
Practical interruptible conversations
Distributed dynamic verification with session types and Python

Raymond Hu, Rumyana Neykova, Nobuko Yoshida, and Romain Demangeon

Imperial College London

Abstract. The rigorous and comprehensive verification of communication-based soft-
ware is an important engineering challenge in distributed systems. Drawn from our
industrial collaborations [32,35,26] on Scribble, a choreography description language
based on multiparty session types, this paper proposes a dynamic verification frame-
work for structured interruptible conversation programming.

We first present our extension of Scribble to support asynchronously interruptible
conversations. We then implement a concise API for conversation programming with
interrupts in Python that enables distributed processes to be dynamically verified. Our
framework ensures the global safety of a system in the presence of asynchronous inter-
rupts through runtime monitoring of each endpoint, checking the conformance of each
local execution trace against the specified protocol. The usability of our framework for
describing and verifying choreographic communications has been tested by integration
into the large scientific cyberinfrastructure developed by the Ocean Observatories Ini-
tiative. Asynchronous interrupts have proven expressive enough to represent and verify
their main classes of communication patterns, including asynchronous streaming and
various timeout-based protocols, without requiring additional synchronisation mecha-
nisms. Benchmarks show conversation programming and monitoring can be realised
with little overhead.

1 Introduction
The main engineering challenges in distributed systems include finding suitable speci-
fications that model the range of states exhibited by a system, and ensuring that these
specifications are followed by the implementation. In message passing applications, rig-
orous specification and verification of communication protocols is particularly crucial:
a protocol is the interface to which concurrent components should be independently
implementable while ensuring their composition will form a correct system as a whole.
Multiparty Session Types (MPST) [15,4] is a type theory for distributed programs that
originates from works on the types of the π-calculus towards tackling this challenge.
In the original MPST setting, protocols are expressed as types and static type checking
verifies that the system of processes engaged in a communication session (also referred
to as a conversation) conforms to a globally agreed protocol. The properties enjoyed
by well-typed processes are communication safety (no unexpected messages or races
during the execution of the conversation) and deadlock-freedom.

In this paper, we present the design and implementation of a framework for dynamic
verification of protocols based on MPST, developed from our collaboration with indus-
try partners [32,35,26] on the application of MPST theory. In this ongoing partnership,
we are motivated to adapt MPST to dynamic verification for several reasons. First, ses-
sion type checking is typically designed for languages with first-class communication

Global Protocol

Local
Specification

Local
Specification

Local
Specification

Project

Specification
(Scribble)

Implementation
(Python)

Source Code

Verification
(Dynamic)

 Safe Network

ProjectP r o j e c t i o n

Source Code Source Code

Conversation
Layer

Conversation
Layer

Conversation
Layer

Monitor Monitor Monitor

Fig. 1: Scribble methodology from global specification to local runtime verification
and concurrency primitives, whereas our collaborations use mainstream engineering
languages, such as Python and Java, that lack the features required to make static ses-
sion typing tractable. Distributed systems are also often heterogeneous in nature, mean-
ing that different languages and techniques (e.g. the control flow of an event-driven
program is tricky to verify statically) may be used in the implementation of one system.
Dynamic verification by communication monitoring allows us to verify MPST safety
properties directly for mainstream languages in a more scalable way. Second, a system
may use third-party components or services for which the source code is unavailable
for type checking. Third, certain protocol specification features, such as assertions on
specific message values, can be precisely evaluated at run-time, while static treatments
would usually be more conservative.

Framework overview. Figure 1 illustrates the methodology of our framework. The
development of a communication-oriented application starts with the specification of
the intended interactions (the choreography) as a global protocol using the Scribble
protocol description language [34,35], an engineering incarnation of the formal MPST
type language. The core features of Scribble include multicast message passing and
constructs for branching, recursive and parallel conversations. These features support
the specification of a wide range of protocols, from domains such as standard Internet
applications [16], parallel algorithms [25] and Web services [10].

Our toolchain validates that the global protocol satisfies certain well-formedness
properties, such as coherent branches (no ambiguity between participants about which
branch to follow) and deadlock-freedom (between parallel flows). From a well-formed
global protocol, the toolchain mechanically generates (projects) Scribble local proto-
cols for each participant (role) defined in the protocol. A local protocol is essentially a
view of the global protocol from the perspective of one role, and provides a more direct
specification for endpoint implementation than the global protocol.

When a conversation is initiated at run-time, the monitor at each endpoint gener-
ates a finite state machine (FSM) representation of the local communication behaviour
from the local protocol for its role. In our implementation, the FSM generation is an
extension of the correspondence between MPST and communication automata in [11]
to support interruptible sessions (discussed below) and optimised to avoid parallel state

2

explosion. The monitor tracks the communication actions performed by the endpoint,
and the messages that arrive from the other endpoints, against the transitions permit-
ted by the FSM. Each monitor works to protect both the endpoint from illegal actions
by the environment, and to protect the network from bad endpoints. In this way, our
framework is able to ensure from the local verification of each endpoint that the global
progress of the system as a whole conforms to the original global protocol [5], and that
illegal actions by a bad endpoint cannot corrupt the protocol state of other compliant
endpoints.

This MPST monitoring framework has been integrated into the Python-based run-
time platforms developed by the Ocean Observatories Initiative (OOI) [26]. The OOI
is a project to establish a cyberinfrastructure for the delivery, management and analy-
sis of scientific data from a large network of ocean sensor systems. Their architecture
relies on the combination of high-level protocol specifications of network services (ex-
pressed as Scribble protocols [27]) and distributed run-time monitoring to regulate the
behaviour of third-party applications within the system [29]. Although this work is in
collaboration with the OOI, our implementation can be used orthogonally as a stan-
dalone monitoring framework for distributed Python applications.
Contributions and summary. This paper demonstrates the application of multiparty
session types, through the Scribble protocol language, to industrial practice by pre-
senting (1) the first implementation of MPST-based dynamic protocol verification (as
outlined above) that offers the same safety guarantees as static session type checking,
and (2) use cases motivated extension of Scribble to support the first construct for the
verification of asynchronous communication interrupts in multiparty sessions.

We developed the extension of Scribble with asynchronous interrupts to support a
range of OOI use cases that feature protocol structures where one flow of interactions
can be asynchronously interrupted by another. Examples include various service calls
(request-reply) with timeout, and publish-subscribe applications where the consumer
can request to pause and resume externally controlled feeds. Although the existing fea-
tures of Scribble (i.e. those previously established in MPST theory) are sufficiently
expressive for many communication patterns, we observed that this important structure
could not be directly or naturally represented without interrupts.

We outline the structure of this paper, summarising the contributions of each part:
§ 2 presents a use case for the extension of Scribble with asynchronous interrupts. This

is a new feature in MPST, giving the first general mechanism for nested, multi-
party session interrupts. We explain why implementing this feature is a challenge
in session types. The previous works on exceptions in session types are purely the-
oretical, and are either restricted to binary session types (i.e. not multiparty) [9], do
not support nesting and continuations [9,8], or rely on additional implicit synchro-
nisation [7]. A formal proof of the correctness of our design is given in § 5.1.

§ 3 discusses the Python implementation of our MPST monitoring framework that we
have integrated into the OOI project, and demonstrates the global-to-local projec-
tion of Scribble protocols, endpoint implementation, and local FSM generation.
§ 3.1 describes a concise API for conversation programming in Python that supports
standard socket-like operations and event-driven interfaces. The API decorates con-
versation messages with the run-time session information required by the monitors

3

to perform the dynamic verification. § 3.2 discusses the monitor implementation,
how asynchronous interrupts are handled, and the other architectural requirements
of our framework.

§ 4 evaluates the performance of our monitor implementation through a collection of
benchmarks. The results show that conversation programming and monitoring can
be realised with low overhead.
The source code for our Scribble toolchain, conversation runtime and monitor, per-

formance benchmarks and further resources are available from the project page [36].

2 Communication protocols with asynchronous interrupts

This section expands on why and how we extend Scribble to support the specification
and verification of asynchronous session interrupts, henceforth referred to as just inter-
rupts. Our running example is based on an OOI project use case, which we have distilled
to focus on session interrupts. Using this example, we outline the technical challenges
of extending Scribble with interrupts.
Resource Access Control (RAC) use case. As is common practice in industry, the
cyber-infrastructure team of the OOI project [26] manages communication protocol
specifications through a combination of informal sequence diagrams and prose descrip-
tions. Figure 2 (left) gives an abridged version of a sequence diagram given in the OOI
documentation for the Resource Access Control use case [27], regarding access control
of users to sensor devices in the ION Cyber-infrastucture for data acquisition. In the
ION setting, a User interacts with a sensor device via its Agent proxy (which interacts
with the device via a separate protocol outside of this example). ION Controller agents
manage concerns such as authentication of users and metering of service usage.

For brevity, we omit from the diagram some of the data types to be carried in the
messages and focus on the structure of the protocol. The depicted interaction can be
summarised as follows. The protocol starts at the top of the left-hand diagram. User
sends Controller a request message to use a sensor for a certain amount of time (the int
in parentheses), and Controller sends a start to Agent. The protocol then enters a phase
(denoted by the horizontal line) that we label (1), in which Agent streams data messages
(acquired from the sensor) to User. The vertical dots signify that Agent produces the
stream of data freely under its own control, i.e. without application-level control from
User. User, however, has the option at any point in phase (1) to move the protocol to the
phase labelled (2) in the right-hand diagram.

Phase (2) comprises three cases, separated by the dashed lines. In the top case, User
interrupts the stream from Agent by sending Agent a pause message. At some subse-
quent point, User sends a resume and the protocol returns to phase (1). In the middle
case, User interrupts the stream, sending both Agent and Controller a stop message.
This is the case where User does not want any more sensor data, and ends the protocol
for all three participants. Finally, in the lower case, Controller interrupts the stream by
sending a timeout message to User and Agent. This is the case where, from Controller’s
view, the session has exceeded the requested duration, so Controller interrupts the other
two participants to end the protocol. In this diagram, note that stop and timeout can
appear anytime.

4

U C A
req(int)

start

data

data

(2)

...
...

(1)

U C A

pause

resume

(1)

stop

timeout timeout

(2)

1 global protocol ResourceAccessControl

2 (role User as U, role Controller as C,

role Agent as A) {

3 req(duration:int) from U to C;

4 // U requests the device for some duration

5 start() from C to A;

6 interruptible { // U, C and A in scope

7 rec X {

8 interruptible { // U and A only

9 rec Y {

10 data() from A to U;

11 continue Y;

12 }

13 } with {

14 pause() by U; // Interrupts A in Y

15 }

16 resume() from U to A;

17 continue X;

18 }

19 } with {

20 // Interrupts U and A in X

21 stop() by U; // Any time within the duration

22 timeout() by C; // Duration is up

23 }}

Fig. 2: Sequence diagram (left) and Scribble protocol (right) for the RAC use case

Interruptible multiparty session types. Figure 2 lists a multiparty session type that
uses our new extension for asynchronous interrupts to formally capture the communica-
tion protocol for the Resource Access Control use case. For readability, and to introduce
the language, we give the protocol here using Scribble. Besides the formal foundations,
we find the Scribble specification is more explicit and precise, particularly regarding the
combination of compound constructs such as choice and recursion, than the sequence
diagram format, and provides firmer implementation guidelines for the programmer
(demonstrated in § 3.1).

A Scribble protocol starts with a header declaring the protocol name (in Figure 2,
ResourceAccessControl) and role names for the participants (three roles, aliased in the
scope this protocol definition as U, C and A). Lines 3 and 5 straightforwardly correspond
to the first two communications in the sequence diagram. The Scribble syntax for mes-
sage signatures, e.g. req(duration:int), means a message with operator (i.e. header,
or label) req, and payload int annotated as duration. The start() message signature
means operator start with an empty payload.

We now come to “phase” (1) of the sequence diagram. The new interruptible

construct captures the informal usage of protocol phases in disciplined manner, making
explicit the interrupt messages and the scope in which they apply. Although the syntax
has been designed to be readable and familiar to programmers, interruptible is an
advanced construct that encapsulates several aspects of asynchronous interaction, which
we discuss at the end of this section.

The intended communication protocol of our example is clarified in Scribble as two
nested interruptible statements. The outer statement, on lines 6–23, corresponds to

5

the options for User and Controller in order to end the protocol via the stop and timeout

interrupts. An interruptible consists of a main body of protocol actions, here Lines 7–
18, and a set of interrupt message signatures, Lines 19–23. The statement stipulates that
each participant behaves by either (a) following the protocol specified in the body until
finished for their role, or (b) raising or detecting a specified interrupt at any point during
(a) and exiting the statement. Thus, the outer interruptible states that U can interrupt
the body (and end the protocol) by stop() message, and C by a timeout().

The body of the outer interruptible is a standard labelled recursion statement with
label X. The continue X; inside the recursion (Line 17) causes the flow of the protocol
to return to the top of the recursion (Line 7). This recursion corresponds to the loop
implied by the sequence diagram for User to pause and resume repeatedly. Since the
recursion body always leads to the continue, Scribble protocols of this form state that
the loop should be driven indefinitely by one role, until one of the interrupts is raised
by another role. This communication pattern cannot be expressed in multiparty session
types without interruptible.

The body of the X-recursion is the inner interruptible, which corresponds to the
option for User to pause the stream. The stream itself is specified by the Y-recursion, in
which A repeatedly sends U data() messages. The inner interruptible specifies that U
may interrupt the Y-recursion by a pause() message, and is followed by the resume()

message from U before the protocol returns to the top of the X-recursion.

Challenges of asynchronous interrupts in MPST. We outline some observations
from our extension and usage of MPST with asynchronous interrupts. We find the basic
operational meaning of interruptible, as illustrated in the above example, is readily
understood by architects and developers, which is a primary consideration in the design
of Scribble. The challenges in this extension are in the design of the supporting runtime
and verification techniques to preserve the desired safety properties in the presence
of interruptible. The challenges stem from the fact that interruptible combines
several tricky, from a session typing view, aspects of communication behaviours that
session type systems traditionally aim to prohibit to prevent communication races and
thereby ensure the safety properties.

One aspect is that of mixed choice in the protocol, in terms of both communication
direction (e.g. U may choose to either receive the next data or send a stop), and between
different roles (e.g. U and C independently, and possibly concurrently, interrupt the pro-

1 // The choice is not well-formed

2 choice at A {

3 // A makes the choice

4 rec Y {

5 data() from A to U;

6 continue Y;}

7 } or {

8 // U makes the choice

9 pause() from U to A;}

10 resume() from U to A;

1 // Well-formed, but different

semantics

2 // The recursion cannot be stopped

3 par {

4 rec Y {

5 data() from A to U;

6 continue Y;}

7 } and {

8 // Does not stop the recursion

9 pause() from U to A;}

10 resume() from U to A;

Fig. 3: Naive interrupt encoding with choice (left) and parallel (right)

6

Conversation API operation Purpose

create(protocol name,invitation config.yml) Session initiation and invitation sending
join(self, role,principal name) Accept an invitation
send(role, op, payload) Send operation and payload (conv msg)
recv(role) Receive message
recv async(self, role, callback) Receive asynchronously
scope(msg) Create a scope
close() Close the connection

Fig. 4: Basic Python Conversation API operations
tocol) due to multiparty (see Figure 3 (left), which breaks the unique sender condition
in [11]). In addition, the interrupt choice is truly optional in the sense that it may never
be selected at run-time. The basic choice in standard MPST (e.g. as defined in [15,11])
is inadequate because it is designed to identify a single role as the decision maker, who
communicates exactly one of a set of message choices unambiguously to all relevant
roles.

Another aspect, due to asynchrony, is that an interrupt may occur in parallel to the
actions of the roles being interrupted (e.g. pause by U to A while A is streaming data to U,
see Figure 3 (right)). Although standard MPST (and Scribble) support parallel protocol
flows, the interesting point here is that an interrupt is sent to preclude further actions in
(i.e. interfere with) another parallel flow under the control of a different role. Due to the
asynchronous setting, it is important that interruptible does not introduce additional
synchronisation, still preserving a safety property. These mechanisms are formalised
and the correctness of our interruptible extension is proved in § 5.1.

3 Runtime Verification
This work is the first implementation of the theory in [5] to practice. Although the Scrib-
ble language is directly inspired by the multiparty session types formalism, this is the
first work (theory or practice) to feature a general, asynchronous interrupt mechanism
in MPST, and the first presentation of our Python API for MPST programming.

As an outline, the verification methodology in our framework is as follows. End-
point programs communicate via Conversation API calls to the local conversation run-
time. When a conversation is initiated, the monitor at each endpoint (inlined into the
runtime) observes the initiation messages containing the local protocols, which are then
translated into FSMs. Bookkeeping by the monitor associates the FSM to the new con-
versation instance. As the conversation proceeds, the header of each message contains
the conversation identifier and the source and destination roles. From this information,
the monitor can determine the relevant FSM, and verify whether the message is permit-
ted by an available transition.

3.1 Conversation API

Our Python conversation API offers a high-level interface for safe conversation pro-
gramming. It maps the core communication primitives of session types to lower-level
communication actions on concrete transports. Our current implementation is built on
top of the PIKA [30] AMQP client library for Python, an event-based library that adopts

7

1 local protocol ResourceAccessControl

at User as U(

role Controller as C,

role Agent as A) {

2 req(duration:int) to C;

3 interruptible {

4 rec X {

5 interruptible {

6 rec Y {

7 data() from A;

8 continue Y;

9 }

10 } with {

11 pause() by U;

12 }

13 resume() to A;

14 continue X;

15 }

16 } with {

17 stop() by U;

18 timeout() by C;

19 } }

1 class UserApp(BaseApp):

2 user, controller, agent = [’user’, ’

controller’, ’agent’]

3

4 def start(self):

5 c = Conversation.create(

6 ’RACProtocol’, ’config.yml’)

7 c.join(user, ’alice’)

8 # request 1 hour access

9 c.send(controller, ’req’, 1)

10 with c.scope(’timeout’,’stop’) as c1:

11 while self.limit_reached():

12 with c.scope(’pause’) as c2

13 while not self.buffer.full

14 resource = c1.recv(device)

15 buffer.append(resource)

16 c2.send_interrupt(’pause’)

17 # sleep before resume

18 c1.send(’resume’, resource.id)

19 if self.should_stop():

20 c1.send_interrupt(’stop’)

21 if c1.interrupt: # handle interrupt

22 c.close()

Fig. 5: Scribble local protocol (left) and Python implementation (right) for the User role

continuation-passing style for synchronous (blocking) calls. In summary, the API pro-
vides functionality for (1) session initiation and joining, (2) basic send/receive and (3)
conversation scope management for handling interrupt messages. Figure 4 lists the ba-
sic API operations. Although the invitation operations are not captured in standard
MPST types, the formal counterparts of create and join appear in the literature in
formalisms such as [9].

We demonstrate two different implementations of the User process: sequential (single-
threaded) (Figure 5) and event-driven (Figure 6). An advantage of run-time monitoring
is that both programs can be checked by the same monitor against the same specifica-
tion, whereas type checking each would involve quite different approaches. The former
follows the local protocol shape and handles the interruptible control flow in a structured
manner, hinting that static checking could be possible with additional (orthogonal) rea-
soning to deal with linear variable usage and potential object aliasing. The latter uses
asynchronous message handling, which offers better scalability in a concurrent envi-
ronment, but is less intractable for static validation due to the obfuscated control flow.
Below we explain each of the primitives following the implementation in Figure 5.
Conversation initiation. First, the create method of the Conversation API initiates a
new conversation (session) following the Resource Access Control protocol, and returns
a conversation token that can be used for joining the created conversation (Line 6). The
config.yml file specifies which network principals will play which roles in this session
and send invitation messages that are routed to principals. The join method then con-
forms to join this session as the principal alice playing the role user. Conversation.join
returns a conversation channel to be used for communication operations. Once the invi-
tations are sent and accepted (via the Conversation.join), a session is established and

8

1 class UserApp(BaseApp):

2 def start(self):

3 c = Conversation.create(

4 ’RACProtocol’, ...)

5 c.join(user, ’alice’)

6 # request 1 hour access

7 c.send(controller, ’Request’, 1)

8 c1 = c.new_scope(’Timeout’, ’Stop’)

9 c.receive_async(agent, on_data_recv)

10

11 def on_data_recv(self, c,

12 op, payload):

13 if c.interrupt:

14 log(c.exception.info)

15 if # timeout do clearing

16 elif # want to stop:

17 c.send_interrupt(’Stop’)

18 c.close()

19 elif # want to pause:

20 c.send(’Resume’m resource.id)

21 # sleep

22 c = c.new_scope(’Pause’)

23 c.receive_async(agent, on_data_recv)

24 elif # just received

25 self.buffer.append(payload)

26 c.receive_async(agent, on_data_recv)

Fig. 6: Event-driven Python implementation for the User role
the intended message exchange can start. As a result of the initiation, each participant
stores a mapping (conversation table) that associate AMQP addresses and role.

Conversation message passing. Then, following the local protocol, the user sends a
request to the controller passing the time duration for which he requires an access to
the agent. The send method called on the conversation channel c takes, in this order, the
destination role, message operator and payload values as arguments. This information
is encapsulated in the message payload as part of a conversation header and is later used
for checking by the runtime verification module. The receive method (recv) can take
the source role as a single argument, or additionally the operator of the desired message.
Send is asynchronous, meaning that a basic send does not block on the corresponding
receive; however, the basic receive does block until the complete message has been
received. An asynchronous receive recv async is non-blocking and provides a support
for event-driven usage of the conversation API. In Figure 6 the stream is handled by the
user through the callback function (on data recv) passed to the recv async method.
The callback executions are linked to the protocol by having a conversation channel
as an argument. Note that the API does not mandate how the message operator field
(for example ’req’) should be treated, allowing the runtime freedom to interpret the
operation name various ways, e.g. as a plain message label, an RMI method name,
etc. Syntactic sugar such as automatic dispatch on method calls based on the message
operation is possible.

Handling interrupts via scopes. The stream from the agent to the user can be in-
terrupted either permanently (if a timeout is received from the agent) or temporarily
if the user explicitly interrupts the stream by a pause interrupt message (Line 16) and
resumes it later. An interruptible block is treated through c.scope() (as in Line 10). A
conversation channel returned by c.scope() is a wrapper of the default channel (c1 is
a wrapper around c). It (1) ensures that every send and receive operation is guarded by
a check on the interrupt queue and (2) can be used as a context for with statements (en-
hanced try-finally construct in Python). The combination of with and channels allows
convenient handling of interrupt messages. For example, the interruptible block associ-
ated with c1 spawns across its associated with statement (Line 10–4), which guarantees
that if a ’timeout’ message is received, the control flow will jump out the block to
Line 21. When an interrupt messages is thrown (send interrupt in Line 16), the scope

9

field in the conversation header is set accordingly. Then each receiver identifies the
interrupted scope and throws internal ConversationException. Each with statement
handles only the exception associated to its scope.

The try-finally mechanism is used for convenience, but is not mandatory. In the
case of an the event-driven implementation (Figure 6) it is not appropriate and the
interrupts are handled manually by checking the interrupt attribute (Line 13) of the
wrapped channel and acting accordingly.

3.2 Monitoring Architecture

Inline and outline monitors. To guarantee global safety our monitoring framework
imposes complete mediation of communications: no communication action should have
an effect unless the message is mediated by the monitor. This principle requires that all
outgoing messages from a principal before reaching the destination, and all incoming
messages before reaching the principal, are routed through the monitor.

The monitor implementation (and the accompanying theory [5]) is compatible with
a range of monitor configurations. At one end of the spectrum is inline monitoring,
where an endpoint monitor is embedded into a component’s code. Then there are var-
ious configurations for outline monitoring, i.e. monitors external to their components.
OOI architecture realises interceptor stack, the monitor is a part of the interceptor stack
and is embedded inside the application endpoint.

Fig. 7: Monitor workflow for (1) invitation (2)
in-session messages

Monitor implementation. Figure 7
depicts the main components and
internal workflow of our proto-
type monitor. The lower part relates
to session initiation. The invitation
message carries (a reference to) the
local type for the invitee and the
session id (global types can be ex-
changed if the monitor has the facil-
ity for projection.) The monitor gen-
erates the FSM from the local type
following [11]. Our implementation
differs from [11] in the treatment of parallel sub-protocols (i.e. unordered message se-
quences) and interrupt. For efficiency, the monitor generates nested FSMs for each ses-
sion thread, avoiding the potential state explosion that comes from constructing their
product. FSM generation has therefore polynomial time and space cost in the length
of the local type. The (nested) FSM is stored in a hash table with session id as the
key. Due to MPST well-formedness conditions (message label distinction), any nested
FSM is uniquely identifiable from any unordered message (i.e. session FSMs are de-
terministic). Transition functions are similarly hashed, each entry having the shape:
(current state, transition) 7→ (next state, assertion, var) where transition is a triple
(label,sender,receiver), and var is the variable binder for the message payload.

The upper part of Figure 7 relates to in-session messages, which carry the session id
(matching an entry in the FSM hash table), sender and receiver fields, and the message
label and payload. This information allows the monitor to retrieve the corresponding

10

C!req(int) new scope

A?data

A!pauseA!resume

{C, A}!stop

C?timeout

Fig. 8: FSM generated from the User local protocol
FSM (the message signature is matched to the FSM’s transition function). Any asso-
ciated assertions are evaluated by invoking an external logic engine; a monitor can be
configured to use various logic engines, for example, logic engines that support the
validation of assertions, automata-based specifications (such as security automata), or
state updates. The current implementation uses a Python predicate evaluator, which is
sufficient for the example protocol specifications that we have tested so far.
Handling interrupts. To handle interruptible local types, our FSM generation algo-
rithm extends [11] to the nested FSMs. Each interruptible block induces a new nested
FSM produced by parsing the constructs in the interruptible block. The FSM generated
by the local type for the User role is shown in Figure 8. Each nested FSM is augmented
with an additional interruptible table and a scopeID, obtained by the name of the inter-
ruptible block. The interruptible table stores all interruptible messages that are expected
to be thrown/received for this scope. Interrupt messages are handled in the same way as
the normal messages with the difference that checking is done against the interruptible
table. Messages are explicitly marked (via the message type field in the conversation
header) as interrupt, in-session or initialising. If a received interrupt trace does not have
a match in the interruptible table of the current active FSM, the check is done against its
parent FSM. This FSM unfolding continues until the interrupt is matched or the topmost
FSM is reached. If the interrupt match is not found, the monitor marks the message as
faulted.

4 Evaluations
Our dynamic verification framework has been implemented and integrated into the
Ocean Observatories cyber-infrastructure prototype [28]. This section reports our in-
tegration effort and discusses the performance of our framework.

4.1 Experience: OOI integration

OOI is using a Service-Oriented Architecture, with all of the distributed system services
accessible by RPC. As a part of their effort to move to agent-based communication
patterns and to enable distributed governance for more than just individual RPC calls,
we engineered a step-by-step transition. The first step was to add our Scribble monitor
to the stack of interceptors present in the middleware layer of the implementation. The
second step was to propose our conversation programming interface to developers. To
facilitate the use of session types without obstructing the existing application code we
used the interface of the RPC libraries, but replace the underlying machinery it with

11

x = Registry.save("some data")

def save(data):

return RPCClient.request("Registry", "save", data)

#follows generic Scribble protocol
def request(svc addr, op, args*):

c = create and join("RPCProtocol")
invite and send(svc addr, c, op, args*)
return c.receive()

core conversation primitives:
? create, join, create and join: creation
? invite, invite and send: initial request
? send, receive: in-conversation messages

Application Code

Local Proxy

RPC Library

Conversation Layer

event-based scheduling ION channels

Fig. 9: Translation of an RPC command into lower-level conversation calls
the distributed runtime for session types. The RPC library is now realised on top of
the Conversation Layer (as shown in Figure 9). Thus using the session primitives, it
is automatically verified by the internal monitors. This conversion is feasible because
not even a single line of application code needs to be changed. As a result developers
can use the same interface (conversation API) with a formal foundation automatically
assuring correctness for more complex interactions.

The final step in our integration efforts is ongoing. It consists in leveraging the
present conversation layer providing advanced protocols such as a complicated negoti-
ation between distributed agents [27].

4.2 Benchmarks

A main concern during the integration efforts was the potential performance overhead
that a conversation layer and monitoring can introduce to the system. However, the
benchmarks show it is reasonable. Table 1 presents the execution time comparing RPC
calls using the original OOI RPC library implementation and the conversation-based
RPC without and with monitor verification. 13% of overhead is recorded, which is due
to the FSM generation time. The cost of the checking is negligible. Further optimisa-
tions are still possible, such as caching state machine to reduce the monitor initialisation
time.

We complete this benchmark with numbers showing how well our framework scales
beyond RPC. Figure 2 shows that our overall verification architecture (conversation
layer and inline monitor) scales reasonably (as prescribed by the theory) and does not
induce performance concerns when stress tested. We present two corner case protocol
examples, each aimed at testing a particular performance concern: increasing session
length (number of messages) and increasing parallel states (FSM size). We measure the
time to complete a session between client and server endpoints connected to a single-
broker AMQP network. Two benchmark cases are compared. The main case (Monitor,
Mon) is fully monitored, i.e. FSM generation and message checking are enabled for
both the client and server. The base case for comparison (No Monitor, NoM) has the

12

10 RPC calls
(s)

RPC Lib 0.103
No Monitor 0.108 +4
Monitor 0.122 +13

Table 1: OOI library vs
conversation-based RPC

Rec NoM Mon
States (s) (s)
10 0.92 0.95 +3.2%
100 8.13 8.22 +1.1%
1000 80.31 80.53 +0.8%

Par NoM Mon
States (s) (s)
10 0.45 0.49 +8%
100 4.05 4.22 +4.1%
1000 40.16 41.24 +2.7%

Table 2: Microbenchmarks comparing
end-to-end monitor performance

client and server in the same configuration, but monitors are disabled (messages do not
go through the interceptor stack).

Each table gives the mean time for the client and server to complete one session
after repeating the benchmark 100 times for each parameter configuration. The Python
processes and their monitors run on separate machines (Intel Core2 Duo 2.80 GHz,
Linux). Latency between each node is measured to be 0.24 ms on average (ping 64
bytes).

The tables emphasise the linear growth that is introduced by the monitor in the var-
ious cases. Tests shows that this grow is due to the cost of the initial FSM construction.
As expected, checking a large, but flat FSM (1000 states) gives a negligible overhead
(0.02 ms on average). Most importantly, the relative overhead decreases as the session
length increases, because the one-time FSM generation cost becomes less prominent.
For the dense FSM the worse case scenario results in linear overhead growth w.r.t. the
number of parallel branches.

4.3 Use Cases

Finally, we conclude our evaluation with some remarks on the use-cases we have inves-
tigated. Table 3 features a list of protocols, coming both from the research community
and from our industrial use cases, that we have written in Scribble. We also fed them
to our monitor implementation in order to measure how well it behaves on realistic
protocol descriptions. A natural question for protocol-based validation is the overhead
imposed by the developers for formally writing the protocols. A primary motivation
for the use of Scribble is that it allows clearer, more precise and concise specifications,
thereby reducing design and testing effort for distributed systems.

The average scribble protocol is about 10 LOC with the longest one being 20 LOC
of Scribble. This suggests that Scribble is reasonably concise. The main factors that de-
pend on the choice of protocol and which might affect the capacity and performance of
the validation framework are the (i) time required for the generation of states machines
and the (ii) memory overhead that may be induced by the generation of nested state ma-
chines in case of parallel blocks and interrupts. Table 3 addresses these concerns over
practical use cases and demonstrates the applicability of our verification mechanism.
The time required for FSM generation remains under 20 ms, measuring on average
to be around 10 ms. As shown in Figure 2 such relative overhead decreases with the
increase of the transaction length and the latency between the nodes. The memory over-
head also remains in reasonable boundaries (under 1.5 KB) which hints that catching
the FSM is a feasible approach for further optimisations.

13

Global Scribble FSM Memory Generation Time
Use Cases from research papers (LOC) (B) (s)
a vehicle subsystem protocol [19] 8 840 0.006
map web-service protocol [13] 10 1040 0.010
a bidding protocol [22] 26 1544 0.020
Amazon search service [14] 12 1088 0.010
SQL service [31] 8 1936 0.009
online shopping system [12] 10 1024 0.008
travel booking system [12] 16 1440 0.013

Use Cases from OOI and Savara
a purchasing protocol [33] 11 1088 0.010
a banking example [27] 16 1564 0.013
negotiation protocol [27] 20 1320 0.014
RPC with timeout [27] 11 1016 0.013
Resource Access Control [27] 21 1854 0.018

Table 3: Implemented use cases

Overall, considering all the numbers given in this section and our experience of
running our conversation framework within the OOI system, we predict that, in any
large distributed system, the monitoring cost is decentralised and would be negligible
compared with all the other services (routing, QOS, logging, etc) that are running at
the same time. The important benefits in terms of safety and management of high-level
applications therefore come at a very reasonable cost that should be considered in such
future distributed systems. The full source code and raw results can be obtained from
the project homepage [36].

5 Interruptible session type theory and related work
5.1 Session type theory for interrupts

In this subsection, we sketch the underlying session type theory with interrupts and
its correctness result, session fidelity, justifying our design choice. We build over the
multiparty session theory [15], adding syntax and semantics for interrupts. In our theory,
global types correspond to session specifications whereas local types are used to express
monitored behaviours of processes [5]. We show that interruptible blocks can be treated
through the use of scopes, a new formal construct that realises, through an explicit
identifier, the domain of interrupts. Our scope-based session types can handle nested
interrupts and multiparty continuations to interruptible blocks, allowing us to model
truly asynchronous exceptions implemented in this paper (these features have not been
modelled in existing MPST theories for exceptions [9,8,7]). The full definitions and
proofs are available in Appendix A.

Global types (G) in Figure 12 corresponds to Scribble protocol. In types, scopes
are made explicit by the use of scope variables S, corresponding to the dynamic scope
generation present in the implementation in § 3.1. Roles in types are denoted by r, and
labels with l.

The main primitive is the interaction with directed choice: r→r′ : {li.Gi}i∈I is a
communication between the sender r and the receiver r′ which involves a choice be-

14

G ::= r→r′ :{li.Gi}i∈I | G|G | {|G|}S〈l by r〉;G′ | µx.G | x | end | Eend
T ::= r!{li.Ti}i∈I | r?{li.Ti}i∈I
| T |T | {|T |}S / 〈r!l〉;T ′ | {|T |}S . 〈r?l〉;T ′ | µx.T | x | end | Eend

Fig. 10: Global and local types

tween several labels li, the corresponding continuations are denoted by the Gi. Parallel
composition G1|G2 allows the execution of interactions not linked by causality.

Our types feature a new interrupt mechanism by explicit interruptible scopes: we
write {|G|}S〈l by r〉;G′ to denote a creation of an interruptible block identified by scope
S, containing protocol G, that can be interrupt by a message l from r and continued after
completion (either normal or exceptional) with protocol G′. This construct corresponds
to the interruptible of Scribble, presented in § 2. Note that we allow interruptible
scopes to be nested. This syntax - and the related properties - can be easily extended to
multiple messages from different roles. We use Eend (resp. end) to denote the excep-
tional (resp. normal) termination of a scope.

The local type syntax (T) in Figure 12 follows the same pattern, but the main dif-
ference is that the interruptible operation is divided into two side, one / side for the role
which can send an interrupt {|T |}S / 〈r!l〉;T ′, and the . side for the roles which should
expect to receive an interrupt message {|T |}S . 〈r?l〉;T ′.

GResCont = U→C : req;C→A : start
{|µX .
{|µY.A→U :data;Y |}S2〈pause by U〉;
U→A : resume;X
|}S1〈stop by U, timeout by C〉;end

Fig. 11: Global type for Figure 2

In Figure 14, we describe a
formal global type which corre-
sponds to the Scribble protocol
in Figure 2. The explicit naming
of the scopes, S1 and S2, corre-
spond to the dynamic scope gen-
erations in § 3.1, and are for-
mally required to formalise the
semantics of local types.

We define the relation G ; G′ as:
r→r′ :{li.Gi}i∈I ; Gi {|G|}S〈l by r〉;G0 ; {|Eend|}S〈l by r〉;G0

G ; G′ implies {|G|}S〈l by r〉;G0 ; {|G′|}S〈l by r〉;G0 G ; G′ implies G | G0 ; G′ | G0

and say G′ is a derivative of G if G ;∗ G′. We define configurations ∆ ,Σ as a pair of a
mapping from a session channel to a local type and a collection of queues (a mapping
from a session channel to a vector of the values). Configurations model the behaviour of
a network of monitored agents. We say a configuration ∆ ,Σ corresponds to a collection
of global types G1, . . . ,Gl whenever Σ is empty and the environment ∆ is a projection
of G1, . . . ,Gl . The reduction semantics of the configulation (∆ ,Σ → ∆ ′,Σ ′) is defined
using the contexts with the scopes. We leave the formal definition in Appendix A.

The correctness of our theory is ensured by Theorem 1, which states a local en-
forcement implies global correctness: if a network of monitored agents (modelled as
a configuration) corresponds to a collection of well-formed specifications and makes
some steps by firing messages, then the network can perform reductions (consuming
these messages) and reaches a state that corresponds to a collection of well-formed
specifications, obtained from the previous one. This property guarantees that the net-
work is always linked to the specification, and proves, with the previous dynamic mon-

15

itoring process theory [5], that the introduction of interruptible blocks to the syntax and
semantics yields a sound theory. See the proofs in Appendix A.

Session fidelity If ∆ corresponds to G1, . . . ,Gn and ∆0,ε→∗ ∆ ,Σ , there exists ∆ ,Σ→∗
∆ ′,ε such that ∆ ′ corresponds to G′1, . . . ,G

′
n which is a derivative of G1, . . . ,Gn.

5.2 Related works

Distributed run-time verification. The work [2] explores run-time monitoring based
on session types as a test framework for multi-agent systems (MAS). A global ses-
sion type is specified as cyclic Prolog terms in Jason (a MAS development platform).
Their global types are less expressive in comparison with the language presented in this
paper (due to restricted arity on forks and the lack of assertions and session interrupt).
Their monitor is centralised (thus no projection facilities are discussed), and neither for-
malisation, global safety properties, proof of correctness nor compositional reasoning
methodology are given in [2].

Other works, notably from the multi-agent community, have studied distributed en-
forcement of global properties through monitoring. A distributed architecture for local
enforcement of global laws is presented by Zhang et al. [37], where monitors enforce
laws expressed as event-condition-action. In [24], monitors may trigger sanctions if
agents do not fulfil their obligations within given deadlines. Unlike such frameworks,
where all agents belonging to a group obey the same set of laws, our approach asks
agents to follow personalised laws based on the role they play in each session.

In run-time verification for Web services, the work [22,23] proposes FSM-based
monitoring using a rule-based declarative language for specifications. These systems
typically position monitors to protect the safety of service interfaces, but do not aim to
enforce global network properties. Cambronero et al. [6] transform a subset of Web Ser-
vices Choreography Description Language into timed-automata and prove their trans-
formation is correct with respect to timed traces. Their approach is model-based, static
and centralised, and does not treat either the runtime verification or interrupts. Baresi et
al. [3] develop a run-time monitoring tool for BPEL with assertions. A major difference
is that BPEL approaches do not treat or prove global safety. BPEL is expressive, but
does not support distribution and is designed to work in a centralised manner. Kruger et
al. [20] propose a run-time monitoring framework, projecting MSCs to FSM-based dis-
tributed monitors. They use aspect-oriented programming techniques to inject monitors
into the implementation of the components. Our outline monitoring verifies conversa-
tion protocols and does not require such monitoring-specific augmentation of programs.
Gan [12] follows a similar but centralised approach of [20]. As a language for proto-
col specification, a main advantage of Scribble (i.e. MPST) over alternatives, such as
message sequence charts (MSC), CDL and BPML, is that MPST has both a formal ba-
sis and an in-built mechanism (projection) for decentralisation, and is easily integrated
with the language framework as demonstrated for Python in this paper.
Language-based monitor tools. Jass [17] is a precompiler tool that monitors dynamic
behaviour of sequential objects, the ordering of method invocations and calls. It an-
notates Java programs with specifications that can be checked at run-time. Another
popular language-based approach is aspect-oriented programming [21]. In comparison,

16

our approach is language-independent and interoperable. Moreover, our safety proper-
ties are backed up by a solid process theory, well-suited to the analysis of distributed
systems. Mace [18] is a language designed to write clean specifications for the sys-
tems layer of distributed systems targeted to C++. Programming of service objects in
Mace is based on a state-event-transition model, using aspects for taking actions when
a certain condition is satisfied. They use model-checking for error detection for the
behaviour of service objects. Their frameworks do not treat protocol descriptions for
communication-centred development, nor do they consider specifications of the global
behaviour of distributed systems.

6 Conclusion
We have first implemented the dynamic verification of distributed communications
based on multiparty session types and shown that a new interrupt mechanism is effec-
tive for the run-time verification of message exchanges over a large cyber-infrastructure
[26] and Web services [32,35,34]. Our implementation automates distributed monitor-
ing by generating FSMs from local protocol projections. We sketched the formulation
of asynchronous interruptions with session scopes, and proved the correctness of our
design through the session fidelity theorem. Future work includes the incorporation of
a more elaborate handling of error cases into monitors and the automatic generation
of services stubs. Although our implementation work is ongoing through industry col-
laborations, the results already confirm the feasibility of our approach. We believe this
work is an important step towards a better, safer world of easier to speak and easier to
understand distributed conversations.

References
1. Advanced Message Queuing protocols (AMQP) homepage. http://jira.amqp.org/

confluence/display/AMQP/Advanced+Message+Queuing+Protocol.
2. D. Ancona, S. Drossopoulou, and V. Mascardi. Automatic generation of self-monitoring

mass from multiparty global session types in Jason. In DALT’12. Springer, 2012.
3. L. Baresi, C. Ghezzi, and S. Guinea. Smart monitors for composed services. In ICSOC ’04,

pages 193–202, 2004.
4. L. Bettini et al. Global progress in dynamically interleaved multiparty sessions. In CONCUR,

volume 5201 of LNCS, pages 418–433. Springer, 2008.
5. L. Bocchi, T.-C. Chen, R. Demangeon, K. Honda, and N. Yoshida. Monitoring networks

through multiparty session types. (to appear), 2013.
6. M.-E. Cambronero et al. Validation and verification of web services choreographies by using

timed automata. J. Log. Algebr. Program., 80(1):25–49, 2011.
7. S. Capecchi, E. Giachino, and N. Yoshida. Global escape in multiparty session. In

FSTTCS’10, volume 8 of LIPICS, pages 338–351, 2010.
8. M. Carbone. Session-based choreography with exceptions. Electr. Notes Theor. Comput.

Sci., 241:35–55, 2009.
9. M. Carbone, K. Honda, and N. Yoshida. Structured interactional exceptions in session types.

In CONCUR, volume 5201 of LNCS, pages 402–417. Springer, 2008.
10. W3C WS-CDL. http://www.w3.org/2002/ws/chor/.
11. P.-M. Deniélou and N. Yoshida. Multiparty session types meet communicating automata. In

ESOP, LNCS. Springer, 2012.

17

http://jira.amqp.org/confluence/display/AMQP/Advanced+Message+Queuing+Protocol
http://jira.amqp.org/confluence/display/AMQP/Advanced+Message+Queuing+Protocol
http://www.w3.org/2002/ws/chor/

12. Y. Gan et al. Runtime monitoring of web service conversations. In CASCON ’07, pages
42–57. ACM, 2007.

13. C. Ghezzi and S. Guinea. Run-time monitoring in service-oriented architectures. In Test and
Analysis of Web Services, pages 237–264. Springer, 2007.

14. S. Hallé, T. Bultan, G. Hughes, M. Alkhalaf, and R. Villemaire. Runtime verification of web
service interface contracts. Computer, 43(3):59–66, Mar. 2010.

15. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In
POPL’08, pages 273–284. ACM, 2008.

16. R. Hu, D. Kouzapas, O. Pernet, N. Yoshida, and K. Honda. Type-safe eventful sessions in
Java. In ECOOP’10, volume 6183 of LNCS, pages 329–353. Springer-Verlag, 2010.

17. Jass Home Page. http://modernjass.sourceforge.net/.
18. C. E. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. Vahdat. Mace: language support

for building distributed systems. In PLDI, pages 179–188, 2007.
19. I. H. Krüger, M. Meisinger, and M. Menarini. Runtime verification of interactions: from

mscs to aspects. In RV’07, RV’07, pages 63–74, Berlin, Heidelberg, 2007. Springer-Verlag.
20. I. H. Krüger, M. Meisinger, and M. Menarini. Interaction-based runtime verification for

systems of systems integration. J. Log. Comput., 20(3):725–742, 2010.
21. LAVANA project. http://www.cs.um.edu.mt/svrg/Tools/LARVA/.
22. Z. Li, J. Han, and Y. Jin. Pattern-based specification and validation of web services interac-

tion properties. In ICSOC’05, pages 73–86, 2005.
23. Z. Li, Y. Jin, and J. Han. A runtime monitoring and validation framework for web service

interactions. In ASWEC’06, pages 70–79, Washington, DC, USA, 2006. IEEE Computer
Society.

24. N. H. Minsky and V. Ungureanu. Law-governed interaction: a coordination and control
mechanism for heterogeneous distributed systems. TOSEM, 9:273–305, July 2000.

25. N. Ng, N. Yoshida, and K. Honda. Multiparty Session C: Safe Parallel Programming with
Message Optimisation. In TOOLS, volume 7304 of LNCS, pages 202–218. Springer, 2012.

26. OOI. http://www.oceanobservatories.org/.
27. OOI. https://confluence.oceanobservatories.org/display/CIDev/Identify+

required+Scribble+extensions+for+advanced+scenarios+of+R3+COI.
28. OOI codebase. https://github.com/ooici/pyon.
29. OOI COI Governance Framework. https://confluence.oceanobservatories.org/

display/syseng/CIAD+COI+OV+Governance+Framework.
30. AMQP for Python (PIKA). https://github.com/pika/pika.
31. G. Salaün. Analysis and verification of service interaction protocols - a brief survey. In

TAV-WEB, volume 35 of EPTCS, pages 75–86, 2010.
32. Savara JBoss Project. http://www.jboss.org/savara.
33. Savara examples. http://www.jboss.org/savara/downloads.
34. Scribble Project homepage. http://www.scribble.org.
35. Scribble JBoss homepage. http://www.jboss.org/scribble.
36. Full version of this paper. http://www.doc.ic.ac.uk/~rn710/mon.
37. W. Zhang, C. Serban, and N. Minsky. Establishing global properties of multi-agent systems

via local laws. In E4MAS’06, pages 170–183, 2007.

A Session types with interrupts
This appendix presents the underlying session type theory with interrupts and its cor-
rectness result, session fidelity, justifying our choice for the implementation of interrupt
messages. We build over an existing multiparty session theory [15], adding syntax and
semantics for interrupts. In our theory, global types correspond to session specifications

18

http://modernjass.sourceforge.net/
http://www.cs.um.edu.mt/svrg/Tools/LARVA/
http://www.oceanobservatories.org/
https://confluence.oceanobservatories.org/display/CIDev/Identify+required+Scribble+extensions+for+advanced+scenarios+of+R3+COI
https://confluence.oceanobservatories.org/display/CIDev/Identify+required+Scribble+extensions+for+advanced+scenarios+of+R3+COI
https://github.com/ooici/pyon
 https://confluence.oceanobservatories.org/display/syseng/CIAD+COI+OV+Governance+Framework
 https://confluence.oceanobservatories.org/display/syseng/CIAD+COI+OV+Governance+Framework
https://github.com/pika/pika
http://www.jboss.org/savara
http://www.jboss.org/savara/downloads
http://www.scribble.org
http://www.jboss.org/scribble
http://www.doc.ic.ac.uk/~rn710/mon

whereas local types are used to express monitored behaviours of processes [5]. We
show that interruptible blocks can be treated through the use of scopes, a new formal
construct that realises, through an explicit identifier, the domain of interrupts.

A.1 Global and local types

Syntax. Global types (G) in Figure 12 describe role-based global scenarios between
multiple participants as a type signature, projectable into local types. In types, scopes
are made explicit by the use of scope variables S. We assume there is an infinite set
of such variables and that no two variables are the same inside global types. This is
crucial as our syntax contains recursion: recursive types are treated as equi-recursive
terms, meaning that the lazy unfolding of the types is implicit; thus, when a scope
variable appears inside of a recursion loop, it actually stands for an infinite number of
fresh variables. We consider that this is an appropriate abstraction of the dynamic scope
generation present in the implementation in § 3.1. Roles in types are denoted by r, and
labels (appearing in directed choices) with l.

G ::= r→r′ :{li.Gi}i∈I | G|G | {|G|}S〈l by r〉;G′ | µx.G | x | end | Eend
T ::= r!{li.Ti}i∈I | r?{li.Ti}i∈I
| T |T | {|T |}S / 〈r!l〉;T ′ | {|T |}S . 〈r?l〉;T ′ | µx.T | x | end | Eend

Fig. 12: Global and local types
The main primitive is the interaction with directed choice: r→r′ : {li.Gi}i∈I is a

communication between the sender r and the receiver r′ which involves a choice be-
tween several labels li, the corresponding continuations are denoted by the Gi. Parallel
composition G1|G2 allows the execution of interactions not linked by causality.

Our types feature a new interrupt mechanism by explicit interruptible scopes: we
write {|G|}S〈l by r〉;G′ to denote a creation of an interruptible block identified by scope
S, containing protocol G (called inner protocol), that can be interrupt by a message l
from r and continued after completion (either normal or exceptional) with protocol G′

(called continuation protocol). This construct corresponds to the interruptible of
Scribble, presented in § 2. For the sake of clarity, we suppose there is only one possible
interrupt message (from one particular role) for each scope, but extending it to multiple
interrupt messages (possibly from different roles) is not difficult. Note that we allow
interruptible scopes to be nested. We use Eend (resp. end) to denote the exceptional
(resp. normal) termination of a scope.

The local type syntax (T) in Figure 12 follows the same pattern, but the main dif-
ference is that the interruptible operation is divided into two side, one / side for the role
which can send an interrupt {|T |}S / 〈r!l〉;T ′, and the . side for the roles which should
expect to receive an interrupt message {|T |}S . 〈r?l〉;T ′.

Global types are subject to some well-formedness conditions [15], which constrain
the type syntax. This enforces causality in an asynchronous framework (preventing
r1 → r2;r3 → r4 to be viable). We assume every global type G is well-formed ac-
cording to the conditions from [15], and adding interruptible scopes does not introduce
new conditions.
Projection. We define the projection operation ↑ r, which, for any participant playing
a role r in a session G, specifies its local type.

19

(r→r′ :{li.Gi}i∈I) ↑ r = r′!{li.(Gi ↑ r)}i∈I
(r→r′ :{li.Gi}i∈I) ↑ r′ = r?{li.(Gi ↑ r′)}i∈I
(r→r′ :{li.Gi}i∈I) ↑ r0 = G1 ↑ r0

(µx.G) ↑ r0 ∈ G = µx.(G ↑ r0)
(µx.G) ↑ r0 /∈ G = end

x ↑ r0 = x
end ↑ r0 = end

{|G|}S〈l by r〉;G′ ↑ r = {|G ↑ r|}S . 〈r?l〉;G′ ↑ r
{|G|}S〈l by r′〉;G′ ↑ r ∈ G = {|G ↑ r|}S / 〈r′!l〉;G′ ↑ r
{|G|}S〈l by r′〉;G′ ↑ r /∈ G = G′ ↑ r

We assume r, r′ and r0 are pairwise distinct.
The projection rules themselves are straightforward, and similar to the one in [15]:

an interaction is projected as a send action r′! of the sender side, a receive r′? action
on the receiver side and does not appear to other roles (the well-formedness conditions
from [15] ensure that every branch is the same to these roles). When it comes to inter-
ruptible constructs, the projection on role r works as follows: if r does not appear in
the inside protocol, the projection ignores the construct and amounts to the projection
on the continuation. If role r is the role responsible for the interrupt, the projection is a
. local type; and if the role r is not responsible for the interrupt, but appears inside the
inner scope, the projection is a / local type.

A.2 Configuration and semantics

In order to justify our framework, we need to introduce a semantics for local types.
This will be defined through the use of configurations, which are meant to represent the
situation of an on-going network of monitored principals.

We use ∆ to denote session environments which are collections of local types s1[r1] :
T1, . . . ,sn[rn] : Tn and abstract monitored principals, more precisely s1[r1] : T1 is the sta-
tus of participant r1 in session s1 which is expected to behave as T1. Standard messages
are explained as follows: S[r,r′]〈l〉 meaning it appears inside scope S, is sent from r

to r′ and contains label l. We also annotate messages for interrupts as in SI[r,r′]〈l〉. A
queue s[r] : h is a sequence of messages waiting to be consumed by a particular role r in
session s. Queues are ordered, but we allow permutations of two messages in the same
queue if they have different receivers (as in [15]). For the sake of clarity, we do not de-
scribe here the relaxing of conditions on permutability induced by the use of scope (we
could allow two messages to the same receiver to be permuted if they are not tagged
with the same scope).

Configurations ∆ ,Σ are pairs composed of a session environment and a transport
Σ which is a collection of queues. Configurations model the behaviour of a network of
monitored agents.

We define a reduction semantics for configurations in Figure 13. In order to treat
a message with its corresponding scope, we need to remember from which scope the
message was sent. To this purpose, we enrich the definition of scopes with ε the empty

20

(Out) s[r] : ES[r′!{li.Ti}];s[r′] : h → s[r] : ES[Ti];s[r′] : h.S[r,r′]〈li〉
(In) s[r] : ES[r′?{li.Ti}];s[r] : S[r′,r]〈li〉.h → s[r] : ES[Ti];s[r] : h

(EOut) s[r] : ES0 [{|T |}S . 〈r?l〉;T ′];s[r1] : h, . . . ,s[rn] : h
→ s[r] : ES0 [{|Eend|}S . 〈r?l〉;T ′];s[r1] : SI[r,r1]〈l〉.h, . . . ,s[rn] : SI[r,rn]〈l〉.h

(EIn) s[r] : ES0 [{|T |}S . 〈r′?l〉;T ′];s[r] : SI[r′,r]〈l〉.h → s[r] : ES0 [{|Eend|}S . 〈r′?l〉;T ′];s[r] : h

(Disc) s[r] : ES0 [{|Eend|}S . 〈r′?l〉;T ′];s[r] : S1[r
′,r]〈l〉.h → s[r] : ES0 [{|Eend|}S . 〈r′?l〉;T ′];s[r] : h

(EDisc) s[r] : ES0 [{|Eend|}S . 〈r′?l〉;T ′];s[r] : SI1 [r
′,r]〈l〉.h → s[r] : ES0 [{|Eend|}S . 〈r′?l〉;T ′];s[r] : h

(Par) ∆ ,∆0;Σ ,Σ0→ ∆ ′,∆0;Σ ′,Σ0 if ∆ ;Σ → ∆ ′;Σ ′

In (EOut), we assume Γ (S) = {r,r1, . . . ,rn}; and in (Disc,EDisc), we assume Γ ` S R S1.

Fig. 13: Reduction semantics for a specification
scope and add a scope annotation on contexts. Thus evaluation contexts are defined by:

Eε = [] | (Eε |T) | (T |Eε)

ES = {|ES|}S′ 6=S . 〈r?l〉;T ′ | {|ES|}S′ 6=S / 〈r!l〉;T ′ | {|Eε |}S . 〈r?l〉;T ′

| {|Eε |}S / 〈r!l〉;T ′ | {|Eend|}S′ 6=S . 〈r?l〉;ES | {|Eend|}S′ 6=S / 〈r!l〉;ES

| {|end|}S′ 6=S . 〈r?l〉;ES | {|end|}S′ 6=S / 〈r!l〉;ES | ES|T | T |ES

Evaluation contexts are indexed by scope S; our definition ensures that the evaluation
actually happens inside S (i.e. S is the innermost scope in which the hole appears).
Evaluation can proceed from inside the inner scope of an interruptible (either . or /)
construct, or from inside the continuation scope of a interruptible, but only when the
inner scope has ended (normally or exceptionally).

The reduction semantics is defined w.r.t. a scope environment Γ = T ,R composed
of a scope table T ::= ε | S : {r1, . . . ,rn},T and a scope order which is the reflexive
and transitive closure of the relation given by: S1 R S2 whenever a global type contains
ES1 [{|G|}S2〈l by r〉;G′]. The scope table keeps a track of every participant in a scope
and the scope order keeps track of scope nesting (when S1 R S2 it means that scope S2
is inside scope S1). We note Γ (S) = {r1, . . . ,rn} whenever Γ = T ,R and T contains
S : {r1, . . . ,rn}. The environment is omitted when not necessary.

Semantics rules in Figure 13 are as follows: in (Out), an output from r to r′ appear-
ing inside the scope S of the type of role r in session s is played and a message is placed
in the queue s[r′], tagged with S. Conversely in (In), a message in queue s[r′] can be
consumed by r′ inside a matching scope. In rule (EOut), a type T inside scope S is in-
terrupted by r, which replaces T by Eend and places an interrupt message in the queues
of each participant of scope S (we need the table from Γ). Conversely in rule (EIn), an
interrupt message for scope S is consumed to exceptionally terminates the type T inside
scope S. Rule (Disc) discards an incoming message to scope S1 nested inside scope S if
the latter has already been exceptionally terminated (we need the scope order from Γ).
Rule (EDisc) performs the same thing for exceptional messages.

Regarding to the semantics, we have two remarks. Most of existing theoretical
works such as [15] consider session creations, through the use of auxiliary actions. Also
the garbage collection can be handled by adding completion annotation to types and ad-
ditional rules to control broadcasts of special messages: when a participant receives a
completion message it can assume its sender is finished, and when every other partic-

21

ipants of a scope are finished the whole interrupt construct can be garbage collected.
Both these facilities can be integrated into the current semantics.

A.3 Session fidelity proof

The correctness of our theory is ensured by Theorem 1, which states a local enforcement
implies global correctness: if a network of monitored agents (modelled as a configura-
tion) corresponds to a collection of well-formed specifications and makes some steps by
firing messages, then the network can perform reductions (consuming these messages)
and reaches a state that corresponds to a collection of well-formed specifications, ob-
tained from the previous one. This property guarantees that the network is always linked
to the specification, and proves, with the previous dynamic monitoring process theory
[5], that the introduction of interruptible blocks to the syntax and semantics yields a
sound theory.

First, we define configuration correspondence: a configuration ∆ ,Σ corresponds to
a collection of global types G1, . . . ,Gl whenever Σ is empty and ∆ = {Gi ↑ r | r ∈
Gl , 1 ≤ i ≤ l}. That is, the environment is a projection of existing well-formed global
types. We use→∗ to denote the reflexive-transitive closure of→.

We say that a global type G′ is a derivative of G whenever G′ can be obtained from
G by progressing in the types. The formal definition is given by taking the reflexive and
transitive closure of the ;-relation:

r→r′ :{li.Gi}i∈I ; Gi {|G|}S〈l by r〉;G0 ; {|Eend|}S〈l by r〉;G0

{|G|}S〈l by r〉;G0 ; {|G′|}S〈l by r〉;G0 if G ; G′ G | G0 ; G′ | G0 if G ; G′

A.4 Type memory

We say that a queue has an ongoing exception on S, written ϕ(Σ ,S) whenever Σ con-
tains at least one message SI1[r

′,r]〈l〉 and SRS1.
We use a special annotation, called memory to remember what has been discarded

by exceptions. The syntax of memory types is the same as the one for standard local
types except we add ES[‖T‖]. We define the recursive operator Erase(·) which removes
memory annotations from types: Erase(s[r] : ES[‖T‖]) = s[r] : ES[Eend].

From the definition of the correspondence relation between global types and ∆ we
build the intermediate correspondence between global types and configurations ∆ ,Σ
containing type with memories using the following updates:

– ∆ ,s[r] : ES[T];Σ ,s[r′] : h.S[r′,r]〈l j〉 becomes ∆ ,s[r] : ES[r!{li.Ti}];Σ for some (Ti)i6= j
– If the participants of S are r,r1, . . . ,rn, ∆ ,s[r] : ES[‖T‖]∏1≤i≤k s[ri] : Ei

S[‖Ti‖],∏k+1≤ j≤n s[r j] :
Ei

S[Tj];Σ ,∏k+1≤ j≤n s[r j] : SI[r,r j]〈l〉.h j is treated as ∆ ,s[r] : ES[T],∏1≤i≤n s[ri] : Ei
S[Ti];Σ .

This definition ensures first that ongoing outputs are treated as if they were not yet
emited, and that ongoing exceptions are treated as if the exceptions were not yet trig-
gered.

Special semantics for type with memory annotations is obtained by giving memories
the same semantics as Eend w.r.t. contexts and using the following rules for annotated
types (replacing (Disc), (EDisc) and (EIn)):

22

(Disc′) assuming s[r] : ES0 [T];s[r] : S1[r
′,r]〈l〉.h→ s[r] : ES0 [T ′];s[r] : h

s[r] : ES0 [{|‖T‖|}S . 〈r′?l〉;];s[r] : S1[r
′,r]〈l〉.h→ ES0 [{|‖T ′‖|}S . 〈r′?l〉;];s[r] : h

(EIn1) assuming ϕ(Σ ,S)
s[r] : ES0 [{|T |}S . 〈r′?l〉;T ′];s[r] : SI[r′,r]〈l〉.h→ ES0 [{|‖T‖|}S . 〈r′?l〉;T ′];s[r] : h
(EIn2) assuming ¬ϕ(Σ ,S),
∏1≤i≤n s[ri] : Ei

Si [{|‖Ti‖|} . 〈r′?l〉;],s[r] : ES0 [{|T |}S . 〈r′?l〉;T ′];Σ ,s[r] : SI[r′,r]〈l〉.h
→ ∏1≤i≤n s[ri] : Ei

Si [{|Eend|} . 〈r′?l〉;],s[r] : ES0 [{|Eend|}S . 〈r′?l〉;T ′];Σ ,s[r] : h
(EDisc1) assuming ϕ(Σ ,k1)
s[r] : ES0 [{|‖E [{|T |}k1 . 〈r′?l〉;T ′]‖|}S . 〈r′′?l′′〉;];Σ ,s[r] : kI1[r

′,r]〈l〉.h
→ s[r] : ES0 [{|‖E [{|‖T‖|}k1 . 〈r′?l〉;T ′]‖|}S . 〈r′′?l′′〉;];Σ ,s[r] : h
(EDisc2) assuming ¬ϕ(Σ ,k1)
s[r] : ES0 [{|‖ES[{|T |}k1 . 〈r′?l〉;T ′]‖|}S . 〈r′′?l′′〉;],

∏1≤i≤n s[ri] : E1
S[{|‖Ti‖|}k1 . 〈r′?l〉;T ′i];Σ ,s[r] : SIi [r

′,r]〈l〉.h
→∏1≤i≤n s[ri] : Ei [{|Eend|}Si . 〈r′?l〉;Ti],

s[r] : ES0 [{|‖ES[{|Eend|}k1 . 〈r′?l〉;T ′]‖|}S . 〈r′′?l′′〉;];Σ ,s[r] : h

For rule corresponding to (Disc), we reduce the memory instead of discarding the
message. For rules corresponding to (EIn) and (EDisc), in both cases, we do a discus-
sion on whether the exception corresponding to the message is “ongoing” or not. If it
is the case, it means other exception messages for the same scope still exist in queue,
thus we annotate the type in the scope (which would have been discarded) as a memory
type, in order to remember it. If the exception message was the last one from its scope,
then we remove the whole memory for this exception by replacing every corresponding
memory (in every types) with Eend.

It is easy to see that ∆ ,Σ simulates Erase(∆),Σ and that Erase() preserves the
intermediate correspondence w.r.t. G1, . . . ,Gn. Thus in the following we will work with
memory annotated configurations, which are useful because they remember what local
type has been discarded by an exception as long as the type has not need discarded for
every participant of the scope.

Main proof Thus Theorem 1 states that if a configuration corresponds to G1, . . . ,Gn
and makes some reduction steps, we can let it make other steps to reach a configura-
tion that corresponds to some derivatives of G1, . . . ,Gn. The intermediate configurations
correspond to the situation where messages are exchanged through queues.

Theorem 1 (Session fidelity).
If ∆ corresponds to G1, . . . ,Gn and ∆ ,ε→∗ ∆ ′,Σ ′, there exists ∆ ′,Σ ′→∗ ∆ ′′,ε such

that ∆ ′′ corresponds to G′′1 , . . . ,G
′′
n which is a derivative of G1, . . . ,Gn.

Proof. We prove that if there is an intermediate correspondence between ∆ ,Σ and
G1, . . . ,Gn and if ∆ ,ε → ∆ ′,Σ ′, then there is an intermediate correspondence ∆ ′′ and
G′′1 , . . . ,G

′′
n which is a derivative of G1, . . . ,Gn.

We use Ω ,Θ alongside ∆ to denote session environment. According to the deriva-
tive definition above, we extend the notion of evaluation contexts to global types.

23

Case (Out) is trivial from the first rule of intermediate correspondence.
Case (EOut). We have ∆ =Θ ,s[r] : ES0 [{|T |}S . 〈r?l〉;T ′]. Correspondence gives

∆ = Θ0,s[r] : ES0 [{|T |}S . 〈r?l〉;T ′],∏1≤i≤n s[ri] : Ei
Si [{|Ti|}S . 〈r?l〉;T ′i] Σ = Σ1,Σ0

with Θ0;Σ0 corresponding to G2, . . . ,Gn and (∆ −Θ ′);Σ1 corresponding to G1. We
know that Σ ′ = Σ0,∏1≤i≤n s[ri] : hi.SI[r,ri]〈l〉. Concluding is easy using the second
rule of intermediate correspondence with k = 0.

Case (In). We assume ∆ = Θ ,s[r′] : ES[r?{li.Ti}] and Σ = Σ0,s[r′] : h.S[r,r′]〈l j〉.
We know there exists G1, . . .Gn and ∆0 such that ∆0 =Θ1, . . . ,Θn with Θi =

⋃
r∈Gi

Gi ↑r.
Without loss of generality we have Θ1 = s[r′] : ES[r?{li.Ti}],Θ ′1. By the rules of projec-
tion, it means G1 = r→r′ :{l j.G j} j∈J , implying Θ ′1 = s[r′] : ES′ [r?{li.Ti}],Θ ′′1 . So we
have ∆ ′ = Ω ,s[RR] : ES[Tj],s[r′] : ES′ [r?{li.Ti}],Θ ′1 and Σ ′ = Σ0,s[r′] : h.S[r,r′]〈l j〉.
We apply use (In) to conclude, using the projection rule on G j.

Case (EIn1). We pose r = rk+1. We have Σ = Σ ′,SI[r0,rk+1]〈l〉.h and ϕ(Σ ′,S).
Then let us define ∆ =Θ ,s[rk+1] : ES0 [{|Tk+1|}S . 〈r0?l〉;T ′] and ∆ ′ =Θ ,
s[rk+1]ES0 [{|‖T‖|}S . 〈r0?l〉;T ′]. Without loss of generality we suppose ∆ ;Σ corre-
sponds to G. We deduce that G = F{|G0|}S〈l by r〉;G′ and ∆ = s[r0] : E [{|T |}S .
〈r′?l〉;],∏1≤i≤k s[ri] : Ei [{|‖Ti‖|}S . 〈r′?l〉;],∏k+1≤ j≤n s[r j] : Ei [{|Tj|}S . 〈r′?l〉;]

and Σ = Σ0,∏k+1≤ j≤n s[r j] : SI[r,r j]〈l〉.h j. Thus we have ∆ ′ = s[r0] : E [{|T |}S .

〈r′?l〉;],∏1≤i≤k+1 s[ri] : Ei [{|‖Ti‖|}S . 〈r′?l〉;], ∏k+2≤ j≤n s[r j] : Ei [{|Tj|}S . 〈r′?l〉;]
and Σ ′ = Σ0,∏k+2≤ j≤n s[r j] : SI[r,r j]〈l〉.h j. We conclude using the second definition
of intermediate correspondence with k = k+1.

Case (EIn2). We pose rn = r, we have Σ = Σ ′,SI[r0,rn]〈l〉.h and ¬ϕ(Σ ′,S). Then
∆ = Θ ,s[rn] : ES0 [{|Tn|}S . 〈r0?l〉;T ′] and ∆ ′ = Θ ,s[rk+1]ES0 [{|‖T‖|}S . 〈r0?l〉;T ′].
Without loss of generality we suppose ∆ ;Σ corresponds to G. We deduce that G =
F{|G0|}S〈l by r〉;G′ , ∆ = s[r0] : E [{|T |}S . 〈r′?l〉;],∏1≤i≤n−1 s[ri] : Ei [{|‖Ti‖|}S .
〈r′?l〉;],s[rn] : En [{|Tn|}S . 〈r′?l〉;] and Σ = Σ0,s[rn] : SI[r,rn]〈l〉.h. From the se-
mantics, we also have ∆ ′= s[r0] : E [{|Eend|}S . 〈r′?l〉;],∏1≤i≤n s[ri] : Ei [{|Eend|}S .
〈r′?l〉;] and Σ = Σ0,s[rn] : h. We use the hypothesis and the intermediate correspon-
dence rule to prove that ∆ ′;Σ ′ corresponds to F{|Eend|}S〈l by r〉;G′ which is a deriva-
tive of G. We conclude.

Case (Disc′) is easy using the first definition of the intermediate correspondence.
Case (EDisc1) is very similar to (EIn1).
Case (EDisc2): is very similar to (EIn2).
We prove the following progress property: if ∆ ,Σ is in intermediate correspondence

with G1, . . . ,Gn, and Σ 6= ε then there exist ∆ ′,Σ ′ with Σ ′ strictly smaller than Σ . We
prove it as follows:

– if Σ contains S[r,r′]〈l〉, we use the weak projection definitions to prove that ∆

contains either s[r′] : ES[r?{li.Ti}] or s[r′] : ES′ [{|‖T‖|}] . 〈r?l〉; with T containing
r?{li.Ti}. We conclude by applying (In) or (Disc′).

– otherwise Σ contains SI[r,r′]〈l〉 and we use the intermediate correspondence def-
inition to discuss whether S is inside an interrupted scope or not and then whether
ϕ(Σ0,) or not, the we conclude by applying (EIn1), (EIn2), (EDisc1) or (EDisc2).
We use both properties to conclude.

24

A.5 Example

GResCont = U→C : req;C→A : start
{|µX .
{|µY.A→U :data;Y |}S2〈pause by U〉;
U→A : resume;X

|}S1〈stop by U, timeout by C〉;end

Fig. 14: Global type for Figure 2

In Figure 14, we describe a for-
mal global type which corre-
sponds to the Scribble protocol
in Figure 2. It requires to en-
rich the syntax with interrupt-
ible constructs accepting two in-
terrupt messages, which can be
performed either by slightly up-
dating the semantics or by en-
coding the example into two nested interruptible constructs. The formal global type
GResCont is very closed to its Scribble counterpart in Figure 2. The main difference
comes from the explicit naming of the scopes (here, S1 and S2). Remember, as stated
above, that our types are equi-recursive and every scope annotation has to be different,
so in this representation S2 actually stands for an infinite set of scopes (Si

2)i≥0, one for
every unfolding of the recursion of X .

25

	Practical interruptible conversations
	Introduction
	Communication protocols with asynchronous interrupts
	Runtime Verification
	Conversation API
	Monitoring Architecture

	Evaluations
	Experience: OOI integration
	Benchmarks
	Use Cases

	Interruptible session type theory and related work
	Session type theory for interrupts
	Related works

	Conclusion
	Session types with interrupts
	Global and local types
	Configuration and semantics
	Session fidelity proof
	Type memory
	Example

