
Strong Normalisation
in λ-calculi with References

Romain Demangeon1, Daniel Hirschkoff1, and Davide Sangiorgi2

1 ENS Lyon, Université de Lyon, CNRS, INRIA, France
2 INRIA/Università di Bologna, Italy

Abstract. We present a method for ensuring termination of lambda-
calculi with references. This method makes it possible to combine measure-
based techniques for termination of imperative languages with traditional
approaches to termination in purely functional languages, such as logical
relations. More precisely, the method lifts any termination proof for the
purely functional simply-typed lambda-calculus to a termination proof
for the lambda-calculus with references. The method can be made para-
metric on the termination technique employed for the functional core.

1 Motivations

This paper studies strong normalisation in λref, a call-by-value λ-calculus with
(higher-order) references. It is well-known that, even in the simply-typed calcu-
lus, the problem is difficult, because references allow one to program loops “via
the memory”. We refer to Boudol’s [3] for a discussion on existing works on this
question.

Boudol [3] has proposed a type and effect system for a calculus whose core is
very similar to λref; the system guarantees termination by means of the realis-
ability technique. That work is revisited and generalised in [1], where the closely
related technique of reducibility candidates is exploited to establish soundness
of the type and effect system. In both these works, the type and effect system
relies on a stratification of memory into regions; the stratification is used to
control interactions between the functional and the imperative constructs, in
order to prevent “loops via the memory”. The stratification plays also a key
role in the structure of the soundness proof, to support the induction argument.
Boudol’s approach has also been investigated by Tranquilli [9], who proposes an
analysis of the stratification imposed by the type and effect system, by means
of a monadic translation. The target of this translation, in the general case,
is a lambda-calculus with recursive types. Tranquilli however shows that when
applying the translation to well-typed source terms, one can avoid the use of re-
cursive types. By combining this observation with a simulation result, the author
concludes that well-typed terms terminate.

In this paper, we propose a different proof strategy for strong normalisation
in λref. Our approach is adapted from [7], where we introduced a type system
for termination of mobile processes. The crux in defining types in that work is to

distinguish between functional and imperative channels, and to exploit a stratifi-
cation of imperative channel names. Soundness of the type system is established
by defining a projection of an impure calculus, that is, a calculus featuring im-
perative and functional features, into a purely functional core calculus (in the
context of the π-calculus, the functional subcalculus is given, intuitively, by the
image of the encoding of the λ-calculus in the π-calculus). The proof then relies
on termination of the functional core, which is treated like a “black box” in the
proof: since our projection function preserves divergences, and the target calcu-
lus is terminating, we can reason by contradiction to show that the source of the
translation only consists of terminating terms.

In the present paper we show that we can transport the strategy from [7]
onto λref. In contrast with π-calculus, λref is purely sequential and higher-order
(it involves substitutions of variables with terms); both these features have a
substantial impact on the details of the technique. In this sense, another goal
of the paper is to show that the technique in [7] is not specific to a concurrent
scenario, and can be used on different kinds of impure languages. The “black box”
property for the purely functional subcalculus in [7] remains: the technique for
λref is essentially parametric on the method employed for ensuring termination
of the pure λ-calculus (realisability, reducibility candidates or other methods).
The present paper is devoted to the presentation of our technique in a rather
simple setting, where the core functional language is the simply typed λ-calculus.

With respect to [7], several modifications have to be made in order to handle
λref. Many of them are related to the definition of the projection function, which
in the present work maps λ-terms with references to purely functional terms. In
the π-calculus the projection acts on prefixed terms, simply by replacing some of
them with the inactive process 0; this crucially relies on the operators of parallel
composition and 0 of the process calculus. In the λ-calculus the situation is more
intricate. Consider for instance a λref term of the form T = (λz. ?) (ref M),
where ? is the unique element of type 1 (the unit type), and ref M denotes the
allocation of a reference holding the value of M (the – slightly more involved –
syntax and operational semantics of λref will be introduced formally below). The
idea is to project T into some purely functional term T ′, in such a way that: (i) if
T is typable in our type and effect system, then T ′ is typable according to simple
types; (ii) the projection function is defined compositionally on the structure of
terms, and preserves divergences. In a call-by-value strategy, if the evaluation
of M terminates, the evaluation of T yields ?. In order to preserve divergences,
because of a potential divergence in M , we cannot define T ′ by simply erasing

the subterm ref M . Instead, we set T ′
def
= (λx1.λx2. x1) ? M ′, where M ′ is

the purely functional term obtained by applying recursively the projection to
M . This way, T ′ diverges if M ′ does so, and eventually returns ?, in case M ′

converges. This shows how the projection acts at an operational level. In the
proof, we also take care of condition (i) above, by defining the translation both
on terms and on types, in such a way as to preserve typability.

Building on the projection function, we derive soundness of the type and
effect system by contradiction: suppose a well-typed λref term T diverges, then

its projection T ′ is diverging too, which contradicts the fact that T ′ belongs to
a terminating calculus. Termination of T ′ is obtained by an external argument,
namely the strong normalisation proof for the functional subcalculus (here, the
simply typed call by value λ-calculus).

Other technical differences with respect to the technique in the setting of the
π-calculus [7] are discussed later in the paper.

Comparison with [3, 1, 9]. As we hinted above, the question we address in this
paper has been studied in a very similar setting in other works. In contrast with
the works by Boudol and Amadio, where soundness of the type system is obtained
by a ‘semantic’ approach (be it realisability or reducibility candidates), which is
applied to the whole (impure) calculus, we somehow factor out the imperative
part of the calculus, which allows us to lift a termination proof of λST to a
termination proof of λref.

Tranquilli [9] proceeds similarly, in two steps: a translation into a purely func-
tional calculus, followed by a termination argument about the latter. However,
technically, our approach and his differ considerably, in particular because we
project into a subcalculus, using a translation function which seems unrelated
to Tranquilli’s.

Outline. We introduce λref and its type and effect system in Section 2. Section 3
is devoted to the soundness proof, where we present in particular the projection
function on λref. In Section 4, we discuss how the proof can be extended to
calculi richer than simple types.

2 λref: a λ-calculus with References

2.1 Syntax and semantics for λref

We now define the calculi we manipulate in this work. The standard, simply-
typed, λ-calculus with the constant ? and the base type 1 is called λST in the
following. The reduction relation in λST is full β-reduction, and is denoted using
_.

λref is a call-by-value λ-calculus extended with imperative operations (read,
write and update) acting on a store (sometimes called a memory in the fol-
lowing). The store is stratified into regions, which are referred to using natural
numbers, i.e., we suppose that the store is divided into a finite number of re-
gions, and that there exists an enumeration of these regions. Constructs of the
language involving imperative operations are annotated by a region — thus, by
a natural number. For instance, derefn(M) is the operator that reads the value
stored at the address which is returned by the evaluation of M ; n denotes the
fact that this address belongs to the region n of the memory.

To define terms of λref, we rely on a set of addresses, which are distinct
from the variables used in the syntax of the standard λ-calculus. Addresses are
written u(n,T): they are explicitly associated both to a region n and to a type T
(types are described below). These annotations are not mandatory in order to

M ::= (M M)
∣∣ x ∣∣ λx.M ∣∣ ?∣∣ refn M ∣∣ derefn(M)

∣∣ M:=nM
∣∣ u(n,T)

T ::= 1

∣∣ T refn
∣∣ T →n T

V ::= λx.M
∣∣ x ∣∣ u(n,T)

∣∣ ?
R ::= (λx.M) V∣∣ derefn(u(n,T))

∣∣ refn V ∣∣ u(n,T):=nV

E ::= []
∣∣ V E

∣∣ E M∣∣ derefn(E)
∣∣ refn E

∣∣ E:=nM ∣∣ V :=nE

Fig. 1. Syntax for terms, types, values, redexes and evaluation contexts

obtain the results we state in this paper, but they improve the readability of our
proofs. Note in passing that values of different types can be stored in the same
region. We suppose that there exists an infinite number of addresses for a given
pair consisting of a type and a region.

Stores, ranged over using δ, are formally defined as partial mappings from ad-
dresses to values. The (finite) support of δ is written supp(δ), ∅ is the empty store
(supp(∅) = ∅), and δ〈u(n,T) V 〉 denotes the store δ′ defined by δ′(u(n,T)) = V
and δ′(v) = δ(v) for every v ∈ supp(δ) such that v 6= u(n,T).

Figure 1 presents the grammar definitions for (respectively) terms, types,
values, redexes and evaluation contexts.

The standard λ-calculus syntax is extended with the unit value (?), addresses
and three imperative operators. refn M stands for the creation of a new cell
in the store, at region n, and containing the result of the evaluation of M ;
derefn(M) yields the value that is stored at the address given by the evaluation
of M (in region n); finally, M:=nN updates the value stored at the address given
by the evaluation of M with the value of N .

Types extend the simple types of λST with unit (1) and a reference type:
T refn is the type of an address in region n containing values of type T . To
record the latent effect of a function, arrow types are annotated with regions:
intuitively, T1 →n T2 is the type of a function taking arguments of type T1,
returning a term of type T2, and such that evaluation of the body accesses
regions in the memory lower than the region n.

Stratification. We impose a well-formedness condition on types that reflects the
stratification of the store: a term acting at region n cannot be stored in a region
smaller than n + 1. For this, we define reg(T), an integer describing the set of
regions associated to a type T , by:

reg(1) = 0 reg(T refn) = max(n, reg(T))

reg(T1 →n T2) = max(n, reg(T2))

Definition 1 (Well-formed types) A type T is well-formed if for all its sub-
types of the form T ′ refn, we have reg(T ′) < n.

In the following, we shall implicitly assume that all types we manipulate are well-
formed. Well-formedness of types is the condition that ensures the termination
of the imperative part of a term. This in particular ensures that each time we
reduce a redex derefn(u(n,T)), the obtained value does not create new operations
acting at region n.

Comparison with [3]. The type system we present in the next section is actually
very close to the one given in [3], which in turn is close to the one of [1].

In our presentation, regions, defined in [3] as abstract parts of the store, are
denoted by natural numbers. The two presentations are equivalent. In [3], when
the stratification condition (which is inductively defined on sets of regions) is
met, a partial order between regions can be extracted, and thus integers can
be assigned to regions so that each typable term can be given a well-formed
type using our definitions. Conversely, from a set of regions indexed by natural
numbers we can derive easily a set of corresponding abstract regions satisfying
the stratification condition.

Another difference between the two settings is that our well-formedness con-
dition for types is actually looser than the one found in [3], allowing us to type-
check more terms. Indeed, in Definition 1, in the case of an arrow type, we do
not impose the well-formedness condition in the type of the argument, making
terms like (λx.(deref2(x) u(3,1))) (ref2 λy.?) acceptable in our setting, while
they are not in [3]. In this example, x has type 1 ref3 →0

1 (detailed typing
rules can be found in the following section), which gives type (1 ref3 →0

1) ref2
for ref2 λy.?. Note that this example is phrased using natural numbers for re-
gions: it is not difficult to translate it into Boudol’s framework, and insert the
term in an appropriate context in order to enforce that the (abstract) region
corresponding to 3 dominates the region corresponding to 2.

We think that the works [3] and [1] can easily be adapted with this small
refinement in our definition of well-formedness in order to obtain the same ex-
pressiveness as our system.

2.2 Types and Reduction

Typing. Figure 2 defines two typing judgements, of the form Γ `M : (T, n) for
terms and Γ ` δ for stores. Our type system is presented à la Church, and we
write Γ (x) = T when variable x has type T according to type environment Γ .

In a typing judgement Γ `M : (T, n), n defines a bound on the effect of the
evaluation of M , which intuitively corresponds to the highest region accessed
when evaluating M . Effects can be thought of as sets of regions (the part of
the store manipulated by the evaluation of a term), and are denoted by a single
natural number, which stands for the maximum region in the effect.

As explained above, in type T1 →n T2, n refers to the effect of the body
of the function. As a consequence, in rule (App), the effect of the application

Typing rules for terms

(App)
Γ `M : (T1 →n T2,m) Γ ` N : (T1, k)

Γ `M N : (T2,max(m,n, k))

(Abs)
Γ `M : (T2, n) Γ (x) = T1

Γ ` λx.M : (T1 →n T2, 0)

(Ref)
Γ `M : (T1,m)

Γ ` refn M : (T1 refn,max(n,m))
(Var)

Γ (x) = T1

Γ ` x : (T1, 0)

(Uni)
Γ ` ? : (1, 0)

(Add)
Γ ` u(n,T1) : (T1 refn, 0)

(Asg)
Γ `M : (T1 refn,m) Γ ` N : (T1, k)

Γ `M:=nN : (1,max(m,n, k))

(Drf)
Γ `M : (T refn,m)

Γ ` derefn(M) : (T,max(m,n))

Typing rules for stores

(Emp)
Γ ` ∅

(Sto)
Γ ` δ Γ ` V : (T, 0)

Γ ` δ〈u(n,T) V 〉

Fig. 2. λref: Type and Effect System

M N where M has type T1 →n T2 is the maximum between the effect of M , the
effect of N , and n. Indeed the maximum region accessed during the evaluation
of M N is accessed during either the evaluation of M to some function λx.M2,
or the evaluation of N to some value V1, or during the evaluation of M2{V1/x},
whose effect is n.

We notice that values have an effect 0: values cannot reduce and, as explained
above, the effect of a term stands for the maximum region accessed during its
evaluation.

We extend typing to evaluation contexts by treating the hole as a term vari-
able which can be given any type and has effect 0.

Reduction. The execution of programs is given by a reduction relation, written
7→, relating states (a state is given by a pair consisting of a term and a store), and
which is defined on Figure 3. We write 7→n

F for a functional reduction, obtained
using rule (β); n refers to the effect of the β-redex, that is, in this call-by-value
setting, the region that decorates the type of the function being triggered. In
other words, we suppose in rule (β) that Γ ` λx.M : (TV →n T,m) holds for
some TV , T , m. We introduce similarly imperative reductions, noted 7→n

I , for
reductions obtained using rules (ref), (deref) or (store) (in these cases, the

(β)
(λx.M V, δ) 7→ (M{V/x}, δ)

(ref)
u(n,T) /∈ supp(δ) Γ ` V : (T,)

(refn V, δ) 7→ (u(n,T), δ〈u(n,T) V 〉)

(deref)
δ(u(n,T)) = V

(derefn(u(n,T)), δ) 7→ (V, δ)

(store)
Γ ` V : (T,)

(u(n,T):=nV, (δ)) 7→ (?, δ〈u(n,T) V 〉)

(context)
(M, δ) 7→ (M ′, δ′)

(E[M], δ) 7→ (E[M ′], δ′)

Fig. 3. λref: Reduction Rules

accessed region n appears explicitly in the rules of Figure 3). We will call a
reduction according to 7→n

F (resp. 7→n
I) “a functional reduction on level n” (resp.

“an imperative reduction on level n”).

Definition 2 We define an infinite computation starting from M as an infinite
sequence (Mi, δi)0≤i such that M0 = M , δ0 = ∅ and ∀i, (Mi, δi) 7→ (Mi+1, δi+1).

We say that a term M diverges when there exists an infinite sequence starting
from M and that M terminates when it does not diverge.

The following result will be useful to prove Proposition 5. It says that we can
replace a term inside an evaluation context with a term of the same type but
with a smaller effect, while preserving typability. The effect of the whole term
can decrease (in the case where E = [] for instance).

Lemma 3 If

Γ ` E[M] : (T, n)
Γ `M : (T0,m)
Γ `M ′ : (T0,m

′)
m′ ≤ m

then Γ ` E[M ′] : (T, n′) with n′ ≤ n.

Our type and effect system enjoys the two standard properties of subject
substitution and subject reduction. Notice that in the statement of Lemma 4, the
effect associated toM{V/x} is the same as the one associated toM . This holds as
the term V is a value and thus does not introduce new operations on the memory
which are not handled by the type system. Should we have used a call-by-name
setting, the statement of this proposition would have been: “If Γ ` M : (T, n),
Γ (x) = T ′ and Γ ` N : (T ′,m) then Γ `M{N/x} : (T,max(m,n))”.

Lemma 4 (Subject substitution)
If Γ `M : (T, n), Γ (x) = T ′ and Γ ` V : (T ′,m) then Γ `M{V/x} : (T, n).

We only sketch proofs for some results. The proof for Lemma 4, as well as
detailed proofs for all other results, can be found in [5].

Proposition 5 (Subject reduction)
Γ `M : (T, n), Γ ` δ and (M, δ) 7→ (M ′, δ′) entail that Γ ` δ′ and Γ `M ′ :

(T, n′) for some n′ ≤ n.

Proof (Sketch). The proof is done by induction on the derivation of (M, δ) 7→
(M ′, δ′). If the rule (context) is used, we rely on Lemma 3. If the rule (beta) is
used, we use Lemma 4. Cases (ref) and (store) are easy. Case (deref) is done
using the hypothesis that δ is well-typed.

3 Termination of λref Programs

3.1 Defining a projection from λref to λST

The technique of projection and simulation works as follows. First, we define a
projection function, parametrised upon a region p (we will refer to a “projection
on level p”), which strips a λref term from its imperative constructs (and some
of its functional parts), in order to obtain a λST term.

Then, we prove a simulation result (Lemma 14 below), stating that when
a well-typed state (M, δ) reduces to (M ′, δ′) by a functional reduction on level
p, the projection on level p of M reduces in at least one step to the projection
on level p of M ′; moreover, when (M, δ) reduces to (M ′, δ′) by another type of
reduction then either the projections on level p of M and M ′ are equal, or the
projection of M reduces in at least one step to the projection of M ′. This result
is what makes the projection function divergence preserving, as announced in
Section 1.

With these results at hand, we suppose, toward a contradiction, the existence
of a diverging process M0, and we show the existence of a region p such that an
infinite computation starting from M0 contains an infinite number of functional
reductions on level p. Using the simulation lemma, we obtain by projection a
diverging λST term (as a functional reduction on level p is mapped to at least
one step of reduction), which contradicts strong normalisation of λST.

Before turning to the formal definition of the projection function, let us
explain informally how it acts on derefn(M) — we already gave some ideas
about the projection of refnM in Section 1. Again, the purpose of the projection
is to remove the imperative command. Because we cannot just throw away M
(this would invalidate the simulation lemma), we apply the projection function
recursively to M . Once the projected version of M is executed, we replace the
result with a value of the appropriate type, which we call a generic value.

More precisely, generic values are canonical terms that are used to replace a
given subterm once we know that no divergence can arise due to the evaluation
of the subterm (this would correspond either to a divergence of the subterm, or
to a contribution to a more general divergence). They are defined as follows:

Definition 6 Given a type T without the ref construct, the generic value VT of
type T is defined by: VT refn = V1 = ?, and VT1→nT2

= λx.VT2
(x being of type

T1 in the latter term).

In order to program the evaluation of a projected subterm and its replacement
with a generic value, the definition of projection makes use of the following
(families of) projectors:

Π(1,2) = λx.λy. x Π(1,3) = λx.λy.λz. x .

In the following, we shall use these projectors in a well-typed fashion (that is,
we pick the appropriate instance in the corresponding family).

In order to present the definition of the projection function, we need a last
notion, that conveys the intuition that a given term M can be involved in a
reduction on level p. This can be the case for two reasons. Either M is able to
perform (maybe after some preliminary reduction steps) a reduction on level p,
in which case, by the typing rules, the effect of M is greater than p, or M is a
function that can receive some arguments and eventually perform a reduction on
level p, in which case the type system ensures that its type T satisfies reg(T) ≥ p.

Definition 7 Suppose Γ ` M : (T, n). We say that M is related to p if either
n ≥ p or reg(T) ≥ p. In the former (resp. latter) case, we say that M is related
to p via its effect (resp. via its type).

We extend this notion to evaluation contexts by treating the hole like a term
variable, for a given typing derivation for a context (this is useful in particular
in the statement of Lemma 13).

Notice that a term containing a subterm whose effect is p is not necessarily
related to p: for instance, we can derive Γ ` (λx.?) λy.deref3(u(3,1)) : (1, 0)
for an appropriate Γ , but this term is not related to 3, although we can derive
Γ ′ ` deref3(u(3,1)) : (1, 3) for some Γ ′ — one can easily check that this term
cannot be used to trigger a reduction on level 3.

Definition 8 Given a typable M of type T , we define the projection on level p
of M , written prpΓ (M), as follows:

If M is not related to p:
prpΓ (M) = VT

Otherwise:
prpΓ (M1 M2) = prpΓ (M1) prpΓ (M2)

prpΓ (x) = x
prpΓ (λx.M1) = λx.prpΓ (M1)

prpΓ (refn M1) = (Π(1,2) ? prpΓ (M1))
prpΓ (derefn(M1)) = (Π(1,2) VT prpΓ (M1))
prpΓ (M1:=nM2) = (Π(1,3) ? prpΓ (M1) prpΓ (M2))

prpΓ (u(n,T1)) = ?

We extend this definition to evaluation contexts in the following way: we
always propagate the projection inductively in a context E, without checking if
the context is related to p or not. For instance, prpΓ (E1 M) = prpΓ (E1) prpΓ (M)
even if (E1 M) is not related to p.

The projection function maps λref terms to λST terms, where λST is the
simply typed λ-calculus: this is stated in Lemma 10.

Definition 9 We extend the projection function to act on types as follows:

prpΓ (1) = 1 prpΓ (T refn) = 1 prpΓ (T1 →n T2) = prpΓ (T1)→ prpΓ (T2) .

Observe that for any type T , prpΓ (T) is a simple type, and VT is a simply-
typed λ-term of type prpΓ (T).

Lemma 10 Take p ∈ N, and suppose Γ ` M : (T, n). Then prpΓ (M) belongs to
λST, and has type prpΓ (T).

Proof (Sketch). We reason by induction on the typing judgement in λref. If M is
not related to p, the result follows directly from the remarks above. Otherwise,
we reason by cases on the last rule used to type M and conclude using the
induction hypothesis.

3.2 Simulation Result

In order to reason about the transitions of projected terms, the first step is to
understand how projection interacts with the decomposition of a term into an
evaluation context and a redex.

The lemma below explains how the projection function is propagated within
a term of the form E[M]. There are, intuitively, two possibilities, depending only
on the context and on the level (p) of the projection:

– either E is such that prpΓ (E[M]) = prpΓ (E)[prpΓ (M)] for all M , that is, the
projection is always propagated in the hole to M ,

– or this is not the case and the context is such that, if the effect of M is too
small, the projection inserts a generic value before reaching the hole in E.
In this case prpΓ (E[M]) = prpΓ (E1)[V], where E1 is an ‘initial part’ of E, and
this equality holds independently from M (as long as, like said above, the
effect of M is sufficiently small in some sense).

In the former case, the projection is propagated inductively inside the context
to the hole, no matter the effect of M , whereas in the latter case, if the effect of
M is small enough, the projection does not stop before reaching the hole in E.

Lemma 11 Take p ∈ N, and consider a well-typed context E. We have:

1. Either for all well-typed process M , prpΓ (E[M]) = prpΓ (E)[prpΓ (M)],
2. or there exist E1 and E2 6= [] s.t. E = E1[E2] and, for all M , if k stands for

the effect of M , we are in one of the two following cases:

(a) If k ≥ p, then prpΓ (E[M]) = prpΓ (E)[prpΓ (M)].
(b) If k < p, then prpΓ (E[M]) = prpΓ (E1)[VT ′′] (where T ′′ is the type of E2).

Proof (Sketch). We proceed by structural induction on E and distinguish two
cases:

1. Either the context is not related to p. This means that E1 = [] and E2 = E.
If k < p then the projection of the whole term returns a generic value. If
k ≥ p then we discuss on the structure of E, use the induction hypothesis
and the definition of projection.

2. If the context is related to p we discuss on the structure of the context and
use the induction hypothesis, constructing at each step the outer context
E1. When we reach a context not related to p, we conclude using case 1.

The properties we now establish correspond to the situation, in the previous
lemma, where M is an imperative redex acting on region p. The typing rules of
Figure 2 insure that firing the redex yields a term which is not related to p via
its effect: depending on the kind of imperative operator that is executed, this
term might either be related to p via its type, or not related to p at all.

In the latter case, we are able to show that the projected versions of the
two terms are related by _+ (the transitive closure of reduction in λST), which
allows us to establish a simulation property.

Fact 12 If E2 is not related to p, then:

1. If E2 = (V3 E3) then V3 is not related to p.
2. If E2 = (E3 M3) then E3 is not related to p.

Lemma 13 If Γ ` E2 : (T ′′,m) and E2 is not related to p, then for any
well-typed M,M ′,

1. prpΓ (E2)[(Π(1,2) VT M)] _+ VT ′′ ;
2. prpΓ (E2)[(Π(1,3) VT M M ′)] _+ VT ′′ .

Proof (Sketch). We proceed by structural induction on E2. Fact 12 is necessary:
for instance, if E2 = E3 M3, we have

prpΓ (E2)[(Π(1,2) VT N)] = (prpΓ (E3)[(Π(1,2) VT N)] prpΓ (M3))

with E3 of type T3 → T ′′. Thus, we can use Fact 12 and the induction hypothesis
on E3 to get prpΓ (E3)[(Π(1,2) VT N)] _+ VT3→T ′′ , from which we conclude.

Lemmas 11 and 13 allow us to derive the desired simulation property for
λref, the main point being that a functional reduction on level p is projected
into one reduction in the target calculus (case 4 below).

Lemma 14 (Simulation) Consider p ∈ N, and suppose Γ `M : (T,m).

1. If (M, δ) 7→n
I (M ′, δ′) and n < p, then prpΓ (M) = prpΓ (M ′).

2. If (M, δ) 7→p
I (M ′, δ′), then prpΓ (M) _+ prpΓ (M ′).

3. If (M, δ) 7→n
F (M ′, δ′) and n < p, then prpΓ (M) = prpΓ (M ′).

4. If (M, δ) 7→p
F (M ′, δ′), then prpΓ (M) _ prpΓ (M ′).

Proof (Sketch). The structure of the proof is as follows. For cases 1 and 2, terms
are decomposed in the same way but the arguments invoked are different. In
case 1, we use the definition of projection on terms not related to p to conclude;
in case 2, projection yields an “actual term” (not a generic value) and we use
Lemma 13 to conclude.

In these reasonings, the proofs for rules (ref) and (deref) differ, as in the for-
mer case the more complex term appears before the reduction (we have refn V
which reduces to u(n,T)) whereas in the latter case the more complex term ap-
pears after the reduction (we have derefn(u(n,T)) which reduces to V).

Cases 3 and 4 are treated along the lines of cases 1 and 2, except that
Lemma 13 is not required.

3.3 Deriving soundness

To obtain soundness, we need to show that a diverging term performs an infinite
number of functional reductions on level p, for some p. For this we introduce
a measure that decreases along imperative reductions on level p and does not
increase along reductions on level < p. The measure is given by counting the ac-
tive imperative operators of a term, which are the imperative operators (reference
creations, dereferencings and assignments) that do not occur under a λ.

Definition 15 Take M in λref. The number of active imperative operators on
region p in M , written Aop(M) is defined inductively as follows:

Aop(x) = Aop(λx.M) = Aop(u(n,T)) = 0 Aop(M N) = Aop(M)+Aop(N)

Aop(derefn(M)) = Aop(refn M) = Aop(M) if n 6= p
Aop(derefp(M)) = Aop(refp M) = 1 + Aop(M)

Aop(M:=nN) = Aop(M) + Aop(N) if n 6= p
Aop(M:=pN) = 1 + Aop(M) + Aop(N)

Aop(M) and the effect of M are related as follows:

Lemma 16 If Γ `M : (T,m) and m < p then Aop(M) = 0.

We are finally able to show that Aop(M) yields the measure we need.

Lemma 17 If Γ `M : (T,m) then:

1. if (M, δ) 7→n
F (M ′, δ′) with n < p then Aop(M ′) ≤ Aop(M),

2. if (M, δ) 7→n
I (M ′, δ′) with n < p then Aop(M ′) ≤ Aop(M),

3. and if (M, δ) 7→p
I (M ′, δ′) then Aop(M ′) < Aop(M).

Proof (Sketch). We reason by cases on the reduction rules and use Lemma 16
to show that new imperative operators on region p can only be generated by
functional reductions on level ≥ p or by imperative reductions on level > p, and
that each imperative reduction on level p erases one active imperative operator
on region p.

The following lemma states that there exists a maximum region p on which
an infinite number of reductions takes place. With the previous result, we can
deduce that an infinite number of functional reductions take place on level p.

Lemma 18 Suppose that Γ ` M : (T, l), and that there exists (Mi, δi)i∈N, an
infinite reduction sequence starting from M . Then:

1. For all i, Mi is typable.
2. There exist p and io s.t.

(a) if i > i0 and (Mi, δi) 7→n
I (Mi+1, δi+1) then n ≤ p,

(b) if i > i0 and (Mi, δi) 7→n
F (Mi+1, δi+1) then n ≤ p,

(c) There exists an infinite set of indexes I s.t. for each i ∈ I, either
(Mi, δi) 7→p

F (Mi+1, δi+1) or (Mi, δi) 7→p
I (Mi+1, δi+1).

(d) There are infinitely many i ∈ I s.t. (Mi, δi) 7→p
F (Mi+1, δi+1).

Proof (Sketch).

1. Follows from Proposition 5.
2. The set of different regions is finite, so we easily find a p satisfying 2a, 2b

and 2c. Lemma 17 ensures that 2d holds.

Theorem 19 (Soundness) If Γ `M : (T,m) then M terminates.

Proof. Consider, by absurd, an infinite computation (Mi, δi)i starting from M =
M0 and δ0. By Lemma 18, all the Mi’s are well-typed, and there is a maximal
p s.t. for infinitely many i, (Mi, δi) 7→p

F (Mi+1, δi+1). Furthermore, there exists
i0 such that every reduction on an index greater than i0 is performed on region
n ≤ p. Consider the sequence (prpΓ (Mi))i>i0 . By Lemma 14, we obtain that for
every i > i0, prpΓ (Mi) _∗ prpΓ (Mi+1). Moreover, prpΓ (Mi) _+ prpΓ (Mi+1) for an
infinite number of i. Thus prpΓ (Mi0) is diverging. This contradicts the termination
of λST.

Remark 20 (Raising the effect) The results we present in this paper still
hold if we add the rule:

(Sub)
Γ `M : (T, n) n ≤ n′

Γ `M : (T, n′)

to the type system.
This rule allows us to be more liberal when typing terms, thus obtaining a

greater expressiveness. For instance, it allows one to store at the same address
functions whose bodies do not have the same effect.

Example 21 (Landin’s trick) The standard example of diverging term in λref,
known as Landin’s trick, is given by:

(λf.[(λt.(deref1(f) ?)) (f:=1λz.(deref1(f) z))]) (ref1 λx.x) .

In order to try and type this term, we are bound to manipulate non well-
formed types.

In the call by value setting of λref, a first address u(1,1→11) (we use Re-
mark 20 here, as the identity has no effect) is created when evaluating the argu-
ment (ref1 λx.x); this address instantiates f in the body of the outer function.
Then u(1,1→11) is updated using the function λz.(deref1(f) z), whose type is
1 →1

1, at which point the term enters a loop. It is easy to see that the type of
u(1,1→11) (which is also the type of f) is (1→1

1) ref1 and is not well-formed,
as reg(1→1

1) = 1 6< 1.

On the other hand, consider the following terminating term:

(λf.[(λt.(deref1(f) ?)) (f:=1λz.(Π
(1,2) I (λy.deref1(f) y)) z]) (ref1 λx.x)

where I = λt. t. This term is close to the example given above, except that
λz.(deref1(f) z) is replaced with λz.(Π(1,2) I (λy.deref1(f) y) z. This new
subterm, stored at address f , contains a dereferencing of f . Yet the term termi-
nates because the dereferencing never comes in redex position. Indeed, the term
(λz.(Π(1,2) I (λy.deref1(f) y)) z) reduces to (Π(1,2) I (λy.deref1(f) y)) which,
in turn, reduces in two steps to I.

Here the type system assigns to (Π(1,2) I (λy.deref1(f) y)) the type 1→0
1

and the effect 0. Thus the type of x is 1→0
1 ref1, which is well-formed.

4 Parametricity

As is the case in [7] for the π-calculus, the method we have presented for the λ-
calculus with references is parametric with respect to a terminating purely func-
tional core, and does not examine the corresponding termination proof. Other
core calculi could be considered. Moreover, if the functional calculus corresponds
to a subset of the simply typed terms, then the result holds directly.

We believe that it is possible to extend our work to polymorphic types,
although this extension is not trivial if we consider adding region polymorphism:
for instance, we would have to guarantee that a type like (∀A.A →0 A) refn
cannot have its A component instantiated with a type containing a region strictly
greater than n.

Another idea is to apply this termination technique to a language containing
both references and a recursion operator on integers. By restricting the use of
the latter (in order not to create loops based on recursion), we think that one
could be able to enrich the system we have presented.

By taking as functional core a λ-calculus with complexity bounds (such as, for
instance, [2]), we believe that one can use our technique in order to lift complexity
bounds for impure languages. The main idea is to rely on the projection function

to provide bounds on the number of reductions a terminating typed term can
make.

Note, to conclude, that references can be encoded in a standard way in the
π-calculus (as well as the call-by-value λ-calculus). One could then wonder if the
method presented in [7] can recognise as terminating the subset of π-processes
corresponding to encodings of λref terms. The question is challenging, as weight-
based methods for termination in π [8] cannot be used to prove termination of
the encoding of λST [6, 4].

Acknowledgements. Support from the french ANR projects “CHoCo”, “AEO-
LUS” and “Complice” (ANR-08-BLANC-0211-01), and by the European Project
“HATS” (contract number 231620) is acknowledged.

References

1. R. M. Amadio. On Stratified Regions. In Proc. of APLAS, volume 5904 of LNCS,
pages 210–225. Springer, 2009.

2. R. M. Amadio, P. Baillot, and A. Madet. An affine-intuitionistic system of types
and effects: confluence and termination. CoRR, abs/1005.0835, 2010.

3. G. Boudol. Fair Cooperative Multithreading. In Proc. of CONCUR, volume 4703
of LNCS, pages 272–286. Springer, 2007.

4. I. Cristescu and D. Hirschkoff. Termination in a π-calculus with Subptying. in
preparation, 2011.

5. R. Demangeon. Termination for Concurrent Systems. PhD thesis, Ecole Normale
Superieure de Lyon, 2010.
Available from http://perso.ens-lyon.fr/romain.demangeon/phd.pdf.

6. R. Demangeon, D. Hirschkoff, and D. Sangiorgi. Mobile Processes and Termination.
In Semantics and Algebraic Specification, volume 5700 of LNCS, pages 250–273.
Springer, 2009.

7. R. Demangeon, D. Hirschkoff, and D. Sangiorgi. Termination in Impure Concurrent
Languages. In Proc. of CONCUR’10, volume 6269 of LNCS, pages 328–342. Springer
Verlag, 2010.

8. Y. Deng and D. Sangiorgi. Ensuring Termination by Typability. Information and
Computation, 204(7):1045–1082, 2006.

9. P. Tranquilli. Translating types and effects with state monads and linear logic.
submitted, 2011.

