
On the complexity of termination inference

for processes

Romain Demangeon1, Daniel Hirschkoff1, Naoki Kobayashi2, and Davide
Sangiorgi3

1 ENS Lyon, France
2 Tohoku University, Japan

3 Università di Bologna, Italy

Abstract. We study type systems for termination in the π-calculus from
the point of view of type inference. We analyse four systems by Deng and
Sangiorgi. We show that inference can be done in polynomial time for two
of these, but that this is not the case for the two most expressive systems.
To remedy this, we study two modifications of these type systems that
allow us to recover a polynomial type inference.

1 Introduction

Termination of concurrent systems is an important property. Even if some con-
current systems, like servers, are designed to offer continuously some interaction,
subsystems are often expected to terminate. Typical examples include guaran-
teeing that interaction with a resource will eventually end (in order to avoid
denial of service situations), insuring that the participants in a transaction will
reach an agreement, or relying on termination to guarantee other properties
(such as, e.g., lock freedom [3, 9]). Such example applications are important for
distributed frameworks exploiting various forms of mobility. Being able to assert
termination for (part of) a system whose topology can change dynamically is
challenging. It can be particularly useful if the method includes some form of
automation.

In this paper, we focus on the π-calculus, a model of mobile computing based
on name passing, and revisit the work by Deng and Sangiorgi [4] from the point
of view of type inference. As we explain below, this can in particular be useful
in relation with the work on TyPiCal reported in [9]. [4] introduces four type
systems for the π-calculus with replicated inputs, which we will call System 1, 2,
3 and 4, in short S1, S2, S3 and S4. Si+1 is strictly more expressive than Si. The
main idea behind these systems is to associate an integer level to each name,
and to enforce that, for each replicated process, the computation that ‘fires’ the
replication has a bigger weight than the computation which is triggered by this
firing step.

In system S1, the point of view is that a term of the form !a(x̃).P is triggered
by offering an output on a. Hence, the weight of P (which is defined as the total

weight of outputs that occur in P without occurring under a replication) has to
be strictly smaller than the weight of the output on a, i.e., the level associated
to a. Weights are compared lexicographically, which entails that several outputs
can occur in P , provided they all happen on names whose level is strictly smaller
than the level associated to a.

We show (Sec. 2) that type inference for S1 can be done in polynomial time
w.r.t. the size of the process being type checked. This entails that S2, a mild
adaptation of S1, enjoys the same property. S2 adds to S1 the possibility to
analyse the values being communicated on channels, when these are first order.
Provided we have a polynomial time procedure to handle constraints about first
order expressions, type inference for S2 is polynomial.

We then move to more expressive type systems from [4]. In system S3, repli-
cated processes are written !κ.P , where κ is a maximal sequence of input prefixes
(i.e., P is not an input process). To typecheck such a process, the weight of out-
puts in P must be smaller than the total weight of κ (weights are computed
as vectors of weights for any level, and vectors are compared lexicographically).
System S4 extends S3 with the possiblity to use a partial order between names
in order to typecheck replications whenever the weight of κ and the weight of
the continuation P are equal. For instance, even if a and b have the same level,
process P0 =!p.a.(p | b) can be typed provided a dominates b in the partial order
(here κ = p.a).

Our first main result is to show that for systems S3 and S4, the type inference
problem is NP complete. Our proof relies on a reduction from 3SAT. More
precisely, we prove that an instance of 3SAT determines a CCS process such
that the existence of a typing derivation for the induced process is equivalent to
the existence of a solution of the original instance of 3SAT.

To remedy the NP-completeness of S3 and S4, we propose two type systems.
In the first type system, called S3’, we renounce the lexicographic ordering on
levels, and simply add the weight (that is, the level) associated to each name to
compute the weights of κ and P . We establish that for this system, type inference
amounts to solve linear programming on rational numbers without constants,
which can be done in polynomial time. We moreover show that system S3’ is
strictly more expressive than S3. This constitutes the second main contribution
of this paper.

The main improvement of system S4 w.r.t. S3 in terms of expressiveness is
the possibility to type replicated processes in which the triggered continuation
has the same weight as the outputs needed to trigger it, such as process P0 above.
In system S4’, we retain the partial order ingredient inherent to S4, and simplify
type checking for replicated inputs. We show soundness of S4’ (every typable
process terminates), and describe a sound and complete inference procedure for
it. We prove that the type inference problem is polynomial for system S4’, and
illustrate the expressiveness of S4’ by revisiting an example from [4] that cannot
be directly typed in that system. The definition and analysis of S4’ is the third
main contribution we present in this paper.

2

Related Work. There are many works on type systems for the π-calculus. In
addition to [4], type systems to ensure termination of π-calculus processes have
been studied in [11, 13]. In these works, the technique of logical relations is used
to isolate a class of terminating processes.

After the seminal work of [6] for Milner’s sorts, several studies of type in-
ference in the π-calculus have been conducted, adressing richer type systems or
variants of the calculus, such as [12, 5, 7]. To our knowledge, type systems for
termination in the π-calculus have not been studied from the perspective of type
inference so far.

Our results are connected with the work on the TyPiCal tool [8], which
implements various type-based analyses of π-calculus processes. Other recent
developments on the question of termination are presented in [9]. The focus is
different: [9] extends the termination type systems to guarantee a stronger prop-
erty called robust termination. Robust termination is then used to insure lock-
freedom (which means that certain communications will eventually succeed).
The present work can be useful for refining the verification proposed in [9].

Another relevant reference is the work on Terminator [1], and its recent ex-
tension to prove thread termination [2]. While the general objectives are similar
to ours, the approaches are technically rather different. [2] deals with a fixed
number of threads (without dynamic thread creation), and proves termination
by detecting some variance of states, while in this paper, we deal with programs
that create threads and channels dynamically.

Paper outline. In Sec. 2, we introduce the π-calculus and recall the type systems
from [4]. Sec. 3 is devoted to the complexity of type inference for these systems.
We present two systems for which type inference is polynomial: S3’ in Sec. 4,
and S4’ in Sec. 5. Final remarks are given in Sec. 6.

2 Processes and Type Systems

We let a, b, c, . . . , p, q, . . . , x, y, z range over an infinite set of names. Processes,
ranged over using P, Q, . . ., are defined by the following syntax:

P ::= 0 | (νc)P | P1|P2 | a(x̃).P | !a(x̃).P | a〈ñ〉.P | P1 + P2 .

The constructs of input, replicated input and restriction are binding; we shall
often use x, y, z, . . . for variables – names bound by input – and c for channels –
names bound by restriction. a is called the subject of the prefixes in the grammar
above. We shall sometimes extend the calculus with first-order values (integers,
booleans, . . .). This kind of extension is standard (the reader can refer e.g.
to [4]), and we shall use it implicitly when necessary. We let os(P) stand for
the multiset of subjects of outputs that occur in P and do not occur under a
replication. Similarly, rs(P) stands for the multiset of names that are restricted
in P and such that the restriction does not occur under a replication.

The standard operational semantics of the calculus is omitted. The reduction
relation is written P −→ P ′.

3

Type systems. We recall here briefly the definitions of systems S1 to S4. We
refer to [4] for detailed explanations and motivating examples accompanying the
definitions. To remain close to [4], we give a presentation of the type systems à
la Church: each name has a given type a priori, and hence we could also omit
mentioning the typing context (ranged over using Γ) in the typing rules. [9]
proposes a version à la Curry of these type systems. We keep typing contexts
in typing rules in order to ease reading. All systems assign levels to names: a
typing hypothesis has the form a : #kT̃ , to specify that name a transmits tuples
of type T̃ , and that the level of a is k, which we write lvl(a) = k (k is a natural
number).

System S1. Below are the typing rules for S1. With respect to simple types,
the differences worth mentioning are that level information decorates types, and
that the rule for replicated inputs is adapted to control termination.

Γ (a) = #kx̃ Γ ⊢ P

Γ ⊢ a(x̃).P

Γ (a) = #kT̃ Γ (p̃) = T̃ Γ ⊢ P

Γ ⊢ a〈p̃〉.P

Γ ⊢ P1 Γ ⊢ P2

Γ ⊢ P1|P2

Γ ⊢ P1 Γ ⊢ P2

Γ ⊢ P1 + P2 Γ ⊢ 0

Γ ⊢ P

Γ ⊢ (νa)P

Γ (a) = #kx̃ Γ ⊢ a(x̃).P ∀n ∈ os(P). lvl(n) < k

Γ ⊢!a(x̃).P

As explained in the introduction, the control on replications consists in verifying
that all names in os(P) (the multiset of subjects of outputs that occur in P
without being guarded by a replication) have a level strictly smaller than lvl(a).

System S2. System S2 is of minor interest for the purposes of this paper, because
type inference can be done almost as for system S1. The only typing rule that
differs w.r.t. S1 is the rule for replication:

Γ ⊢ a(x̃).P ∀b〈ṽ〉 ∈ out(P). b〈ṽ〉 ⊳ a(x̃)

Γ ⊢!a(x̃).P

b〈ṽ〉 ⊳ a(x̃) holds if either lvl(b) < lvl(a), or lvl(b) = lvl(a) and ṽ, x̃ are
tuples of first-order expressions that can be compared according to some well-
founded order. For instance, this is the case if x̃ = 〈x1, x2〉, ṽ = 〈x1 − 1, x2 + 2〉,
and if tuples of expressions are compared lexicographically (the xis are natural
numbers, and we suppose we can prove x1 > 0).

S2 makes it possible to allow outputs on a in a term of the form !a(x̃).P : a
process like !a(x).if x > 0 then a〈x − 2〉 else b〈x〉 is typable in S2 provided
lvl(b) < lvl(a) (x is a natural number), despite the emission on a.

System S3. The typing rule for replication in S3 is:

Γ ⊢ κ.P wt(κ) ≻ wt(P)

Γ ⊢!κ.P

4

κ is a maximal sequence of input prefixes (i.e., in κ.P , P is not an input). The
meaning of condition wt(κ) ≻ wt(P) is the following: wt(κ) is defined as a vector
of natural numbers (Ik, . . . , I1), where Ij is equal to the number of occurrences
of names at level j occurring in subject position in κ (k is the level of biggest
weight). Similarly, wt(P) is (Ok, . . . , O1), and Oj is the number of occurrences
of names at level j in os(P). Relation ≻ is defined as the lexicographical com-
parison of the weight vectors. For instance, !p.q.(p | p) is well-typed if lvl(p) = 1,
lvl(q) = 2 (the vectors corresponding to κ and P are (1, 1) and (0, 2) respec-
tively).

In [4], S3 additionally imposes that the name being used as last input subject
in κ should be asynchronous, that is, no continuation can appear after outputs on
this name. This constraint can actually be removed and the proof of soundness
adapted rather easily, so we omit it here.

System S4. The typing judgement for S4 is of the form Γ ⊢R P , where R is a
strict partial order on the free names of P . Only names having the same simple
type can be compared using R.

The syntax of types is extended to include partial order information. If S is
a set of pairs of natural numbers, p : #k

S T̃ specifies that p is of level k, carries a

tuple of names of type T̃ , and imposes that whenever (k, l) ∈ S, (i) the kth and

lth components of T̃ exist and have the same simple type; and (ii) for any tuple
of names emitted on p, the kth component of the tuple must dominate the lth
component according to the partial order. For instance, if p : #k

{(2,3)}〈T1, T2, T2〉

and if the process contains a subterm of the form p〈u, v, w〉.0, where u, v, w
are free names, then typability imposes that v and w have type T2 and vRw.
Checking this kind of constraints is enforced by the typing rule for outputs. The
typing rules for restriction and input are modified w.r.t. S3 in order to extend
R appropriately in the premise (see [4]).

Intuitively, the role of R is to insure termination in replicated processes for
which wt(κ) = wt(P). In such situations, there is a risk to generate infinite
computations by extending relation R via newly created names. S4 therefore
imposes a form of control over restricted names. An occurrence of a restriction
is unguarded if it does not occur under an input or output prefix. RN stands
for the set of names n such that if n appears in prefix subject position, then the
continuation process has no unguarded restrictions.

In S4, the condition of S3 in the rule for replication is replaced with κ :≻ P .
κ :≻ P holds iff either (i) wt(κ) ≻ wt(P) (as in S3), or (ii) wt(κ) = wt(P),

κR̂κP and the last input subject of κ belongs to RN . For the needs of this
paper, we can avoid entering the technical details of the definition of R̂κ, as
we shall use a simplified version of this relation in S4’ (and, in analysing the
complexity of S4, we shall not resort to (ii) above). Let us just say that this
relation is based on a multiset extension of the order R on free names.

The problem of type inference. In the sequel, we shall always implicitly
consider a process P , from which we want to infer an explictly typed process,

5

where inputs and restrictions are decorated with type information. We suppose
that P obeys the Barendregt convention, i.e., all its bound names are pairwise
distinct and distinct from all the free names of P . Typing constraints between
(bound or free) names of P will be generated regardless of scope – we will of
course then take scope into account to assert whether a process is typable.

We shall say that a type inference procedure is polynomial to mean that
it can be executed in polynomial time w.r.t. the size of P . We shall sometimes
simply call a type system ‘polynomial’ to mean that it admits a polynomial time
inference procedure.

Type inference for simple types is standard (see, e.g., [12]), and can be done
in polynomial time. In the remainder of the paper, we shall implicitly assume
that each process we want to type admits a simple typing, and we will concen-
trate on the question of finding annotations (levels, and, possibly, partial order
information) that allow us to ensure typability for the systems we study.

3 Type Inference for Deng and Sangiorgi’s Type Systems

3.1 Inference for Systems S1 and S2 is in P

Proposition 1 Type inference for system S1 is polynomial.

Proof. We adapt the standard type inference procedure for simple types [12].
We associate to each type a level variable. Based on the typing rules, we can
generate a set C of constraints consisting of unification constraints on types and
inequality constraints (of the form l1 < l2) on level variables, such that C is
satisfiable if and only if P is typable, and the size of C is linear in the size of
P . Using the standard unification algorithm, we can transform C into a set C′

of inequality constraints on level variables in polynomial time. The satisfiability
of C′ is equivalent to the acyclicity of the graph induced from C′, which can
again be checked in polynomial time. Thus, the type inference problem for S1 is
polynomial. ⊓⊔

We can adapt this proof to derive a similar result for S2: whenever we find
a cycle in the graph, if the cycle only contain names carrying first-order values,
instead of failing, we invoke ⊳ to check for typability (otherwise, we fail).

Proposition 2 Suppose we are given relation ⊳ together with a procedure to
decide ⊳ in polynomial time. Then type inference for S2 is polynomial.

3.2 Hardness of Systems S3 and S4

Theorem 3 The type inference problem for system S3 is NP-complete.

Proof. Let z be the number of names occurring in P . The problem is in NP
because trying one of the zz different ways of distributing names into z levels
can be done in polynomial time w.r.t. the size of the process and the number of
names. It is easy to prove that no more than z levels are required.

6

We now show that we can reduce 3SAT to the problem of finding a mapping
of levels. We consider an instance I of 3SAT: we have n clauses (Ci)i≤n of three
literals each, Ci = l1i , l

2
i , l

3
i . Literals are possibly negated propositional variables

taken from a set V = {v1, . . . , vm}. The problem is to find a mapping from V to
{True, False} such that, in each clause, at least one literal is set to True.

All names we use to build the processes below will be CCS names. We fix
a name true. To each variable vk ∈ V , we associate two names xk and x′

k, and
define the process

Pk
def
= !true.true.xk.x′

k | !xk.x′
k.true .

We then consider a clause Ci = {l1i , l
2
i , l

3
i } from I. For j ∈ {1, 2, 3} we let nj

i = xk

if lji is vk, and nj
i = x′

k if lji is ¬vk. We then define the process

Qi
def
= !n1

i .n
2
i .n

3
i .true .

We call It the problem of finding a typing derivation in S3 for the process

P
def
= P1 | . . . |Pm | Q1 | . . . |Qn. Note that the construction of P is polynomial

in the size of I.
We now analyse the constraints induced by the processes we have defined.
The level associated to name true is noted t.

– The constraint associated to !true.true.xk.x′
k is equivalent to

(
t ≥ lvl(xk) ∧ t ≥ lvl(x′

k)
)

∧
(
t > lvl(xk) ∨ t > lvl(x′

k)
)

.

The constraint associated to !xk.x′
k.true is equivalent to

t ≤ lvl(xk) ∨ t ≤ lvl(x′
k) .

Hence, the constraint determined by Pk is equivalent to
(
lvl(xk) = t ∧ lvl(x′

k) < t
)

∨
(
lvl(x′

k) = t ∧ lvl(xk) < t
)

. (1)

– The constraint associated to !ni1 .ni2 .ni3 .true is equivalent to

t ≤ lvl(n1
i) ∨ t ≤ lvl(n2

i) ∨ t ≤ lvl(n3
i) . (2)

We now prove that ’It has a solution’ is equivalent to ‘I has a solution’.
First, if I has a solution S : V → {True, False} then fix t = 2, and set

lvl(xk) = 2, lvl(x′
k) = 1 if vk is set to True, and lvl(xk) = 1, lvl(x′

k) = 2
otherwise. We check easily that condition (1) is satisfied; condition (2) also holds
because S is a solution of I.

Conversely, if It has a solution, then we deduce a boolean mapping for the
literals in the original 3SAT problem. Since constraint (1) is satisfied, we can set
vk to True if lvl(xk) = t, and False otherwise. We thus have that vk is set to
True iff lvl(xk) = t, iff lvl(x′

k) < t. Hence, because constraint (2) is satisfied,
we have that in each clause Ci, at least one of the literals is set to True, which
shows that we have a solution to I. ⊓⊔

7

This proof can be easily adapted to establish the same result for S4: the idea
is to ‘disable’ the use of the partial order, e.g. by adopting a different type for
true. We thus get:

Corollary 4 The type inference problem for System S4 is NP-complete.

The cause of NP-difficulty. The crux in the proof of Thm. 3 is to use the ‘κ
component’ of S3 to introduce a form of choice: to type process !a.a′.P , we cannot
know a priori, for b ∈ os(P), whether to set lvl(a) ≥ lvl(b) or lvl(a′) ≥ lvl(b).
Intuitively, we exploit this to encode the possibility for booleans to have two
values, as well as the choice of the literal being set to True in a clause. By
removing the κ component from S3, we get system S1, which is polynomial.

However, it appears that NP-completeness is not only related to κ: indeed,
it is possible to define a polynomial restriction of S3 where the choice related to
the κ component is still present. Let us call S3” the type system obtained from
S3 by imposing distinctness of levels : two names can have the same level only if
their types are unified when resolving the unification constraints. Note that this
is more demanding than having the same simple type: in p | q, p and q have the
same simple type, but must be given different levels in S3” because their types
are not unified during inference.

Although typing process !a(x).a′(y, z).P seems to introduce the same kind
of choice as in S3, it can be shown that type inference is polynomial in S3”.
Intuitively, the reason for this is that there exists a level variable, say α, such
that for every constraint on weight vectors determined by the process being
typed, the cardinal of α in the continuation process is not greater than the
cardinal in κ. We call α a root level variable: it can be shown that if no such α
exists, then the process is not typable.

This gives a strategy to compute a level assignment for names, and do so
in polynomial time: set α to the maximum level, and consider a weight vector
constraint wt(κ) ≻ wt(P): if there are as many αs in wt(κ) as in wt(P), re-
place the constraint with the equivalent constraint where the αs are removed.
Otherwise, the number of αs strictly decreases, which means we can simply get
rid of this constraint. We thus obtain an equivalent, smaller problem, and we
can iterate this reasoning (if there are no more constraints to satisfy, we pick a
random assignment for the remaining levels).

System S3” retains the lexicographical comparison and the κ component from
S3, but is polynomial. By Prop. 7 below, since S3” is a restriction of S3, it is less
expressive than S3’. In some sense, S3” ‘respects the identity of names’ : while in
S3’ levels are added, and we rely on algebraic calculations on natural numbers,
only comparisons between levels are used in S3”; this means that, intuitively, we
cannot trade a name a for one or several names whose role in the given process
is completely unrelated to the role of a.

8

4 Summing the Levels Assigned to Names

We now study system S3’, in which we renounce the lexicographical comparison
between names through levels, and instead add levels to compute the weight of
κ and P in a term of the form !κ.P .

Definition 5 (System S3’) We let subj(κ) stand for the multiset of names
occurring in subject position in κ.

System S3’ is defined by the same rules as system S3, except that the condition
for the replication rule is Σn∈subj(κ)lvl(n) > Σn∈os(P)lvl(n) (for all n, lvl(n)
is a natural number).

Note that subj(κ) and os(P) are multisets, so that the weight of names having
multiple occurrences is counted several times.

Soundness of S3’ can be established by adapting the proof for S3 in [4]:

Proposition 6 System S3’ ensures termination.

Proposition 7 System S3’ is strictly more expressive than S3.

Proof. We first show that S3’ is at least as expressive as S3. We consider a
process of the form P0 =!κ.P , that can be typed in S3 (κ is a maximal input
prefix). We write (Ik, . . . , I1) and (Ok, . . . , O1) for the vectors of levels associated
to κ and os(P) respectively (the Ijs are natural numbers, and Ij is the number
of subject occurrences of names of level j in κ — and similarly for the Ojs). We
fix an integer b such that ∀j ∈ [1 . . . k]. |Oj − Ij | < b, and build a S3’ typing
context for P0 by assigning level bL(n) to name n, where L(n) denotes the level
of n according to the S3-typing of P0.

Let us show that this induces a correct typing for P0 in S3’. Because P0 is
typed in S3, there exists u such that Ik = Ok, Ik−1 = Ok−1, . . . , Iu+1 = Ou+1

and Iu > Ou +1. We compute the difference of weights between κ in P according
to S3’: wt(κ)−wt(P) = Σ1≤j≤k(Ij −Oj)b

j ≥ bu +Σ1≤j<u(Ij −Oj)b
j . The latter

quantity is strictly positive by definition of b, which shows that P0 is S3’-typable.
We can generalize this reasoning by remarking that an arbitrary process Q

has a finite number of replications, which allows us to fix a b which is suitable
for all replicated subterms of Q.

To show that there are processes which can be typed by system S3’ but not by

S3, consider P1
def
= !a.b | !b.b.a. P1 is ill-typed according to S3: the first subterm

imposes lvl(a) > lvl(b), and the vectors associated to the second subterm are
hence of the form (0, 2) and (1, 0), and we do not have (0, 2) ≻ (1, 0). By setting
lvl(a) = 3 and lvl(b) = 2, we can check that P1 is typable for S3’. ⊓⊔

Theorem 8 Type inference for system S3’ is polynomial.

Proof. By inspecting the process to be typed, type inference amounts to find a
solution to a system of inequalities of the form Σjai,j .uj > 0, where the ai,js are

9

integers and the solution is the vector of the ujs, which are natural numbers.
This system has a solution if and only if the system consisting of the inequalities
Σjai,j .uj ≥ 1 has one. We resort to linear programming in rationals to solve
the latter problem (we can choose to minimize Σjuj), which can be done in
polynomial time. Because of the shape of inequalities generated by the typing
problem, there exists a rational number solution to the inequalities if and only
if there exists an integer solution. ⊓⊔

5 Exploiting Partial Orders on Names

5.1 System S4’: Definition and Properties

System S4 from [4] is built on top of S3, and improves its expressiveness by
allowing the use of partial orders. To define S4’, we restrict ourselves to the
partial order component of S4, and do not analyse sequences of input prefixes
(κ) as in S3: in a term of the form !a(x̃).P , name a must dominate every name
in os(P), either because it is of higher level, or via the partial order relation.

We now introduce S4’. Let R be a relation on names, S a relation on natural
numbers, and x̃ a tuple of names. We define two operators / and ∗ as follows:

R / x̃ =





∅ if n(R) ∩ x̃ = ∅
{(i, j) | xiRxj} if n(R) ⊆ x̃
undefined otherwise

S ∗ x̃ = {(xi, xj) | iSj}
if max(n(S)) ≤ |x̃|

Above, n(R) = {a. ∃b. aRb∨bRa}, n(S) = {i. ∃j. iSj∨ jSi}, and |x̃| denotes the
number of names in x̃. We also define
R⇓ex = {(a, b) | a, b 6∈ x̃ and aRc1R· · ·RcnRb for some c̃ ⊆ x̃ and n ≥ 0}.

The typing rules for S4’ are given on Fig. 1. Again, although the type system
is defined à la Church, we mention the typing context to ease readability. When
writing a judgment of the form Γ ⊢R P , we implicitly require that R does not
contain a cycle. Note that w.r.t. system S4 in [4], we relax the constraint that
R should only relate names having the same simple type.

In the rule for replication, Γ ⊢R a :≻ (N1, N2) holds if either of the following
conditions holds:

(i) ∀v ∈ N1.lvl(v) < lvl(a) ∧ ∀v ∈ N2.lvl(v) ≤ lvl(a)
(ii) ∀v ∈ N2.lvl(v) < lvl(a)

∧∃b ∈ N1.lvl(b) = lvl(a) ∧ aRb ∧ ∀v ∈ N1 − {b}.lvl(v) < lvl(a).

(notice that N1 is a multiset).
The last rule in Fig. 1 is optional; it does not change typability, but makes

the correspondence with the constraint generation algorithm more clear. Ac-
cordingly, in the rules for parallel composition and choice, we could mention the
same relation R in both premises and in the conclusion — the version of the
rules we present is closer to the type inference procedure (see Sec. 5.2).

10

Γ ⊢R 0

Γ ⊢R1
P Γ ⊢R2

Q

Γ ⊢R1+R2
P |Q

Γ ⊢R1
P Γ ⊢R2

Q

Γ ⊢R1+R2
P + Q

Γ (a) = ♯n

SΓ (ex) Γ ⊢R P S ⊇ R / ex

Γ ⊢R⇓ex
a(ex).P

Γ (a) = ♯n

SΓ (ev) Γ ⊢R P R ⊇ S ∗ ev

Γ ⊢R a〈ev〉.P

Γ (c) = ♯n

S
eT Γ ⊢R P

Γ ⊢R⇓c
(νc)P

Γ (a) = ♯n

SΓ (ex) Γ ⊢R P S ⊇ R / ex Γ ⊢R a :≻ (os(P), rs(P))

Γ ⊢R⇓ex
!a(ex).P

Γ ⊢R′ P R′ ⊆ R

Γ ⊢R P

Fig. 1. System S4’: Typing Rules

Notice that the partial order can be used for at most one output in the con-
tinuation process to typecheck a replication. Indeed, by omitting this constraint
in case (ii) above, we could typecheck the following divergent process:

P2
def
= !p(a, b, c, d).(!a.c.d | !b.(νe, f) p〈c, d, e, f〉) | p〈u, v, w, t〉.(u | v),

by setting aRc and aRd. In P2, the subterm replicated at b makes a recursive
call to p with two new fresh names; the subterm replicated at a is typed using the
partial order twice, and the outputs it triggers feed the loop (a similar example
can be constructed to show that we must also forbid using R twice with the
same pair of names).

Proposition 9 System S4’ ensures termination.

Proof. We suppose that there exists a process P admitting a diverging sequence
D: P = P1 −→ P2 −→ P3 −→ . . ., and that P is well-typed according to S4’.
Let k be the maximum level assigned to names in the typing of P .

We call I the set of integers i such that the reduction step from Pi to Pi+1

is obtained by triggering a replicated input whose subject is of level k. We let

Si
def
= {n ∈ os(Pi). lvl(n) = k} (Si is a multiset).
We remark that the size of Si cannot grow. Indeed, if the reduction from

Pi to Pi+1 does not trigger a replicated input, this obviously holds. If on the
contrary the reduction does, there are two cases: either i /∈ I, and by maximality
of k, no output at level k can be unleashed by triggering an input at level strictly
smaller than k; or i ∈ I, and there are two cases again. If the replicated input
has been typed using clause (i) of the definition of :≻, then Si+1 has one element
less than Si. If clause (ii) has been used, then Si+1 has been obtained from Si by

11

Tinf(Γ, 0) = (r, {r ⊇ ∅})
Tinf(Γ, a(ex).P) =

let (r, C1) = Tinf(Γ, P)
C2 = {Γ (a) = ♯l

r1
Γ (ex)} (l, r1 fresh)

in (r2, C1 ∪ C2 ∪ {r1 ⊇ r / ex, r2 ⊇ r ⇓ex}) (r2 fresh)
Tinf(Γ, !a(ex).P) =

let (r, C1) = Tinf(Γ, P)

C2 = {Γ (a) = ♯l

r1
Γ (ex)} (l, r1 fresh)

C3 = {r1 ⊇ r / ex, r2 ⊇ r ⇓ex} (r2 fresh)
in (r2, C1 ∪ C2 ∪ C3 ∪ {Γ ⊢r a :≻ (os(P), rs(P))}))

Tinf(Γ, a〈ev〉.P) =
let (r, C1) = Tinf(Γ, P)

C2 = {Γ (a) = ♯l

r1
Γ (ev)} (l, r1 fresh)

in (r, C1 ∪ C2 ∪ {r ⊇ r1 ∗ ev})
Tinf(Γ, (νc)P) =

let (r1, C) = Tinf(Γ, P)
in (r, C ∪ {r ⊇ r1 ⇓c}) (r fresh)

Tinf(Γ, P1|P2) =
let (r1, C1) = Tinf(Γ, P1)

(r2, C2) = Tinf(Γ, P2)
in (r, C1 ∪ C2 ∪ {r ⊇ r1 + r2}) (r fresh)

Tinf(Γ, P1 + P2) = Tinf(Γ, P1|P2)

Fig. 2. Constraint Generation

removing an element a and replacing it with b, with aRb (by abuse of notation,
we write this SiRSi+1).

Let us now show that I is finite. The above reasoning implies that I contains
only a finite number of reductions corresponding to a replicated input that has
been typed using clause (i). Hence there exists an index after which all reductions
of D on a name of level k involve a replicated input typed using clause (ii). We
observe that between two such reductions, no name of level k can be created,
and none can be created either by such a reduction. This means that we have
an infinite sequence SjRSj+1R . . . (using the notation introduced above), which
contradicts the fact that the support of R at level k cannot grow.

Since I is finite, D has a suffix such that the resulting infinite sequence does
not contain any reduction involving a replicated input at a name of level k. We
can reason as above for k − 1, and finally obtain a contradiction. ⊓⊔

5.2 Type Inference for S4’

We now present the type inference procedure for S4’, which has two phases: in
the first part, we generate constraints, that are solved in the second part.

12

Constraint generation algorithm The rules of Fig. 2 define the constraint
generation phase of type inference. The output of this procedure is a pair (r, C)
where r is a relation variable and C consists of:

– unification constraints T1 = T2

– order constraints Γ ⊢r a :≻ (N1, N2)

– relation constraints r ⊇ R, where R consists of relation variables, pairs of
names, operations such as +, ∗, ⇓, and / .

The size of C is polynomial in the size of the process. Note that relation variables
range over relations between names, or between integers (when they correspond
to ‘S’ components). They are hence ‘intrinsically typed’, as is the case for oper-
ators ∗ and / .

The following lemma can be proved easily. (Here, by solution of C, we mean
an assignment of type variables to valid types, level variables to levels, and
relation variables to strict partial orders that satisfy all the constraints in C).

Lemma 10 Let {v1, . . . , vn} be the set of all the names occuring in P , and
Γ = v1 : α1, . . . , vn : αn. If Tinf(Γ, P) = (r, C), then θ is a solution of C if and
only if θΓ ⊢θr P .

Constraint solving Constraints are solved through several constraint trans-
formation steps, that we now describe.

– Step 1: By solving the unification constraints in C, we obtain a set C1 of
order constraints and relation constraints.

– Step 2: Eliminate level variables
For each order constraint Γ ⊢r a :≻ (N1, N2), generate necessary conditions

{lvl(v) ≤ lvl(a) | v ∈ N1 ∪ N2}.

Thus, we obtain a set of level constraints C2 = {l1 ≤ l′1, . . . , lk ≤ l′k}. Com-
pute a solution of C2 that is optimal in the sense that whenever possible, dif-
ferent levels are assigned to different level variables. (That can be computed
as follows. Construct a directed graph G whose node set is {l1, l′1, . . . , lk, l′k},
and whose edge set is {(li, l′i)}. Compute strongly connected components of
G, and unify all the level variables in the same component. Then, perform a
topological sort on the strongly connected components, and assign a level to
each component.) Then, substitute the solution for each Γ ⊢r a :≻ (N1, N2).

– Step 3: Eliminate order constraints Γ ⊢r a :≻ (N1, N2)
Γ ⊢r a:≻(N1, N2) can be reduced as follows. Check whether ∀v ∈ N1.lvl(v) <
lvl(a) holds. If so, then just remove the constraint. Otherwise, check that for
only one b ∈ N1, lvl(b) = lvl(a) holds, and that ∀v ∈ N2.lvl(v) < lvl(a)
holds. If this is the case, replace Γ ⊢r a :≻ (N1, N2) with r ⊇ {(a, b)}. Oth-
erwise, report that the constraints are unsatisfiable.

13

– Step 4: Solve relation constraints:
We are now left with a set of relation constraints:

{r1 ⊇ f1(r1, . . . , rk), . . . rk ⊇ fk(r1, . . . , rk)} .

(We assume here that {r1, . . . , rk} contains all the relation variables intro-
duced by Tinf; otherwise add a trivial constraint r ⊇ r.) Here, f1, . . . , fk

are monotonic functions on relations (in particular, R⇓ex is monotonic if
we treat ‘undefined’ as the biggest element). Thus, we can obtain the least
solution in a standard manner [10].
Finally, we check that the transitive closure of the solution for each relation
variable r is irreflexive. When this is the case, we have a level assignment
and a definition of partial orders (between free names, and to decorate types)
which are sufficient to deduce a typing derivation for the process being anal-
ysed.

Comments about the constraint solving procedure. Step 1 in the procedure above
is standard. In Step 2, each order constraint of the form Γ ⊢r a :≻ (N1, N2)
generates a set of necessary inequalities between level variables. Cycles in the
graph that is constructed in this step correspond to level variables that are
necessarily identified. The purpose of Step 3 is to get rid of order constraints
by determining whether each corresponding subterm is typed using clause (i) or
clause (ii) of the definition of :≻. If all inequalities corresponding to the order
constraint are satisfied in a strict sense by the level assignment, by clause (i),
there is nothing to do. When this is not the case, we necessarily rely on clause
(ii): we check that the corresponding hypotheses are satisfied, and generate a
relation constraint. Relation constraints are handled in Step 4.

It can be remarked that type inference gives priority to clause (i) to type
replicated terms. For instance, consider process P3 = p〈a, b〉 | p(x, y)!x.y. Type
inference assigns a type of the form #1〈#2T, #1T ′〉 to p. Alternatively, we can
choose to set p : #1

{(1,2)}〈#
1T, #1T ′〉, i.e., use clause (ii). By construction, Step

2 assigns different levels whenever possible, and hence chooses the former typing.

Theorem 11 The type inference procedure for S4’ is sound and complete w.r.t.
the typing rules, and runs in polynomial time.

Souundness and completeness follow from Lemma 10 and the fact that each
of the above steps preserves the satisfiability of constraints. For the complexity
result, Tinf runs in polynomial time and generates constraints of polynomial
size. In turn, each step of the constraint solving part runs in time polynomial in
the size of the constraints.

6 Conclusion

We have studied the complexity of type inference for the type systems of [4],
and shown how the NP complete type systems can be simplified in order to get
a polynomial type inference procedure.

14

A question that remains to be addressed is how to enrich system S3’ with
the possibility to use partial orders, in order to get closer to systems S4 or S4’
in terms of expressiveness. In S4, the partial order can be used when the vector
of weights remains the same, while in S4’ the vector of weights can even increase
when the partial order is used. How to adapt S4 or S4’ to a system where weights
are summed (as natural numbers) is not clear to us at the moment.

A natural extension of this work is to experiment with the results we have
presented. TyPiCal already implements a type inference algorithm for a type
system obtained by combining systems S1 to S4, as reported in [9]. The parts
of this combined type system that are related to S3 and S4 are treated using
a heuristic, incomplete, polynomial algorithm, because of the NP-completeness
result we have shown in Sec. 3. It is left for future work to implement S3’ and
S4’ discussed in the paper. For that purpose, a main remaining issue is how to
integrate S3’ and S4’ with S2. As hinted above, our results could also be useful
for the developments presented in [9].

Acknowledgements. We thank Alain Darte for his help in finding the reduction
used for Thm. 3.

References

1. The Terminator Project: proof tools for termination and liveness.
http://research.microsoft.com/terminator/, 2007.

2. B. Cook, A. Podelski, and A. Rybalchenko. Proving Thread Termination. In Proc.

of PLDI’07, pages 320–330. ACM, 2007.
3. Byron Cook, Alexey Gotsman, Andreas Podelski, Andrey Rybalchenko, and

Moshe Y. Vardi. Proving that programs eventually do something good. pages
265–276, 2007.

4. Y. Deng and D. Sangiorgi. Ensuring Termination by Typability. Information and

Computation, 204(7):1045–1082, 2006.
5. C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Implicit Typing à la ML

for the Join-Calculus. In Proc. of CONCUR’97, volume 1243 of Lecture Notes in

Computer Science, pages 196–212. Springer, 1997.
6. S. J. Gay. A Sort Inference Algorithm for the Polyadic Pi-Calculus. In Proc. of

POPL’93, pages 429–438. ACM Press, 1993.
7. A. Igarashi and N. Kobayashi. Type Reconstruction for Linear Pi-Calculus with

I/O Subtyping. Information and Computation, 161(1):1–44, 2000.
8. N. Kobayashi. TyPiCal: Type-based static analyzer for the Pi-Calculus. available

from http://www.kb.ecei.tohoku.ac.jp/~koba/typical/, 2007.
9. N. Kobayashi and D. Sangiorgi. From Deadlock-Freedom and Termination to

Lock-Freedom. submitted, 2007.
10. J. Rehof and T. Mogensen. Tractable Constraints in Finite Semilattices. Science

of Computer Programming, 35(2):191–221, 1999.
11. D. Sangiorgi. Termination of Processes. Mathematical Structures in Computer

Science, 16(1):1–39, 2006.
12. V. T. Vasconcelos and K. Honda. Principal Typing Schemes in a Polyadic pi-

Calculus. In Proc. of CONCUR’93, volume 715 of Lecture Notes in Computer

Science, pages 524–538. Springer, 1993.

15

13. N. Yoshida, M. Berger, and K. Honda. Strong Normalisation in the Pi-Calculus.
Information and Computation, 191(2):145–202, 2004.

16

