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This article is motivated by the following satisfiability question: pick uniformly at
random an and{or Boolean expression of length n, built on a set of kn Boolean variables.
What is the probability that this expression is satisfiable? asymptotically when n tends to
infinity?

The model of random Boolean expressions developed in the present paper is the model of
Boolean Catalan trees, already extensively studied in the literature for a constant sequence
pknqně1. The fundamental breakthrough of this paper is to generalise the previous results
for any (reasonable) sequence of integers pknqně1, which enables us, in particular, to solve
the above satisfiability question.

We also analyse the effect of introducing a natural equivalence relation on the set of
Boolean expressions. This new quotient model happens to exhibit a very interesting
threshold (or saturation) phenomena at kn “ n{lnn.

Keywords: Boolean formulas/functions; Catalan trees; Equivalence relation; Probability distribution;
Satisfiability; Analytic combinatorics.

1 Introduction

For several decades, satisfiability problems have been extensively studied by computer scientists and
probabilists, as well as statistical physicists. In this paper, we focus on the probabilistic version
of satisfiability problems: what is the probability that a random Boolean expression is satisfiable?
The answer to this question obviously depends on the distribution considered on the set of Boolean
expressions.

One of the most studied satisfiability problems is the 3–SAT problem. It consists in choosing
uniformly at random an expression among conjunctions of n clauses, each clause being a disjunction
of three literals - where literals are chosen among a set of kn variables and their negations. What is the
probability that such a random Boolean expression is satisfiable? when n tends to infinity?

This question is already partially answered – see for example [1]: the following phase transition is
proven. If the ratio kn{n is small enough, then the random expression is satisfiable with probability
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tending to 1 when n tends to infinity, whereas if the ratio kn{n is large enough, then, this probability
tends to 0. Refining this statement is the challenging aim of a large literature.

There are many other satisfiability problems. The K–SAT problem is for example the object of
a recent breakthrough by Coja-Oghlan and Panagiotou [5] and Coja-Oghlan [4], who obtained the
existence of a sharp threshold whenK tends to infinity. The 2-XORSAT problem is studied by Daudé and
Ravelomanana [6], using Analytic Combinatorics to exhibit and describe precisely a phase transition
phenomenon.

The aim of the present paper is to define and study a new satisfiability model (i.e. a new distribution
on the set of Boolean expressions) inspired by the literature on quantitative logics.

Quantitative logics, which origin might go back to the work of Woods [20], aims at answering this
question: Which Boolean function does a random Boolean expression represent? Once again, the
answer to this question deeply depends on the model of randomness chosen for Boolean expressions.

The Catalan tree model, first studied by Lefmann and Savický [15], is defined as follows: A
Boolean tree is a binary plane rooted tree (i.e. a Catalan tree) whose internal nodes are labelled by
the connectives and or or and whose leaves are labelled by k variables and their negations. Pick
up uniformly at random a tree among Boolean trees of size n, and denote by Pn,k the distribution it
induces on the set of Boolean functions. Lefmann and Savický first proved the existence of a limiting
probability distribution Pk on Boolean functions when the size n of the random Boolean expression
tends to infinity.

Since the seminal paper by Chauvin et al. [2], the Analytic Combinatorics’ community aims at
understanding better the Catalan tree distribution Pk (and similarly defined distributions) on the set
of Boolean functions. In particular, Kozik [14] proves, in the Catalan tree model, an asymptotic
(when k tends to infinity) relation between the probability of a given function and its complexity
(i.e. the complexity of a Boolean function being the size of the smallest tree representing it). His
powerful approach, the pattern theory, easily classifies and counts large expressions according to
specific structural constraints. It will be generalised in the present paper.

Remark that in the Catalan tree model defined above, the size n of the Boolean expressions tend
to infinity while the number k of literals labelling them is fixed. For technical reasons, k is then sent
to infinity in order to obtain an asymptotic estimate of the probability of a given Boolean function.
It means that the trees we consider have a lot of repetitions in their leaves: it is legitimate to ask if
this bias the distribution induced on the set of Boolean functions. Genitrini and Kozik [12, 11] have
proposed another model where random Boolean expressions are built on an infinite set of variables.
This approach avoids the bias induced by letting n tend to infinity while k stays fixed.

Our paper extends the Catalan model in order both (1) to let n and k tend to infinity together and (2)
to fit in the satisfiability context.

Following the extended abstract [13], we also look at the influence of a natural notion of equivalence
on the set of Boolean expressions and functions. Roughly speaking, we say that two expressions or
functions are equivalent if the second one can be obtain from the first one by renumbering the variables.
As an example, the expressions px1 and x2q and px12 and x3q are equivalent.

We will describe and study in parallel these two models (with an without equivalence classes) where
the number of variables and the size of expressions jointly tend to infinity. Since the proofs will be
very similar in both models, we will try general notations that fit both models. The model without
equivalence classes will permit, as a corollary to answer the satisfiability problem in the context of
Catalan Boolean expressions. It will be very interesting to see that, although the proofs are completely
similar for both models, the probability distributions induced on the set of Boolean functions behave
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Figure 1: An and{or tree computing the constant function true.

differently: the introduction of equivalence classes gives birth to an interesting and quite mysterious
threshold phenomenon.

The paper is organised as follows. In Section 2 we define our two new models: the generalised
model where the number of variables depends on the size of the considered trees and the quotient
model where we introduce a natural equivalence relation on Boolean trees and functions. Section 3 is
devoted to stating and discussing our three main results: the satisfiability question for random Catalan
expressions; the link between the probability of a Boolean function (resp. a class of Boolean functions)
and its complexity, both in the generalised and the quotient models. Section 4 and Section 5 contain
the technical core of the paper: Section 4 is an analytic part focusing mainly on the difficulties arising
from the introduction of the equivalence relation, while Section 5 concerns both models and discusses
Kozik’s pattern theory. Finally Section 6 contains the proofs of our main results.

2 Description of the two models

2.1 Contextual definitions

A Boolean function is a mapping from t0, 1uN into t0, 1u. The two constant functions pxiqiě1 ÞÑ 1
and pxiqiě1 ÞÑ 0 are respectively called true and false.

An and{or tree is a binary plane tree whose leaves are labelled by literals, i.e. by elements
of txi, x̄iuiPN, and whose internal nodes are labelled by the connective and or the connective or,
respectively denoted by ^ and _. We will say that xi and x̄i are two different literals but they
are respectively the positive and the negative version of the same variable xi. Every and{or tree is
equivalent to a Boolean expression and thus represents a Boolean function: for example, the tree in
Fig. 1 is equivalent to the expression prx1 _ p x1 _ x2qs _ x3q _ px4 ^ x1q, where  x “ 1´ x for
all x P t0, 1u, and represents the constant function true.

The size of an and{or tree is its number of leaves: remark that, for all n ě 1, there is infinitely many
and{or trees of size n. Finally we define the tree-structure of an and{or tree to be the and{or tree
where the labels of the leaves (but not of the internal nodes) have been removed.

Definition 1. The complexity of a non constant Boolean function f , denoted by Lpfq, is defined to be
the size of its minimal trees, i.e. the size of the smallest trees computing f . The complexity of true and
false is defined to be 0.

Although a Boolean function is defined on an infinite set of variables, it may actually depend only
on a finite subset of essential variables.
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Definition 2. Given a Boolean function f , we say that the variable x is essential for f if, and only if,
f|xÐ0 ı f|xÐ1 (where f|xÐα is the restriction of f to the subspace where x “ α). We denote by Epfq
the number of essential variables of f .

Remark that the complexity and the number of essential variables of a Boolean function are related by
the following inequalities: Epfq ď Lpfq ď 2Epfq`2 (see e.g. [7, p. 77–78] for the second inequality).
Note that, asymptotically when Epfq tends to infinity a tight asymptotic upper-bound is 2Epfq{Epfq, as
proved by Lupanov [16] for the upper bound and Lutz [17] for the lower bound.

In the whole paper, our models propose a way to make n and k tend to infinity together:

Definition 3. Let pknqně1 be an increasing sequence of integers such that kn tends to infinity when n
tends to infinity.

2.2 The generalised Catalan tree model

Let us recall the definition of the Catalan tree model defined and studied by Paris et al. [18], Lefmann
& Savický [15], Chauvin et al. [2] and Kozik [14]. In those papers, the authors fix an integer k ě 1
and consider the uniform distribution on and{or trees of size n whose leaf-labels are constrained to be
in tx1, x̄1, . . . , xk, x̄ku. They study the induced distribution on the set of Boolean variables and prove
that this distribution converges to a limit distribution pk when the size n of the trees tends to infinity.
Given a Boolean function f , they then prove asymptotic theorems for pkpfq when k tends to infinity.
In this approach, the order of the two limits (on n and then on k) is a priori important.

We define first the generalised Catalan tree model, that is a natural extension of the previous model.

The model pGq is defined as follows:

(1) consider the uniform distribution on and{or trees of size n which leaf-labels belong to tx1, x̄1, . . .,
xkn , x̄knu,

(2) denote by Pn the distribution it induces on the set of Boolean functions, and call this new distribu-
tion the generalised Catalan tree distribution.

Remark that there are An and{or trees of size n labelled with kn variables, with

An “ 2n´1p2knq
n ¨ Catn, where Catn “

1

n

ˆ

2n´ 2

n´ 1

˙

, (1)

i.e. Catn is the number of binary plane trees having n leaves.
For all Boolean function f , we denote by Anpfq the number of and{or trees of size n labelled with

kn variables that compute f . Thus, by definition,

Pnpfq “
Anpfq

An
.

2.3 The quotient Catalan tree model

A second natural generalisation of the Catalan tree model is obtained by introducing equivalence
classes of Boolean trees and functions. The idea is the following: the functions pxiqiě1 ÞÑ x1 ^ x2
and pxiqiě1 ÞÑ x38 ^ x̄12 can be seen as two realisations of the function conjunction.

Informally, two and{or trees are equivalent if the leaves of the first one can be relabelled (and
negated) without collision in order to obtain the second tree. We define formally this equivalence
relation as follows.
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Definition 4. Let A and B be two and{or trees. Trees A and B are equivalent if

(i) their tree-structures are identical;

(ii) two leaves are labelled by the same variable in A if and only of they are labelled by the same
variable in B;

(iii) two leaves are labelled by the same literal in A if and only of they are labelled by the same literal
in B.

This equivalence relation on Boolean trees induces straightforwardly an equivalence relation on
Boolean functions. Note that all functions of an equivalence class have the same complexity and the
same number of essential variables. In the following, we will denote by xfy the equivalence class
of the function f . We denote by Lxfy “ Lpfq (resp. Exfy “ Epfq) the common complexity (resp.
number of essential variables) of the elements of xfy.

Definition 5. Let xfy be a class of Boolean functions. The multiplicity of the class xfy, is given by

Rxfy “ Lxfy ´ Exfy.

It corresponds to the number of repetitions of variables in a minimal tree of a function from xfy.

Recall that pknqně1 is an increasing sequence of integers that tends to infinity when n tends to
infinity. In the following, we only consider equivalence classes of trees having at least one element
whose leaf-labels are in tx1, x̄1, . . ., xkn , x̄knu. It means that we restrict ourselves to trees of size n
labelled by at most kn different variables. Note that if kn ě n for all n ě 1, this is not a restriction
because a tree of size n cannot contain more that n different leaf-labels.

The model pEq is defined as follows:

(1) consider the uniform distribution on classes of equivalence of trees of size n (labelled with at most
kn different variables),

(2) the distribution it induces on the set of equivalence classes of Boolean function is denoted by Pn
and called the quotient Catalan tree distribution.

We denote by An the number of equivalence classes of trees of size n (in which at most kn different
variables appear as leaf-labels). Given a class of Boolean functions xfy, we denote by Anxfy the
number of equivalence classes of trees of size n (labelled with at most kn different variables) that
compute a function of xfy. We thus have

Pnxfy “
Anxfy

An
.

Proposition 6. The number of classes of trees of size n satisfies:

An “ Catn ¨

kn
ÿ

p“1

"

n

p

*

22n´1´p,

where Catn is the number of (unlabelled) binary planar trees having n leaves (cf. Equation (1)), and
where

 

n
p

(

is the Stirling number of the second kind.1

1In Proposition 6,
 

n
p

(

is the number of partitions of n objects in p non-empty subsets (see e.g. [7, p. 735–737]).
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Proof. An equivalence class of and{or trees can be seen as

• a binary plane tree (factor Catn)

• whose internal nodes are labelled by and and or connectives (factor 2n´1),

• whose leaves are partitioned onto 1 ď p ď kn parts (factor
 

n
p

(

),

• each of these parts being then partitioned onto two parts (one on them being possibly empty:
factor 2n´p).

Remark on notations: We have already used the notation An to define the model pGq. We will keep
the same notation for these two distinct objects because they will have the same role in the proofs. But
formally, we have

ApGqn “ Catn ¨ 2
2n´1 ¨ knn and ApEqn “ Catn ¨

kn
ÿ

p“1

"

n

p

*

22n´1´p.

3 Main results and discussion

We have defined the two models we are interested in: the generalised and the quotient Catalan trees
distributions. Both distributions are called Pn for simplicity’s sake, but we will use PpGqn and PpEqn when
the precision is needed. The aim of this paper is to study the behaviour of both distributions when the
size n of the considered trees tends to infinity.

Let us remark that the distribution induced by pGq is based on an uniform distribution among trees of
the same size. But the distribution induced by pEq lies on an uniform distribution among classes of
trees of the same size. Obviously both induced distributions on Boolean functions are distinct.

Theorem 7 (Model pGq). Let pknqně1 be an increasing sequence of integers tending to infinity when
n tends to infinity. For all Boolean functions f , there exists a positive constant αpGqf such that,
asymptotically when n tends to infinity,

Pnpfq „ α
pGq

f ¨

ˆ

1

kn

˙Lpfq`1

.

This result has an interesting corollary concerning the Catalan-SAT problem: recall that a Boolean
expression is said satisfiable if it does not represent the constant function false.

Corollary 8 (Catalan-SAT). Let pknqně1 be an increasing sequence of integers tending to infinity when
n tends to infinity. Pick up uniformly at random an and{or tree of size n with leaf-labels in tx1, x̄1,
. . ., xkn , x̄knu. This random and{or tree is equivalent to a Boolean expression that is satisfiable with
probability tending to 1 when n tends to infinity.

Theorem 9 (Model pEq). Let pknqně1 be an increasing sequence of integers tending to infinity when n
tends to infinity. There exists a sequence pMnqně1 such that Mn „nÑ8

n
lnnand such that, for all fixed

equivalence classes of Boolean functions xfy, there exists a positive constant αpEq
xfy satisfying:
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(i) if, for all sufficiently large n, kn ďMn, then, asymptotically when n tends to infinity,

Pnxfy „ α
pEq

xfy ¨

ˆ

1

kn`1

˙Rxfy`1

;

(ii) if, for all sufficiently large n, kn ěMn, then, asymptotically when n tends to infinity,

Pnxfy „ α
pEq

xfy ¨

ˆ

lnn

n

˙Rxfy`1

.

First note, that we could give some corollary about satisfiability for the second model pEq too.
However, in the classical context of SAT problems, there are no quotient formulas. So we omit this
by-product.

Let us discuss these results in view of the classical Catalan tree distribution studied by [2] and [14]:
let us recall briefly its definition. Let k ě 1 be an integer. We denote by Tn,k the number of trees of
size n, with leaf-labels in tx1, x̄1, . . . , xk, x̄ku. Given a Boolean function f , we denote by Tn,kpfq
the number of such trees computing f . The Catalan distribution is thus defined by, for all Boolean
functions f ,

pkpfq :“ lim
nÑ`8

Tn,kpfq

Tn,k
.

The existence of the above limit is proved in [15] or [2]. Kozik proved:

Theorem 10 (Kozik [14]). Let k be a fixed positive integer. For all Boolean functions f , there exists a
positive constant cf such that

pkpfq „kÑ8 cf ¨

ˆ

1

k

˙Lpfq`1

.

As one can see Theorems 7 and 10 are very similar, and we will see that their proofs are also
very similar after having observed a simple but fundamental trick: one has to consider separately the
tree-structure of an and{or tree and its leaf-labelling. It was not clear before this work how to generalise
Kozik’s proof in order to tackle the Catalan-SAT problem (cf. Corollary 8).

Introducing equivalence classes makes things different, and an interesting threshold effect appears
(see Theorem 9). We still have no intuition for this threshold. Obviously we will see in the proof where
it comes from.

In the classical Catalan tree model, each Boolean function is studied separately instead of being
considered among its equivalence class. We can translate the result obtained by Kozik in terms of
equivalence classes by summing over all Boolean functions belonging to a given equivalence class:
note that there are

`

k
Epfq

˘

2Epfq functions in the equivalence class of f . Therefore, the result of Kozik is
equivalent to: for all classes xfy, there exists a constant cxfy such that, asymptotically when k tends to
infinity,

lim
nÑ`8

pn,kxfy „ cxfy

ˆ

1

k

˙Lpfq´Epfq`1

“ cxfy

ˆ

1

k

˙Rxfy`1

.

The classical Catalan tree distribution can be seen as a degenerate case of our model where there exists
a fixed integer k such that kn “ k for all n ě 1. Recall that we assume in the present paper that kn
tends to infinity when n tend to infinity: the case kn “ k is thus not a particular case of our results, but
only a degenerate one.
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Once again, the proof of Theorem 9 relies on similar ideas as Kozik’s proof of Theorem 10. To
emphasise the similarities between the proof of our two main theorems (Theorems 7 and 9), we will
develop their proofs together in Section 6.

4 Technical key point

As we already mentioned, the key idea of this paper is to separate the tree-structure of an and{or tree
and its leaf-labelling. Recall that

ApGqn “ 2n´1Catn ¨ p2knq
n and ApEqn “ 2n´1Catn ¨

kn
ÿ

p“1

"

n

p

*

2n´p.

For all m,n ě 1, let us denote by

Labn,m :“

$

’

’

’

&

’

’

’

%

p2mqn in model pGq;

2n ¨
m
ÿ

p“1

"

n

p

*

2´p in model pEq.

In both models, Labn,m corresponds to the number of ways to label the n leaves with m variables, thus

An “ 2n´1Catn ¨ Labn,kn .

Finally, let us introduce the key quantity

ratn :“
Labn´1,kn
Labn,kn

.

Note that in the model pGq, the quantity 1{ratn “ 2kn corresponds to the number of the possible
labellings of the pn` 1qth leaf once the other leaves are already labelled. In the model pEq, the leaf-
labellings are not longer independent and this quantity 1{ratn is thus less explicit. A detailed analysis of
this quantity is needed in the following. This section is devoted to its asymptotic analysis.

Proposition 11. Let pknqně1 be an increasing sequence of integer tending to infinity when n tends to
infinity.

pGq For all integer p,
Labn´p,kn
Labn,kn

“
1

p2knqp
.

pEq There exists a sequence pMnqně1 with Mn „nÑ8
n

lnn and such that, for all integer p, asymp-
totically when n tends to infinity,

Labn´p,kn
Labn,kn

“

$

’

&

’

%

1`op1q
p2knqp

if kn ďMn for large enough n;

p1` op1qq
`

lnn
2n

˘p
if kn ěMn for large enough n.

In particular, taking p “ 1 gives
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Proposition 12. Let pknqně1 be an increasing sequence of integer tending to infinity when n tends to
infinity.

pGq ratn “
1

2kn
.

pEq There exists a sequence pMnqně1 with Mn „nÑ8
n

lnn and such that, asymptotically when n
tends to infinity,

ratn “

$

&

%

1`op1q
2kn

if kn ďMn for large enough n;

p1` op1qq lnn
2n if kn ěMn for large enough n.

Remark that, with this definition of ratn, Theorems 7 and 9 can be rephrased as: for all Boolean
functions f , there exists constants

PpGqn pfq „ λf ¨ rat
Lpfq`1
n ,

and
PpEqn xfy „ λxfy ¨ rat

Rxfy`1
n .

The proof of Proposition 12 pGq is obvious and the rest of this section is devoted to the more technical
proof of Proposition 12 pEq.

The following proposition, which can be seen as some particular case of Bonferroni inequalities
allows to exhibit bounds on Labn,kn .

Proposition 13 (cf. for example [19]). For all n ě 1, for all p P t1, . . . , nu,

pn

p!
´
pp´ 1qn

pp´ 1q!
ď

"

n
p

*

ď
pn

p!
.

In view of these inequalities and of the expression of Labn,kn , both the following sequences naturally
appear:

Lemma 14. Let n be a positive integer.

(i) The following sequence is unimodal:

´

apnqp

¯

pPt1,...,nu
“

ˆ

pn

p!
2´p

˙

pPt1,...,nu

,

i.e. there exists an integerMn such that
´

a
pnq
p

¯

p
is strictly increasing on t1, . . . ,Mnu and strictly

decreasing on tMn ` 1, . . . , nu.

(ii) Moreover, the sequence pMnqn is increasing and asymptotically satisfies:

Mn „nÑ8
n

lnn
.
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Proof. (i) Let us prove that the sequence
´

a
pnq
p

¯

1ďpďn
is log-concave, i.e. that the sequence

ˆ

a
pnq
p`1

a
pnq
p

˙

1ďpďn´1

is decreasing. Let p be an integer in t1, . . . , n´ 1u. By Definition of apnqp :

a
pnq
p`1

a
pnq
p

“

ˆ

p` 1

p

˙n

¨
1

2pp` 1q
,

and consequently, for all n ě 0,

a
pnq
p`1

a
pnq
p

ą 1 ðñ n ln

ˆ

p` 1

p

˙

´ lnp2p` 2q ą 0.

The function φn : p ÞÑ n ln
´

p`1
p

¯

´ lnp2p ` 2q is strictly decreasing. Note that both φnp1q and
φnpn ´ 1q are tending to infinity when n tends to infinity. Then, for all n large enough, there ex-
ists a unique Mn such that

´

a
pnq
p

¯

p
is strictly increasing on t1, . . . ,Mnu and strictly decreasing on

tMn ` 1, . . . , nu. Let us suppose n large enough for the rest of the proof.

(ii) Let us denote by xn the single solution of equation:
ˆ

x` 1

x

˙n

¨
1

2px` 1q
“ 1, when it exists. (2)

First remark that the sequence pxnqně1 is increasing. We indeed know: φnpxnq “ 0 and φn`1pxn`1q “
0, which implies that φnpxn`1q “ ´ ln

´

1` 1
xn`1

¯

ă 0. Therefore, since for each n, the function φn
is decreasing, we have that xn`1 ě xn, for all large enough n. Therefore, the sequence pMnqně1 is
asymptotically increasing.

Since, asymptotically when n tends to infinity,
ˆ n

lnn ` 1
n

lnn

˙n

¨
1

2p n
lnn ` 1q

„
lnn

2
,

we have that n{ lnn ď xn and therefore, xn tends to infinity. Thus, Equation (2) evaluated in xn is
equivalent to

n ln

ˆ

1`
1

xn

˙

“ ln 2` lnpxn ` 1q, (3)

which implies xn lnxn „ n, when n tends to infinity. We easily deduce from this asymptotic relation
that lnxn „ lnn and that xn „ n

lnn when n tends to infinity. Since Mn “ txnu, we conclude that
Mn „ n{lnn, when n tends to infinity.

We are now ready to understand the asymptotic behaviour of Labn,kn{2
n: roughly speaking, asymp-

totically, the sum Labn,kn{2
n does essentially only depend on the terms around Mn.

Lemma 15. Let punqně1 be an increasing sequence such that un ď n for all integer n ě 1 and un
tends to infinity when n tends to infinity.

(i) If, for all large enough n, un ďMn, then, for all sequences pδnqně1 such that δn “ opunq and
un
?
lnun?
n

“ opδnq, we have, asymptotically when n tends to infinity,

Labn,un
2n

“ p1` op1qq
un
ÿ

p“un´δn

pn

p!
2´p. (4)
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(ii) If, for large enough n, un ě Mn, then, for all sequences pδnqně1 such that δn “ opunq and
un
?
lnun?
n

“ opδnq, for all sequences pηnqně1 such that ηn “ opMnq, limnÑ`8
η2n
Mn

“ `8 and
a

Mn lnpun ´Mnq “ opηnq, we have, asymptotically when n tends to `8,

Labn,un
2n

“ p1` op1qq

mintMn`ηn,unu
ÿ

p“Mn´δn

pn

p!
2´p. (5)

of Lemma 15 (i). Via Proposition 13, we can bound Labn,un
2n : for all n ě 1,

1

2
¨

un´1
ÿ

p“1

pn

p! 2p
`

unn
un! 2un

ď
Labn,un

2n
ď

un
ÿ

p“1

pn

p! 2p
. (6)

Let us assume that un ď Mn for all large enough n, and let us prove that the two bounds of
Equations (6) are of the same asymptotic order when n tends to infinity.

Denote, for all integer m ě 1, Sm “
řm
p“1 a

pnq
p . Thus Equations (6) implies

Sun
2
ď

Labn,un
2n

ď Sun .

Let us split the sum Sun into two parts: the last δn summands, and the rest.

Sun “ Sun´δn´1 `
un
ÿ

p“un´δn

apnqp .

By assumption, δn “ opunq and we therefore can choose n large enough such that un ą δn. Let us
prove that Sun´δn´1 is negligible in front of aun , and thus in front of

řun
p“un´δn

a
pnq
p . Recall that

´

a
pnq
p

¯

pě1
is increasing on t1, . . . ,Mnu, which implies

Sun´δn´1 ď un ¨ aun´δn .

For all large enough n, via Stirling formula, we deduce:

aun´δn
aun

“ 2δn
ˆ

un ´ δn
un

˙n un!

pun ´ δnq!

“

ˆ

2un
e

˙δn ˆun ´ δn
un

˙n´un`δn´
1
2

p1` op1qq

“ exp

„

δn ln

ˆ

2un
e

˙

`

ˆ

n´ un ` δn ´
1

2

˙

ln

ˆ

1´
δn
un

˙

` op1q



.

Since δn “ opunq, we get ln
´

1´ δn
un

¯

“ ´ δn
un
´

δ2n
2u2n

` o
´

δ2n
u2n

¯

. Moreover, un ďMn thus,

aun´δn
aun

“ exp

„

δn ln 2` δn lnun ´
nδn
un

´
nδ2n
2u2n

` o

ˆ

nδ2n
u2n

˙

.
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Therefore, by using un ďMn, and Equation (3), we deduce n
Mn

ě ln 2` lnMn,

aun´δn
aun

ď exp

„

δn ln 2` δn lnMn ´
nδn
Mn

´
nδ2n
2u2n

` o

ˆ

nδ2n
u2n

˙

ď exp

„

´
nδ2n
2u2n

` o

ˆ

nδ2n
u2n

˙

.

From the assumption un
?
lnun?
n

“ opδnq, we deduce lnun “ o
´

nδ2n
u2n

¯

, thus we can conclude

Sun´δn´1
aun

ď un
aun´δn
aun

ď exp

„

lnun ´
nδ2n
2u2n

` o

ˆ

nδ2n
u2n

˙

“ op1q.

And consequently, we get Sun „nÑ8
řun
p“un´δn

a
pnq
p .

of Lemma 15, (ii). Assume that un ě Mn for all large enough n. Let us split the sums of the lower
and upper bounds of Equations (6) into three parts: the first from index 1 to Mn ´ δn ´ 1, the second
from index Mn ´ δn to Mn ` ηn, and the third from index Mn ` ηn ` 1 to un. Remark that, if
un ďMn ` ηn, then the third part is empty and the second one is truncated:

Sun “ SMn´δn´1 `

Mn`ηn
ÿ

p“Mn´δn

apnqp `

un
ÿ

p“Mn`ηn`1

apnqp .

By arguments similar to those developed in the proof of assertion (i), we can prove that SMn´δn´1

is negligible in front of apnqMn
, and thus in front of

řMn`ηn
p“Mn´δn

a
pnq
p . Therefore, if un ď Mn ` ηn,

assertion (ii) is proved. Let us now assume that un ěMn ` ηn ` 1: to end the proof, we prove that
řun
p“MN`ηn`1

a
pnq
p is negligible in front of apnqMn

, and thus in front of
řMn`ηn
p“Mn´δn

a
pnq
p .

In view of Lemma 14, we have

un
ÿ

p“Mn`ηn`1

apnqp ď pun ´Mn ´ ηnq ¨ a
pnq
Mn`ηn

.

Via Stirling formula,

a
pnq
Mn`ηn

a
pnq
Mn

“ 2´ηn
ˆ

Mn ` ηn
Mn

˙n Mn!

pMn ` ηnq!

“

ˆ

2pMn ` ηnq

e

˙´ηn ˆMn ` ηn
Mn

˙n´Mn´
1
2

p1` op1qq

“ exp

„

´ηn ln

ˆ

2pMn ` ηnq

e

˙

`

ˆ

n´Mn ´
1

2

˙

ln

ˆ

1`
ηn
Mn

˙

` op1q



.
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Since ln
´

1` ηn
Mn

¯

ď
ηn
Mn

, we get:

a
pnq
Mn`ηn

a
pnq
Mn

ď exp

„

´ηn ln 2` ηn ´ ηn lnpMn ` ηnq `
ηn
Mn

pn´Mn ´
1

2
q ` op1q



“ exp

„

´ηn ln 2´ ηn lnpMn ` ηnq `
nηn
Mn

` op1q



.

Our assumption states ηn
Mn

“ op1q, thus

a
pnq
Mn`ηn

a
pnq
Mn

ď exp

„

´ηn ln 2´ ηn lnMn ´ ηn ln

ˆ

1`
ηn
Mn

˙

`
nηn
Mn

` op1q



“ exp

„

´ηn ln 2´ ηn lnMn ´
η2n
Mn

`
nηn
Mn

`O
ˆ

η3n
M2
n

˙

Since Mn “ txnu, we have

n ln

ˆ

1`
1

xn

˙

“ n

ˆ

1

Mn
´

1

2M2
n

`O
ˆ

1

M3
n

˙˙

,

therefore

ln 2` lnpxn ` 1q “ ln 2` lnMn `O
ˆ

1

Mn

˙

.

Equation (3) implies:

n

Mn
“ ln 2` lnMn `

n

2M2
n

`O
ˆ

n

M3
n

˙

`O
ˆ

1

Mn

˙

“ ln 2` lnMn `
n

2M2
n

`O
ˆ

n

M3
n

˙

,

because 1
Mn

“ op n
M3

n
q. Thus, we conclude

a
pnq
Mn`ηn

a
pnq
Mn

ď exp

„

´
η2n
Mn

`O
ˆ

η3n
M2
n

˙

`O
ˆ

nηn
M3
n

˙

“ exp

„

´
η2n
Mn

` o

ˆ

η2n
Mn

˙

,

because, from assumption:
a

Mn lnpun ´Mnq “ opηnq, we deuce
?
Mn “ opηnq. Finally we get

řun
p“Mn`ηn`1

a
pnq
p

a
pnq
Mn

ď pun ´Mn ´ ηnq
a
pnq
Mn`ηn

a
pnq
Mn

ď exp

„

lnpun ´Mnq ´
η2n
Mn

` o

ˆ

η2n
Mn

˙

“ op1q,

since, by assumption,
a

Mn lnpun ´Mnq “ opηnq. Therefore, asymptotically when n tends to
infinity,

Sun „

Mn`ηn
ÿ

p“Mn´δn

apnqp ,

which concludes the proof.
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We are now ready for the proof of Proposition 11: let us decompose this proof in the two following
Lemmas 16 and 17:

Lemma 16. Let pknqně1 be a sequence of integerssuch that kn ďMn for large enough n, then, for all
integer p, asymptotically when n tends to infinity,

Labn´p,kn
Labn,kn

“ p1` op1qq

ˆ

1

p2knqp

˙

.

of Lemma 16. (i) Let us first assume that kn ďMn´p. Let pδnqně1 an integer-valued sequence
such that δn “ opknq and kn

?
ln kn?
n

“ opδnq when n tends to infinity. Lemma 15 applied to un “ kn
gives, asymptotically when n tends to infinity,

Labn,kn
2n

“ p1` op1qq
kn
ÿ

i“kn´δn

a
pnq
i .

Moreover, since kn ď Mn´p, and since the sequence pδnqně1 satisfies δn “ opknq and kn
?
ln kn?
n´p

“

opδnq, applying Lemma 15 to the sequence un “ kn gives us, asymptotically when n tends to infinity,

Labn´p,kn
2n´p

“ p1` op1qq
kn
ÿ

i“kn´δn

a
pn´pq
i .

Therefore,
Labn´p,kn
Labn,kn

“ p2´p ` op1qq

řkn
i“kn´δn

a
pn´pq
i

řkn
i“kn´δn

a
pnq
i

.

We have

pkn ´ δnq
p

kn
ÿ

i“kn´δn

a
pn´pq
i ď

kn
ÿ

i“kn´δn

ipa
pn´pq
i “

kn
ÿ

i“kn´δn

a
pnq
i

“

kn
ÿ

i“kn´δn

ipapn´pqp ď kpn

kn
ÿ

p“kn´δn

apn´pqp ,

which implies
Labn´p,kn
Labn,kn

„
1

p2knqp
when nÑ `8.

(ii) Now assume that Mn´p ă kn ď Mn. Let pδnqně1 be an integer-valued sequence such that

δn “ opknq and kn
?
ln kn?
n´p

“ opδnq. Let pηnqně1 be an integer-valued sequence such that ηn “

opMn´pq, and
a

Mn´p lnpkn ´Mn´pq “ opηnq. Applying Lemma 15 (ii) to the sequence un “ kn,
we obtain

Labn´p,kn
2n´p

“ p1` op1qq

mintMn´p`ηn,knu
ÿ

i“Mn´p´δn

a
pn´pq
i .

Moreover, since δn “ opknq and kn
?
ln kn?
n

“ opδnq, via Lemma 15 (i),applied to the sequence un “ kn,

Labn,kn
2n

“ p1` op1qq
kn
ÿ

i“kn´δn

a
pnq
i .
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Let us remark, as above, that

pkn ´ δnq
p

kn
ÿ

i“kn´δn

a
pn´pq
i ď

Labn,kn
2n

ď kpn

kn
ÿ

i“kn´δn

a
pn´pq
i .

Moreover, since kn ąMn´p, using similar arguments as those developed to prove Lemma 15 (i),

kn
ÿ

i“kn´δn

a
pn´pq
i „

mintkn,Mn´p`ηnu
ÿ

i“kn´δn

a
pn´pq
i „

Labn´p,kn
2n´p

.

Therefore, since δn “ opknq, we get

Labn´p,kn
Labn,kn

“ p1` op1qq
1

p2knqp
,

which concludes the proof.

Lemma 17. Let pknqně1 be a sequence of integers that tends to infinity when n tends to infinity. Let
us assume that kn ěMn for large enough n, then, for all integer p, asymptotically when n tends to
infinity,

Labn´p,kn
Labn,kn

“ p1` op1qq

ˆ

lnn

2n

˙p

.

of Lemma 17. By assumption, kn ě Mn, which implies kn ě Mn´p. Let pδnqně1 be a sequence of
integers such that δn “ opMn´pq and Mn

?
lnMn?
n

“ opδn`pq. Let pηnqně1 be another sequence of

integers such that ηn “ opMn´pq, and
a

Mn lnpkn ´Mnq “ opηn`pq. We thus can apply Lemma 15
(ii) to un “ kn and conclude that, asymptotically when n tends to infinity,

Labn´p,kn
2n´p

“ p1` op1qq

mintMn´p`ηn,knu
ÿ

i“Mn´p´δn

a
pn´pq
i .

Moreover, since the sequence pδnqně1 verifies δn “ opMn´pq “ opMnq and Mn
?
lnMn?
n

“ opδn`pq “

opδnq, and since the sequence pηnqně1 verifies ηn “ opMn´pq “ opMnq, and
a

Mn lnpkn ´Mnq “

opηn`pq “ opηnq, we have,

Labn,kn
2n

“ p1` op1qq

mintMn`ηn,knu
ÿ

i“Mn´δn

a
pnq
i .

Let us note that

pMn ´ δnq
p
mintMn`ηn,knu

ÿ

i“Mn´δn

a
pn´pq
i ď

Labn,kn
2n

ď pMn ` ηnq
p
mintMn`ηn,knu

ÿ

i“Mn´δn

a
pn´pq
i .
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Since kn ěMn ěMn´p, via similar arguments to those developed for the proof of Lemma 15 (ii), we
get

mintMn`ηn,knu
ÿ

i“Mn´δn

a
pn´pq
i „

mintMn´p`ηn,knu
ÿ

i“Mn´δn

a
pn´pq
i .

We thus have to compare

Sn “

mintMn´p`ηn,knu
ÿ

i“Mn´δn

a
pn´pq
i

and

Tn “

mintMn´p`ηn,knu
ÿ

i“Mn´p´δn

a
pn´pq
i ,

and to prove that those two sums are equivalent when n tends to infinity. Decompose Sn as follows:

Sn “ Tn `

mintMn`ηn,knu
ÿ

i“mintMn´p`ηn,knu

a
pn´pq
i ´

Mn´δn
ÿ

i“Mn´p´δn

a
pn´pq
i .

Arguments from the proof of Lemma 15 (ii) imply that the second summand is negligible in front of
the first. Let us assume that the third term is non-zero, i.e. Mn ´ δn ąMn´p ´ δn (note that if this
term is zero then Sn „ Tn is already proved). Via Lemma 14, since Mn

Mn´p
“ 1` op 1

Mn
q, we have

Mn´δn
ÿ

i“Mn´p´δn

a
pn´pq
i ď pMn ´ δn ´Mn´p ` δnqa

pn´pq
Mn´p´δn

“ op1q a
pn´pq
Mn´p´δn

“ o
´

a
pn´pq
Mn´p

¯

,

in view of Lemma 15 (i). Therefore, since apn´pqMn´p
ď Tn, we have Sn „ Tn when n tends to infinity,

which implies, since ηn “ opMnq and δn “ opMnq,

Labn´p,kn
Labn,kn

“ p1` op1qq
1

p2Mnq
p
“ p1` op1qq

ˆ

lnn

2n

˙p

.

Finally, this fundamental technical part allows us to use Kozik’s key ideas in order to describe the
probability distribution induced on Boolean functions, in our two new models.

5 Adjustment of Kozik’s pattern language theory

In 2008, Kozik [14] introduced a quite effective way to study Boolean trees: he defined a notion of
pattern that permits to easily classify and count large trees according to some constraints on their
structures. Kozik applied this pattern theory to study the classical Catalan tree distribution. We recall
the definitions of patterns, illustrate them on examples and then extend Kozik’s paper results in order
to use them in our new models. This part will extensively use Analytic Combinatorics (generating
functions, symbolic methods, singularity analysis): we refer the reader to Flajolet & Sedgewick’s
book [7] for an introduction to these methods.
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Definition 18. (i) A pattern is a binary tree with internal nodes labelled by ^ or _ and with
external nodes labelled by ‚ or �. Leaves labelled by ‚ are called pattern leaves and leaves
labelled by � are called place-holders. A pattern language is a set of patterns.

(ii) Given a pattern language L and a family of treesM, we denote by LrMs the family of all trees
obtained by replacing every place-holder in an element from L by a tree fromM.

(iii) We say that L is unambiguous if, and only if, for any familyM of trees, any tree of LrMs can
be built from a unique pattern from L into which trees fromM have been plugged.

The generating function of a pattern language L is `px, yq “
ř

d,p Lpd, pqx
dyp, where Lpd, pq is the

number of elements of L with d pattern leaves and p place-holders.

Definition 19. We define the composition of two pattern languages LrP s to be the pattern language
of trees which are obtained by replacing every place-holder of a tree from L by a tree from P .

Given an integer i and a pattern L, the pattern Lpiq is defined by the following recursion: Lp1q “ L
and Lpi`1q “ LpiqrLs.

Definition 20. A pattern language L is sub-critical for a familyM if the generating function mpzq of
M has a square-root singularity τ , and if `px, yq is analytic in some set tpx, yq : |x| ď τ ` ε, |y| ď
mpτq ` εu for some positive ε.

Definition 21. Let L be a unambiguous pattern language,M be a family of trees and Γ a subset of
txiuiě1, which cardinality does not depend on n. Given an element of LrMs,

(i) the number of its L-repetitions is the number of its L-pattern leaves minus the number of different
variables that appear in the labelling of its L-pattern leaves.

(ii) the number of its pL,Γq-restrictions is the number of its L-pattern leaves that are labelled by
variables from Γ, plus the number of its L-repetitions.

Definition 22. Let I be the family of the trees with internal nodes labelled by a connective and leaves
without labelling, i.e. the family of tree-structures.

The generating function of I satisfies Ipzq “ z` 2Ipzq2, that implies Ipzq “ p1´
?

1´ 8zq{4 and
thus its dominant singularity is 1{8. Let In be the n-th coefficient of Ipzq.

We can, for example, define the unambiguous pattern language N by induction as follows: N “

‚|N_N |N^�, meaning that a pattern fromN is either a single pattern leaf, or a tree rooted by_which
two sub-trees are patterns from N , or a tree rooted by ^ which left sub-tree is a pattern from N and
which right sub-tree is a place-holder. An element of N is represented in Fig 3. Its generating function
verifies npx, yq “ x` npx, yq2 ` ynpx, yq and is equal to npx, yq “ 1

2p1´ y ´
a

p1´ yq2 ´ 4xq. It
is thus sub-critical for I.

The tree depicted in Fig. 2 is built from the pattern of Fig. 3. It has 5N -pattern leaves, 2N -repetitions
and 4 pN, tx1, x2uq-restrictions. It is also built from the pattern of Fig. 4 and has 2 N rN s-pattern
leaves, and 2 pN rN s, tx1, x2uq-restrictions.
The following key lemma is a generalization of the corresponding lemma of Kozik [14, Lemma 3.8].

Lemma 23. Let L be an unambiguous pattern, sub-critical for the tree-structures family I. Let r be a
fixed positive integer.
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Figure 2: The tree computes the function x1 _ x2.
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Figure 3: The pattern is an element of the pattern language N .
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Figure 4: The pattern is an element of the pattern language N rN s.
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pGq Let Arrsn (resp. Arěrsn ) be the number of labelled (with at most kn variables) trees of LrIs of
size n and with r L-repetitions (resp. at least r L-repetitions).

pEq LetArrsn (resp. Arěrsn ) be the number of equivalence classes of labelled (with at most kn variables)
trees of LrIs of size n and with r L-repetitions (resp. at least r L-repetitions).

Then, asymptotically when n tends to infinity, in both models,

A
rrs
n

An
“ O pratrnq and

A
rěrs
n

An
“ O pratrnq .

Proof. First recall that An “ In ¨ Labn,kn in both models.
Model pGq. The number of labelled trees of LrIs of size n and with at least r L-repetitions is given

by:

Arěrsn “

n
ÿ

d“r`1

Inpdq ¨ Labpn, kn, d, rq,

where Inpdq is the number of tree-structures with d L-pattern leaves (among the n number of leaves)
and Labpn, kn, d, rq corresponds to the number of leaf-labellings of these trees giving at least r L-
repetitions. The following enumeration contains some multi-counting and we therefore get an upper
bound:

Labpn, kn, d, rq ď 2n ¨
r
ÿ

j“1

ˆ

d

r ` j

˙"

r ` j

j

*

knpkn ´ 1q ¨ ¨ ¨ pkn ´ j ` 1qkn´r´jn .

The factor 2n corresponds to the polarity of each leaf (whether the literal is positive or negative); the
index j stands for the number of different variables involved in the r repetitions; the binomial factor
corresponds to the choices of the pattern leaves that are involved in the r repetitions; the Stirling number
corresponds to the partition of the r` j leaves into j parts; the factor knpkn´ 1q ¨ ¨ ¨ pkn´ j` 1q stand
for the choice of the repeated variables, from left to right; finally, the factor kn´r´jn corresponds to the
choices of the variables assigned to all remaining leaves. We have

Labpn, kn, d, rq ď 2nkn´rn ¨

r
ÿ

j“1

ˆ

d

r ` j

˙"

r ` j

j

*

,

in other terms,

Labpn, kn, d, rq ď 2rLabn´r,kn ¨
r
ÿ

j“1

ˆ

d

r ` j

˙"

r ` j

j

*

,

since Labn,m “ p2mqn (in model pGq), and

Arěrsn ď 2r ¨ Labn´r,kn

r
ÿ

j“1

"

r ` j

j

* n
ÿ

d“r`j

Inpdq

ˆ

d

r ` j

˙

. (7)

Let `px, yq be the generating function of the pattern L. Note that x
p

p! B
p
1` corresponds to pointing p

distinct pattern leaves (without order) in the L-patterns (where B1 stands for the derivative according to
the first coordinate). Then, for all p ě 0,

zp

p!
B
p
1`pz, Ipzqq “

8
ÿ

n“1

8
ÿ

d“p

Inpdq

ˆ

d

p

˙

zn.
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Thus,
A
rěrs
n

An
ď

2rLabn´r,kn
Labn,kn

r
ÿ

j“1

"

r ` j

j

*

rznszr`jBr`j1 `pz, Ipzqq

rznsIpzq
.

Since Br`j1 `pz, Ipzqq and Ipzq have the same dominant singularity because of the sub-criticality of the
pattern L according to I, the previous sum tends to a constant (because r is fixed) when n tends to
infinity and so we conclude, using Propositions 11 and 12:

A
rrs
n

An
ď
A
rěrs
n

An
“ O

ˆ

Labn´r,kn
Labn,kn

˙

“ O pratrnq .

Model pEq. The number of equivalence classes of labelled trees of LrIs of size n and with at least r
L-repetitions is given by:

Arěrsn “

n
ÿ

d“r`1

Inpdq ¨ Labpn, kn, d, rq,

where Inpdq is the number of tree-structures with d L-pattern leaves and Labpn, kn, d, rq corresponds
to the number of leaf-labellings of these trees giving at least r L-repetitions. The following enumeration
contains some multi-counting and we therefore get an upper bound:

Labpn, kn, d, rq ď 2n ¨
r
ÿ

j“1

ˆ

d

r ` j

˙"

r ` j

j

*

Labn´r,kn
2n´r

.

The factor 2n corresponds to the polarity of each leaf (whether the literal is positive or negative); the
index j stands for the number of different variables involved in the r repetitions; the binomial factor
corresponds to the choices of the pattern leaves that are involved in the r repetitions; the Stirling number
corresponds to the partition of r` j leaves into j parts; finally, the factor Labn´r,kn corresponds to the
rest of the partition. Therefore,

Arěrsn ď 2r ¨ Labn´r,kn

r
ÿ

j“1

"

r ` j

j

* n
ÿ

d“r`j

Inpdq

ˆ

d

r ` j

˙

.

Applying the same reasoning as for model pGq starting from Equation (7) permits to conclude the
proof.

We have finally adapted Kozik’s theory in order to apply it in the new contexts. Since we have
extended the pattern theory, we are able to use in the following the same key-ideas to describe the
probability distributions we are interested in.

6 Behaviour of the probability distribution

Once we have adapted the pattern theory to our model and proved the central Lemma 23, we are ready
to prove our main results, namely Theorems 7 and 9. A first step consists to understand the asymptotic
behaviour of PpGqn ptrueq and PpEqn xtruey.

It is natural to focus on this “simple” function before considering a general class xfy; and it happens
to be essential for the continuation of the study. In addition, the methods used to study tautologies
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x ¨ ¨ ¨
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Figure 5: A simple tautology.

(mainly pattern theory) will also be the core of the proof for a general function (model pGq) or a general
equivalence class (model pEq).

First, let us introduce some measure in the context of Boolean expressions. Given a family G of
and{or trees (resp. equivalence classes of and{or trees), we define its ratio µnpGq as follows: let Gn
be the number of elements of G of size n,

µnpGq :“
Gn
An

.

6.1 Tautologies

Remark that true is the unique element of its equivalence class xtruey.
A tautology is an and{or tree that represents the Boolean function true. By symmetry, the functions

true and false have the same probability in both models. Let T be the family of tautologies. In this
part, we prove that the probability of true is asymptotically equal to the ratio of a simple subset of
tautologies.

Definition 24 (cf. Fig. 5). A simple tautology is an and{or tree that contains two leaves labelled by a
variable x and its negation x̄ and such that all internal nodes from the root to both these leaves are
labelled by _-connectives. We denote by S the family of simple tautologies.

Proposition 25. The ratio of simple tautologies verifies

µnpSq „
3

2
¨ ratn, when n tends to infinity.

Moreover, asymptotically when n tends to infinity, almost all tautologies are simple tautologies, meaning
that

µnpT q „ µnpSq, when n tends to infinity.

Proof. The proof is divided in two steps. The first one is dedicated to the computation of the ratio
µnpSq. The second part of the proof shows that almost all tautologies are simple tautologies.

Let us consider the non-ambiguous pattern language M “ ‚|M _M |�^ �. Remark that a tree
such that two M -pattern leaves are labelled by a variable and its negation, is a simple tautology. The
generating function of M is mpx, yq “ 1

2p1´
a

1´ 4px` y2qq. It is sub-critical for I.
The generating function Ĩpzq “ 1

2
B2{Bx2pmpxz, Ipzqq|x“1 enumerates and{or trees with two marked

distinct leaves linked to the root by or-nodes. Therefore, DCn “ Ĩn ¨ Labn´1,kn is the number of
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simple tautologies where simple tautologies realized by a unique pair of leaves are counted once, those
that are realized by two pairs of leaves are counted twice, and so on. We have

DCn
An

“
Ĩn ¨ Labn´1,kn
In ¨ Labn,kn

,

and using a consequence of [7, Theorem VII.8] (cf. a detailed proof in [11]):

lim
nÑ8

Ĩn
In
“ lim

zÑ 1
8

Ĩ 1pzq

I 1pzq
.

Note that

Ĩpzq “
z2

p1´ 4pz ` Ipzq2qq
3{2
,

and thus,

Ĩ 1pzq

Ipzq
“

2z

p1´ 4pz ` Ipzq2qq
3{2
`
p1` 2I 1pzqIpzqq

I 1pzq

6z2

p1´ 4pz ` Ipzq2qq
5{2
.

Note that, when z Ñ 1{8, I 1pzq Ñ `8. Moreover, Ip1{8q “ 1{4. Thus,

Ĩ 1pzq

Ipzq
„

3{82

p1´ 4p1{8` 1{16qq
5{2
“

3

2
when z Ñ

1

8
.

Thus, we get the upper bound 3{2 ¨ ratn for the ratio of simple tautologies: it remains to deal with the
double-counting in order to compute a lower bound.

In DCn, simple tautologies realized by a unique pair of leaves are counted once, those that are
realized by two pairs of leaves are counted twice, and so on. Let us denote by ST in the number of
simple tautologies counted at least i times in DCn: we have DCn “

ř

iě1 ST
piq
n .

Our aim is to remove from DCn the tautologies that have been over-counted. Therefore, we count
simple tautologies realized by three M -pattern leaves labelled by α{α{ᾱ where α is a literal, and the
tautologies realized by four M -pattern leaves labelled by α{ᾱ{β{β̄ where α and β are two different
literals. Let us denote by

I3pzq “
1

3!

B3

Bx3
mpxz, Ipzqq|x“1

the generating function of tree-structures in which three M -pattern leaves have been pointed and

I4pzq “
1

4!

B4

Bx4
mpxz, Ipzqq|x“1

the generating function of tree-structures in which four M -pattern leaves have been pointed. Then, let

DCp3qn “ 3 ¨ Labn´2,knrz
nsI3pzq,

and
DCp4qn “ 3 ¨ Labn´2,knrz

nsI4pzq.

The integer DCp3qn (resp. DCp4qn ) counts (possibly with multiplicity) the trees in which three (resp.
four) M -pattern leaves have been pointed, one of them labelled by a literal and the two others by its
negation (resp. two of them labelled by two literals associated to two different variables and the two
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others by their negations). Remark that a tree having six M -pattern leaves labelled by α{α{ᾱ{β{β{β̄
is counted twice by DCp3qn and four times by DCp4qn .

For all integer i, a simple tautology counted at least i times by DCn is counted at least pi´ 1q times
by DCp3qn `DC

p4q
n . Therefore,

STn ě DCn ´ pDC
p3q
n `DCp4qn q.

In view of Lemma 23,
DC

p3q
n

Tn
ď c3 ¨

Labn´2,kn
Labn,kn

and
DC

p4q
n

Tn
ď c4 ¨

Labn´2,kn
Labn,kn

,

where c3 and c4 are positive constants. Then, asymptotically when n tends to infinity, in view of
Propositions 11 and 12: µnpFq “ µnpDCq ` o pratnq „ 3{2 ¨ ratn.

Let us now turn to the second part of the proof: asymptotically, almost all tautologies are simple
tautologies. Let us consider the pattern N “ ‚|N _ N |N ^ �. This pattern is unambiguous, its
generating function satisfies npx, yq “ x ` npx, yq2 ` y ¨ npx, yq and is thus equal to 1

2p1 ´ y ´
a

p1´ yq2 ´ 4xq. Consequently, N is sub-critical for the family I of tree-structures.
A tautology has at least one N rN s-repetition. Otherwise, we can assign all its N -pattern leaves to

false and, the whole tree computes false: impossible for a tautology.
Consider a tautology t with exactly one N rN s-repetition. this repetition must be a x|x̄ repetition

and must occur among the N -pattern leaves, using the same kind of argument than above.
Then, let us assume that there is an ^-node denoted by ν between the N -pattern leaf x and the root

of the tree. This node ν has a left sub-tree t1 and a right sub-tree t2. Necessarily the leaf x appears in
t1. Then, one can assign all the N -pattern leaves of t2 (which are N rN s-pattern leaves of t) to false,
since there is no more repetition among the N rN s-pattern leaves of t. Also assign all the N rN s-pattern
leaves of t minus the sub-tree rooted at ν to false. Then, we can see that t computes false: impossible.
We have thus shown that t is a simple tautology.

In a nutshell, tautologies with exactly one N rN s-repetition are simple tautologies, a tautology
must have at least one N rN s-repetition and, thanks to Lemma 23, tautologies with more than one
N rN s-repetitions have a ratio of order o pratnq, which is negligible in front of the ratio of simple
tautologies.

The latter proposition gives us for free the proof for the satisfiability problem. In fact, both dualities
between the two connectives and positive and negative literals transform expressions computing true

to expressions computing false, which implies PpGqn pfalseq “ 3{2 ¨ ratn. Moreover, the only expressions
that are not satisfiable compute the function false and PpGqn pfalseq “ 3{2 ¨ ratn tends to 0 as n tends to
infinity, which proves Corollary 8.

6.2 Proofs of Theorems 7 and 9

This last section is devoted to the general result, i.e. to the study of the behaviour of PpGqn pfq and
PpEqn xfy for all non constant Boolean function f . The main idea of this part is that, roughly speaking, a
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typical tree computing a Boolean function f is a minimal tree of f into which a single large tree has
been plugged.

In the following, f (resp. xfy) is fixed,we denote by r “ Lpfq its complexity, and by Γf the set of
the essential variables of f . We also fix t to be an and{or tree computing f .

Moreover, we will need the folowing patterns:

N “ ‚|N _N |N ^�,

P “ ‚|P _�|P ^ P,
and (see Definition 19 where the composition of patterns is defined)

R “ N pr`1qrN ‘ P s and R̄ “ N pr`1qrpN ‘ P q2s,

where the language N ‘ P is defined such that the N ‘ P -pattern leaves of a tree are its N -pattern
leaves plus its P pattern leaves. It is proved in [14] that this pattern language is indeed non-ambiguous
and sub-critical for I if N and P are non-ambiguous and sub-critical for I.

We have already noticed that assigning all N -pattern leaves of a Boolean tree to false make the
whole tree calculate false. The pattern P has the dual property that: assigning all the P -patterns leaves
of a tree to true make the whole tree calculate true. This is why these two patterns are so useful in the
proof of our main result.

Proposition 26. A tree t computing f (define r :“ Lpfq) with at least one leaf on the pr ` 2qth level
of the R-pattern must have at least r ` 1 pR,Γf q-restrictions.

Proof. Let us assume that t computes f , and has at least one leaf on the pr` 2qth level of the R pattern
but has less than r R-repetitions. Let i be the smallest integer (smaller than r` 2) such that the number
of pN piq,Γf q-restrictions is equal to the number of pN pi´1q,Γf q-restrictions.

There must be either a repetition or an essential variable in the first level: if there is none, then we
can assign all the N pattern leaves to false and this operation does not changes the represented function.
This function is then the constant function false, which is impossible; so i ď r ` 1.

First case: Let us assume that there are strictly less than r pN piq,Γf q-restrictions. There is no
repetition and no essential variable in the pattern leaves at level i. Therefore, we can assign them all to
false and make the place-holders of the level i´ 1 compute false. Let us replace those place-holders by
false in the tree. Furthermore, replace by false all the non-essential remaining variables. And simplify
the obtained tree to simplify all the constant leaves false and true. We obtain a tree t‹, which still
computes f , and whose leaves are all former N pi´1q pattern leaves of t labelled by essential variables.
The tree t‹ therefore contains strictly less than r leaves, which is impossible since the complexity of f
is r.

Second Case: Let us assume that t has exactly r pN piq,Γf q-restrictions. Since i ď r ` 1, there is
no restriction in the place-holders of the level r ` 2. Therefore, we can replace the place-holders by
wild-cards ‹, which means that those wild-cards can be evaluated to true or false independently from
each other and without changing the function computed by t. We can also replace the remaining leaves
labelled by non-essential and non-repeated variables by such wild-cards.

We simplify those wild-cards. Such a simplification has to delete at least one non-wild-card leaf. If
we deleted a non-repeated essential variable, then the tree t‹ does not depend on this essential variable
and computes f : this is impossible. Thus, we deleted a repetition: t‹ has strictly less than Rpfq
repetitions and computes f . It is impossible.
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Remark that in Lemma 23, we only count repetitions and not restrictions as it was done in the
original lemma by Kozik. Though, we will need to consider essential variables and the following
lemma permits to handle them. An expansion of a tree t is a tree obtained by replacing a sub-tree s of
t by s ˛ te (or te ˛ s) where ˛ P t^,_u.

Lemma 27. Let L be an unambiguous pattern, sub-critical for I. Let f be a fixed Boolean function,
Γf the set of its essential variables, andMf the set of minimal trees computing f . Let E be the family
of trees obtained by expanding once a tree ofMf by trees having exactly p pL,Γf q-restrictions. Then,
there exists a constant αpGq ą 0 (resp. αpEq ą 0) such that

µnpEq „ αpGq ¨ ratLpfq`pn in model pGq,

resp.
µnpEq „ αpEq ¨ ratRxfy`pn in model pEq.

Proof. Let En be the number of (resp. equivalence classes of) trees of size n in E . We will denote by i
the number of leaves that are involved in the p pL,Γf q-restrictions of the expansion tree: p`1 ď i ď 2p.
Let γf be the cardinal of Γf .

In the model pGq, for all large enough n,

µnpEq “
En
An

ď cstf

2p
ÿ

i“p`1

rzn´Lpfqs
Bi

i!Bxi
p`pxz, Ipzqqq|x“1

p2γf q
pp2pkn ´ γf qq

n´Lpfq´p

Inp2knqn
,

where cstf “ 2Lpfq ¨ |Mf | is an upper bound for the different places in a minimal tree of f where an
expansion can be plugged in. Since L is sub-critical for I, there exists a positive constant α such that

2p
ÿ

i“p`1

rzn´LpfqsBi{i!Bxi p`pxz, Ipzqqq|x“1

In
„ α ¨

In´Lpfq

In
„ α

ˆ

1

8

˙Lpfq

ą 0

asymptotically when n tends to infinity. Therefore, in view of Section 4, we have

µnpEq „ α ¨ ratLpfq`pn .

In the model pEq, we have, with the same reasoning:

µnxEy “
En
An

ď cstf

2p
ÿ

i“p`1

rzn´Lpfqs
Bi

i!Bxi
p`pxz, Ipzqqq|x“1

2p`Rxfy ¨ Labn´p´Rxfy,kn
In ¨ Labn,kn

,

from which we state the same conclusion as for the model pGq.

Consider the family E of trees obtained by replacing a sub-tree s by s ^ te where te is a simple
tautology into a minimal tree of f . Since a simple tautology has at least one S-repetition, thanks to
Lemma 27, there exists two positive constants αpGq and αpEq such that

µpGqn pEq „ αpGq ¨ ratLpfq`1n in model pGq,
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root

υ  

root

˛

te υ

Figure 6: An expansion at node υ. Note that the expansion tree te could have been on the right size of the
˛-connective instead of its left side.

and
µpEqn xEy „ αpEq ¨ ratRxfy`1n in model pEq.

Thanks to Lemma 23, we know that terms computing f with more than Rpfq ` 2 repetitions are
negligible in front of the above family. Therefore, since trees with no leaf on the pr ` 2qth level
are negligible, we have proved weaker versions of Theorems 7 and 9, where the equivalent for the
probabilities is replaced by an upper and a lower bounds of the same order. The rest of the proofs
consists in sharpening both bounds.

The key point of the proof of Theorems 7 and 9 is that a typical tree computing a function f is a
minimal tree of this function which has been expanded once. In the following, we will only consider
two different expansions:

Definition 28 (cf. Figure 6). Recall that an expansion of a tree t is a tree obtained by replacing a
sub-tree s of t by s ˛ te (or te ˛ s) where ˛ P t^,_u.

An expansion is a T-expansion if the expansion tree te is a simple tautology and the connective ˛ is
^ (or a simple contradiction and the connective ˛ is _).

An expansion is a X-expansion if the expansion tree te has a leaf linked to the root by a ^-path
(resp. a _-path) and the ˛ connective is a _ (resp. ^).

Corollary 29. The ratio of the (resp. equivalence class of) minimal trees of f expanded once satisfies
that there exists two positive constant λf and λxfy such that asymptotically when n tends to infinity:

µpGqn pErMf sq “ λf ¨ rat
Lpfq`1
n ` o

´

ratLpfq`1n

¯

,

µpEqn xErMf sy “ λxfy ¨ rat
Rxfy`1
n ` o

´

ratRxfy`1n

¯

.

This corollary is a direct consequence of Lemma 27.

Lemma 30. Let f be a fixed Boolean function andMf the set of minimal trees of f .

PpGqn pfq „ µpGqn pErMf sq when nÑ `8,

and
PpEqn xfy „ µpEqn xErMf sy when nÑ `8.
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Proof. Let t be a tree computing f . Such a tree must have at least Rpfq ` 1 R̄-repetitions. Moreover,
thanks to Lemma 23, trees with at least Rpfq ` 2 R̄-repetitions are negligible. We will show that a tree
with exactly Rpfq ` 1 R̄-repetitions is in fact a minimal tree expanded once.

The term t must also have Rpfq ` 1 R-repetitions and therefore, there is no additional repetition
when we consider the pr ` 3qth level of the R̄-pattern.

Let i be the first level such that the number of pN piq,Γf q-restrictions is equal to the number of
N pi´1q-restrictions. Since there must be a restriction on the first level, i ď r ` 1.

First Case: Assume that an essential variable α appears on the pattern leaves of the pr ` 3qth level.
Therefore, t has at most Lpfq pN piq,Γf q-restrictions. Let us replace the place-holders of the pi´ 1qth

level by false and assign all the remaining non-essential variables to false. Simplify the tree to obtain a
new and/or tree denoted by t‹. The leaves of this tree are former N pi´1q-pattern leaves of t, labelled
by essential variables and t‹ still computes f . But the variable α is essential for f : thus it must still
appear in the leaves of t‹, and by deleting its occurrence in the leaves of the pr ` 3qth level, we deleted
one repetition. Therefore, t‹ has at most Lpfq ´ 1 leaves which is impossible!

Second Case: There is no essential variable among the the pattern leaves of the pr ` 3qth level.
Since there is also no repetition at this level, we can replace the place-holders of the level pr ` 3q to
wild-cards. We also replace the remaining non essential and non-repeated variables by wild-cards. We
then simplify the wild-cards and obtained a simplified tree t‹, computing f , with no wild-cards and
which leaves are former leaves of the trees t, essential or repeated. During the simplification process,
we have deleted at least one of these leaves and therefore t‹ has at most Lpfq leaves: it is a minimal
tree of f .

Let us consider the following fact: The lowest common ancestor of all the wild-cards in t has been
suppressed during the simplification process.
Assume that this fact is false: then two wild-cards have been simplified independently during the
simplification process, and thus, at least two essential or repeated variables have been deleted. The tree
t‹ has thus at most Lpfq ´ 1 leaves and computes f , which is impossible since Lpfq is the complexity
of f .
Let us denote by te the sub-tree rooted at υ the lowest common ancestor of the wild-cards. Thus a
typical tree computing f is a minimal tree of f in which we have plugged a specific expansion tree
te.

Lemma 31. Let t be a typical tree computing f . The expansion tree te is either a simple tautology
(or simple contradiction), or an x-expansion - i.e. a tree with one ^-leaf (resp. _-leaf) labelled by an
essential variable of f .

Proof. As shown in the former lemma, a typical tree computing f is a minimal tree of f on which has
been plugged an expansion tree te.

First Case: Let us assume that te has no pN ‘ P q-repetition and no essential variable among its
pN ‘ P q-pattern leaves. Then, we can replace te by a wild-card and simplify this wild-card. This
simplification suppresses at least one other leaf of the tree: the obtained tree is then smaller than the
original minimal tree, and still computes f . It is impossible.

Second Case: Let us assume that te has at least two ppN ‘ P q2,Γf q-restrictions. Thanks to
Lemma 27, this family of expanded trees is negligible.

Third Case: Let us assume that te has exactly one ppN ‘ P q2,Γf q-restriction. Then it must be a
pN ‘ P,Γf q-restriction (see First Case).

• if it is a repetition, than one can show that it must be a simple tautology or a simple contradiction.
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• if it is an essential variable, one can show that it must be an X-expansion.

7 Conclusion

In this paper, we have generalised the Catalan tree distribution on Boolean functions following two
directions:

• letting the number of variables and the size of the Boolean trees tend to infinity together. It has
allowed us to answer a fundamental satisfiability problem;

• the natural equivalence relation on Boolean trees and functions that we have introduced exhibits
a very interesting threshold/saturation phenomenon for which we have no intuitive explanation
up to now.

It is interesting to see that these two models can be analysed with very similar methods, namely, the
ones used in the literature to study the classical Catalan tree model: Analytic Combinatorics and
Kozik’s pattern theory. The key idea that permitted to generalise those methods to our two new models
was to dissociate the shapes of the trees and their leaf-labelling.

We strongly believe that our methods could be generalised further, for example to other logical
systems (as the implication model, see e.g. [9, 11]), or to non-binary or non-planar uniform trees
(see [10]). Our confidence rely on the fact that those models, in the pknqně1 constant case, can be
analysed with analytic combinatorics and pattern theory (or tools based on the same key ideas) as well,
and we have shown here how to generalise those methods to a more general sequence pknqně1.

A more challenging generalisation would be to consider different probability distributions on binary
plane trees. For example, in view of [8, 3] we conjecture that the random binary search tree of size n,
labelled with pknqně1 variables defines a very interesting satisfiability problem, with a phase transition
à la K–SAT. It would be very interesting (but, we expect, non trivial) to prove such a conjecture. Even
more challenging would be to ask what effect the introduction of the equivalence relation has on this
phase transition?
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