We see we can only borrow from Separation Logic if we have a way
of looking at patches as localized changes.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Closing Remarks

• We want to have a notion of location present.

• Speaking about conflicts becomes much simpler!

• Computing a diff becomes more expensive, however (we have
less opportunity to memoize calls).

• The problem lies in defining a Patch for type application, and,
in particular, to least-fixpoints... Regular types are a cake!

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Back to CSV files

We began with the following situation:

Name , Surname , Number , Grade
Alice , Lane , 440 , 7.5
Bob , Wright , 593 , 6.5

Carroll , Clark , 168 , 8.5

With CSV files encoded as type:

CSV A = List (List A)

Prof. Green patch alters the structure: it inserts one element on
every inner list;

Prof. Pink edit changes the contents of type a inside the
inner-most list.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Back to CSV files

We began with the following situation:

Name , Surname , Number , Grade
Alice , Lane , 440 , 7.5
Bob , Wright , 593 , 6.5

Carroll , Clark , 168 , 8.5

With CSV files encoded as type:

CSV A = List (List A)

Prof. Green patch alters the structure: it inserts one element on
every inner list;

Prof. Pink edit changes the contents of type a inside the
inner-most list.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

E. Lempsink, S. Leather, and A. Löh.
Type-safe diff for families of datatypes.
In Proceedings of the 2009 ACM SIGPLAN Workshop on
Generic Programming, WGP ’09, pages 61–72, New York, NY,
USA, 2009. ACM.

W. Swierstra and A. Löh.
The semantics of version control.
In Proceedings of the 2014 ACM International Symposium on
New Ideas, New Paradigms, and Reflections on Programming
and Software, Onward! ’14, pages 43–54, 2014.

L. Bergroth, H. Hakonen, and T. Raita.
A survey of longest common subsequence algorithms.
In String Processing and Information Retrieval, 2000. SPIRE
2000. Proceedings. Seventh International Symposium on,
pages 39–48, 2000.

Introduction Diffing Lists Binary Trees Cost Going General Patches as Locations Separation Logic Conclusion

Structure Aware Version Control

Victor C. Miraldo and Wouter Swierstra

University of Utrecht

13th of October, 2016

	Introduction
	Diffing
	Lists
	Binary Trees
	Cost
	Going General
	Patches as Locations
	Separation Logic
	Conclusion

