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In this paper, we study two operators for composing combinatorial classes: the
ordered product and its dual, the colored product. These operators have a natural
interpretation in terms of Analytic Combinatorics, in relation with combinations of
Borel and Laplace transforms. Based on these new constructions, we exhibit a set of
transfer theorems and closure properties. We also illustrate the use of these operators
to specify increasingly labeled structures tightly related to Series-Parallel constructions
and concurrent processes. In particular, we provide a quantitative analysis of Fork/Join
(FJ) parallel processes, a particularly expressive example of such a class.
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1. Introduction
Our study is concerned with the increasing labeling of combinatorial structures, which tightly relate
to the notion of concurrent processes. Our goal is to conduct this study using the tools of Analytic
Combinatorics. In [4], we studied the restricted subclass of pure parallel processes, corresponding
to the well-known increasing trees. One measure of particular importance is the number of possible
executions of a process, which corresponds to the number of increasing labelings of the underlying
combinatorial structure. More recently, we began the exploration of interacting processes, in
particular through synchronization. The idea is to allow not only the fork of independent processes,
as in the pure parallel case, but also their join, i.e. their ultimate synchronization. This class of
Fork-Join (FJ) processes is a much more involved setting since labels can now be shared among
distinct processes. This means we now face a class of increasing DAGs (directed acyclic graphs).
As a starting point, we studied in [3], the restricted class of diamond processes. A diamond is a
fork of two process that must be later joined, and their subprocesses are diamonds also. The main
restriction is that diamonds may not be composed in series, which is a very strong constraint.

In terms of Analytic Combinatorics, the study of the pure parallel processes and the diamonds
heavily relied on the boxed product operator (cf. [10] and [8, pp.139–142]). Unfortunately, the
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operator only singles out one node wrt. a sub-structure in the increasing labeling process. In order
to put e.g. two diamonds in series, we have to combine two sub-structures A and B and ensure
that all the labels of A are strictly lower than those of B. In the literature, the ordered product
studied in the species theory [2] appears to match our requirement (it is also used as a technical
tool in the context of Boltzmann sampling in [6]). However, as far as we know, the operator has
not been studied in the realms of Analytic Combinatorics, a situation we intend to remedy with
the present paper. The second operator we introduce is a form of a dual that we call the colored
product, which has an interesting combinatorial interpretation, and to our knowledge is studied for
the first time.

The outline of this paper is as follows. In Section 2, we define the ordered and colored product
and provide the analogous of the standard iterated operators (Seq, Set and Cyc) based on
the ordered product. We also provide transfer theorems that give the asymptotic behavior of
the number of structures just by reading the way they are specified. Then we exhibit several
combinatorial properties and examples, especially some classical structures whose specification
can be rephrased through these new products. Next, in Section 3, we detail the construction of
Fork-Join processes and their increasing labelings. We recall a result of Möhring and derive a
formula to compute efficiently the number of runs of a given FJ process. This correspond to
a so-called hook-length formula. We exhibit some technical difficulties related to FJ processes
through interesting subclasses, like the series combinations of the diamonds. Finally, some proof
details are provided in dedicated Appendices.

2. The ordered and the colored operator
We briefly introduce some notations we will use through the paper. A combinatorial class is denoted
by A. Its number of objects of size n is given by An. Thus if A is a non-labeled class, its ordinary
generating function is

Apzq “
ÿ

ně0
Anz

n.

And if A is a labeled class, its exponential generating function is

Apzq “
ÿ

ně0
An

zn

n! .

2.1. Context and definitions
When studying tree-structured processes [4] we used the boxed product operator introduced by
Greene [10] and later developed in the context of the symbolic method [8]. It is used to encode a
global increasing labeling constraint for combinatorial classes. However the boxed product cannot
be adapted to our context. In fact, the class A˝ ‹ B given by the boxed product, contains well
labeled objects from the product A ‹ B with the constraint that the smallest label belongs to the
component issued from A.
In the case of our study of increasingly labeled structures, such a constraint is not sufficient.

In particular, we need to build the combinatorial class of objects of A ‹ B such that all the
smallest labels belong to the component issued from A. We will call the latter product the ordered
product. We will introduce a second product, that may appear as less important in the context of
labeled combinatorial class construction, but in fact, it is central in some quantitative analysis (e.g.
Section 3). Both products are somehow dual.
In the literature an operator analogous to the ordered product, appears in the context of

combinatorial species (cf. [2, Chapter 5]), named the ordinal product. However it has not been
thoroughly studied, especially from a quantitative point of view. The name ordered product is
introduced in the paper [6], where it is used as a technical tool in the context of Boltzmann
sampling.
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Definition 1. Let A and B be two labeled combinatorial classes and α and β be two structures
respectively in A and in B. We define the class of labeled structures induced by α and β:

α ‹ β “
 

pα, f|α|pβqq | f|α|p¨q shifts the labels
from β by |α|u,

such that the function f|α| is a relabeling function (by shifting by `|α| the previous labels). We
extend the ordered product to combinatorial classes

A ‹ B “
ď

αPA, βPB
α ‹ β.

In fact, the ordered product of A ‹ B contains objects from the product A ‹ B such that all the
labels of component of A are smaller that the ones of the component of B.
Remark. In the case where one of the operands of the ordered product is reduced to an atom,
then the product corresponds to the classical boxed product (e.g. [8, p.139]).

Definition 2. Let A and B be two unlabeled combinatorial classes and α and β be two structures
respectively in A and in B. We define the class of unlabeled structures induced by α and β

αe β “
 

pα̃, β̃q satisfying the conditions (C)
(

,

(C) α̃ and β̃ have respectively the structure of α and β and their atoms are 2-colored, with the
constraint that among the |α| ` |β| atoms exactly |α| atoms are colored with the first color (and
thus |β| atoms are colored with the second color).
We extend the colored product to combinatorial classes

Ae B “
ď

αPA, βPB
αe β.

Remark. In the case where one of the operands of the colored product is the atomic class, then
the product corresponds to the classical pointing operator (e.g. [8, p.86]), in the following sense:

Z eA “ ΘpZ ˆAq

Let us now introduce the definitions of both products on the generating functions from two
distinct points of view: a formal definition and an integral definition.
We first recall the classical integral transforms: the combinatorial Laplace and the Borel

transforms1. From a combinatorial point of view, they define a bridge between exponential
generating functions and ordinary generating functions. More precisely, we have respectively

Lc

˜

ÿ

ně0

an
zn

n!

¸

“
ÿ

ně0

anz
n; Bc

˜

ÿ

ně0

anz
n

¸

“
ÿ

ně0

an
zn

n! .

From a functional point of view, the combinatorial Laplace and the Borel transforms correspond
respectively to

Lcpfq “

ż 8

0
expp´tqfpztqdt;

Bcpfq “
1

2iπ

ż c`i8

c´i8

exppztq
t

f

ˆ

1
t

˙

dt,

where the real constant c is greater than the real part of all singularities of fp1{tq{t.

1cf. Appendix A in which we recall the relations between the classical Laplace and Borel transforms and their
combinatorial definitions.
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Analogously to the traditional Laplace transform, the product of Laplace transforms can be
expressed with a convolution product:

z ¨ Lcpfq ¨ Lcpgq “ Lc

ˆ
ż z

0
fptqgpz ´ tqdt

˙

.

Equivalently
Lcpfq ¨ Lcpgq “ Lc

ˆ
ż z

0
fptqg1pz ´ tqdt` gp0qfpzq

˙

.

We denote by f ˚ g the combinatorial convolution
şz

0 fptqg
1pz ´ tqdt` gp0qfpzq.

Proposition 3. Let A and B be two labeled combinatorial classes. The exponential generating
function Cpzq, associated to C “ A ‹ B, satisfies the three following equations (according to the
context: formal or integrable functions)

Cpzq “ Bc pLc Apzq ¨ Lc Bpzqq

“
ÿ

ně0

řn
k“0 akbn´k

n! zn

“ Apzq ˚Bpzq.

Observe that the ordered product gives a combinatorial interpretation of this adapted convolution.
Note that the integral interpretation is valid when both generating function Apzq and Bpzq are
integrable in their definition domain. However, for example if Apzq “ 1{p1´ zq, although Lc Apzq
is not analytic, the function Apzq can be a component of the ordered product. The proof of the
result is given in Appendix A.

Proposition 4. Let A and B be two unlabeled combinatorial classes. The ordinary generating
function Cpzq, associated to C “ Ae B, satisfies the following equations

Cpzq “ Lc pBc Apzq ¨ Bc Bpzqq “
ÿ

ně0

n
ÿ

k“0

ˆ

n

k

˙

akbn´kz
n.

2.2. Some properties of the products
Let us first give some algebraic properties of the products.

Proposition 5. The ordered and the colored product are associative and commutative. Furthermore,
each product is distributive with the + operator.

We next introduce the differentiation of the ordered product.

Proposition 6. Let A and B be labeled combinatorial classes. Then

pApzq ˚Bpzqq1 “ Apzq ˚B1pzq `A1pzqBp0q
“ A1pzq ˚Bpzq `B1pzqAp0q.

The interpretation of the previous result is direct. The series pApzq ˚Bpzqq1 corresponds to the
ordered product of A and B in which one node is removed. Obviously, since we know to which
component belongs the remaining label, we know if the node has been removed from A or from B.
We must keep in mind the specific case when one of the component has size 0.

And finally we provide two properties of the colored product.

Proposition 7. Let A and B be unlabeled combinatorial classes. Then

Apzq eBpzq “ Ap0qBp0q

` z

ˆ

Apzq ´Ap0q
z

eBpzq `Apzq e
Bpzq ´Bp0q

z

˙

.
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This proposition suggests an interesting combinatorial interpretation. The series Apzq´Ap0q
z e

Bpzq `Apzq e Bpzq´Bp0q
z corresponds to the class of the colored product of A and B with one node

removed. Due to the coloration of the remaining nodes, we can guess from which component (of A
or B) the node has been removed, and also its color. The component Ap0qBp0q is to handle the
special cases of size 0 structures. Ultimately, we get an object from the colored product of A and
B.

Proposition 8. Let A be an unlabeled combinatorial class. The ordinary generating function Cpzq
associated to the class A e Seq Z is similar to the classical binomial transform [11] of Apzq.

Cpzq “
ÿ

n

n
ÿ

k“0

ˆ

n

k

˙

ak “
1

1´ zA
ˆ

z

1´ z

˙

.

The proofs of all these properties rely on basic properties of the Laplace and Borel transform,
and are thus omitted.

2.3. Operators for iterated products
In this section we introduce the ordered analogue of the Seq, Set and Cyc operators. We first
define the ordered exponentiation of a combinatorial labeled class: A‹ k “ A ‹ . . . ‹ A

k times
We take

the convention A‹ 0 “ E “ tεu.
Then, an object of A‹ k is a k-tuple where the atoms of each component are labeled by all

numbers of an interval of Nzt0u, all intervals are pairwise disjoint and the union of all intervals is
an interval starting by one. Moreover, the increasing labeling constraint states: for ααα a tuple in
A‹ k, then for all i ă j the labels of the component αi are all smaller than the ones of αj . Thus,
ααα is a canonical representation of the set tα1, . . . , αku. This observation naturally leads to the
following definition.

Definition 9. The ordered set Set ‹

pAq of a labeled combinatorial class A (without structures of
size 0) is defined by:

Set ‹

pAq “
ď

kě0
A‹ k.

This specification directly translates into a functional equation satisfied by the generating function:

Set ‹

pApzqq “
ÿ

ně0
Apzq

‹ n “ Bc

ˆ

1
1´ LcpApzqq

˙

.

In the same way, we define the ordered sequence that enumerates all permutations of a tuple
ααα P A‹ k.

Definition 10. The ordered sequence Seq ‹

pAq of a labeled combinatorial class A (without
structures of size 0) is

Seq ‹

pAq “
ď

kě0

ď

σPSk

tσpαααq | @ααα P A‹ ku,

where Sk denotes the set of permutations of size k. As usual, this combinatorial specification
translates into the functional equations 2:

Seq ‹

pApzqq “
ÿ

kě0

k! ¨Apzq‹ k
“ BcpLcr

1
1´ u spLcpApzqqqq.

It remains to define the ordered cycle. In this case, we need to distinguish the permutations of
ααα up to cycle. Like in the case of the classical operator Cyc for the labeled classes, a cycle is a
sequence up to all of its circular shifts.

2 The function BcpLcr
1

1´ u
spLcpApzqqqq corresponds to the Laplace transform of the sequence operator applied to

Laplace transform of A
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Definition 11. The ordered cycle Cyc ‹

pAq of a labeled combinatorial class A (without structures
of size 0) is:

Cyc ‹

pAq “
ď

kě0

ď

σPSkzshiftk

tσpαααq | @ααα P A‹ ku,

where Skzshiftk is the set of size k permutations quotiented by the function shiftkpiq “
"

0 if i “ k
i` 1 otherwise .

Thus,

Cyc ‹

pApzqq “
ÿ

kě1

pk ´ 1q! ¨Apzq‹ k

“ Bc

˜

LcpApzqq ¨
ÿ

kě0

k! LcpApzqq
k

¸

“ Apzq ˚ Seq ‹

pApzqq.

Some examples will illustrate the use of these operators in the Section 2.6.
Iterated variants of the colored product are also worth studying, but this is left as a future work.

2.4. Closure Properties
Beyond being formal operators, the ordered and the colored product also enjoy important closure
properties. Let us recall the definition of a holonomic generating function.

Definition 12. A generating function F pzq is holonomic (or D-finite) if it satisfies a linear
differential equation whose coefficients are rational polynomials in z:

q0pzqF pzq ` q1pzqF
p1qpzq ` ¨ ¨ ¨ ` qrpzqF

prqpzq “ 0,

for some polynomials qspXq P QrXs (with qr different from 0) and such that F piqpzq “ di
dziF pzq.

Proposition 13. Let A and B be two labeled (resp. unlabeled) combinatorial classes whose
exponential (resp. ordinary) generating functions are holonomic. Then the exponential generating
function Apzq ˚Bpzq (resp. ordinary generating function Apzq eBpzq) is holonomic.

The proof of the proposition is obvious since both the Laplace and the Borel combinatorial
transform are closed for the holonomy property. Let us now focus on a smaller set of functions:
rational generating functions.

Definition 14. Let P and Q be two polynomials, with Q ‰ 0, then F “ P {Q is a rational function.

Proposition 15. Let A and B be two unlabeled combinatorial classes which are associated to
rational ordinary generating functions. Then the ordinary generating function Apzq e Bpzq is
rational.

The proof relies on the existence of a partial fraction expansion for the rational functions and
the following formula Lcp

1
1´a¨z q “ ea¨z.

Remark that the analogous proposition for the ordered product of rational generating functions
is not true. In fact, let Apzq “ z and Bpzq “ 1{p1´ zq. Then we obtain Apzq ˚Bpzq “ ´ lnp1´ zq
that is not rational.

2.5. Transfer theorems
This section is dedicated to transfer theorems that give the asymptotic behavior of the number of
objects built through the products and their iterations.
The following theorem, concerning the ordered product, is analogous to the transfer theorem

proved in [1] in the context of rapidly growing power series.
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Theorem 16. Let A and B be two combinatorial labeled classes. We denote by a (resp. b) the
size of the smallest objects of A (resp. B). Let C be the class A ‹ B.

If both exponential generating functions Apzq and Bpzq have their dominant singularities in
r0,`8r and if there exists a positive integer r such that

řn´r
k“r AkBn´k “ OpAn´r `Bn´rq, then

Cn „
nÑ8

BbAn´b `AaBn´a.

Remark. In many cases BbAn´b and AaBn´a are not of the same order (e.g. both dominant
singularities are distinct, or the sub-exponential factors in the asymptotic behaviors of An and Bn
are distinct, or the constants a and b are distinct).
The proof of this result is given in Appendix B.
Note that if the exponential generating functions Apzq and Bpzq (with dominant singularities

ρA and ρB) are such that there exist two constants α and β such that for large enough n we get
An ď nα ρ´nA n! and Bn ď nβ ρ´nB n!, then the assumption

řn´r
k“r AkBn´k “ OpAn´r ` Bn´rq is

satisfied.

Theorem 17. Let Apzq be an exponential generating function (with A0 “ 0). We define Spzq “
Set ‹

pApzqq, Lpzq “ LcpApzqq and ρ the radius of convergence of Lpzq. Then, the asymptotic
behavior of rznsSpzq, when n tends to infinity, is

1. rznsSpzq „
nÑ8

rznsApzq, if ρ “ 0 and An

An´1
“ Ω pnαq, where α is a constant greater than 0.

2. rznsSpzq “ 1
n!σL1 pσq ¨ σ

np1 ` Cnq if ρ Ps0,`8r and Lpρq ą 1, with C being a real constant
such that 0 ă C ă 1 and σ being the root of Lpσq “ 1.

Proof. 1. In this case, we proceed by induction. Let define Sk “ 1`A ˚Sk´1 (and S1 “ 1`A),
which is the generating series of the ordered set containing at most k A-structures. Thus,
we have rznsS1 “ rz

nsA. Now, let us prove rznsSk`1 „
nÑ8

rznsA: We start from Sk`1 “

1` A ˚ Sk, then rznsSk`1 “ rz
nsA ˚ Sk. Since An

An´1
“ Ω pnαq, we use the Theorem 16 and

get rznsSk`1 „
nÑ8

Aarz
n´asSk ` rz

nsA where a ą 0 is the valuation of A. So, using the
induction hypothesis, we obtain rznsSk`1 „

nÑ8
Aarz

n´asA` rznsA „
nÑ8

rznsA. We thus get
the conclusion by induction.

2. This case is a direct application of the theorem for asymptotics of supercritical sequence
proved by Flajolet and Soria [9]. ˝

Remark. The first case of this theorem states that if the number of structures of a given class A
grows fast enough, then, asymptotically, an ordered set of structures of A contains, almost surely,
a single big structure.

2.6. Examples
We conclude this section by revisiting classical combinatorial classes using the ordered and colored
products but specified with our products. Some new interesting structures are also presented.

Example 18. Binary search trees.
Let Bpzq be the exponential generating function related to the binary search trees (BSTs) containing
distinct keys from 1 to the size of the tree. Using the ordered product, we can easily specify BSTs

B “ E ` pB ‹ Zq ‹ B.

By the symbolic method, we get

Bpzq “ 1` pBpzq ˚ zq ˚Bpzq.
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There is one tree containing zero key and otherwise the left sub-tree contains keys that are smaller
than the root-key, and all of them are smaller than the keys from the right sub-tree. By using the
definition of the ordered product, we prove that the number of BSTs built on the n distinct keys
is equal to the n-th Catalan number. More precisely, we get back the classical recursive equation
satisfied by the Catalan numbers.

Example 19. Integer compositions.
An integer composition of an integer n is a sequence of strictly positive integers whose sum is
n. Usually, the specification SeqpSeqě1pZqq characterize the class, where the inner Seqě1pZq
corresponds to the class of strictly positive integers. Even if this description leads to ordinary or
exponential generating functions, its way of thinking is clearly an unlabeled one: the main idea
is to represent an integer by a sequence of atom without matter about their labels which gives n!
objects representing the integer n (n! rzns 1

1´z ).
Using the ordered set, we obtain another way to express it in a more labeled fashion. The idea

is to encode an integer n by a set of labeled atoms of size n. Thus, one object represents one
integer (n!rznsez “ 1). Then, we represent the integer compositions by the ordered sets of labeled
integers: Set ‹

pSetě1pZqq. Each integer ( i.e. Setě1pZq) in the ordered set represents a part of
the composition and the interval labeling this integer represents its position in the composition. For
example, the set tt1, 2, 3u, t6, 5u, t7, 8, 9u, t4uu represents the composition 3` 1` 2` 3 of 9.

Then, applying the symbolic method, we obtain the exponential generating function

Bc

ˆ

1
1´ Lcpez ´ 1q

˙

“ Bc

ˆ

1´ z
1´ 2z

˙

Although we can compute the general term (which is 2n´1) of the series directly, note that this
generating function corresponds to the second case of Theorem 17. Thus, the expected result (2n´1)
is obtained directly.

Example 20. Permutations with interval cycles.
It is well known that a permutation can be decomposed as a set of cycles, which gives the following
equation in term of the symbolic method: SetpCycpZqq.

Now, let us define the permutations subclass in which every cycles contain labeled atoms ( i.e.
integers) where the labels are all of the same integer interval. For example p231489567q is a
such permutation, it can be decomposed as tpÝÑ123qpÝÑ4 qpÝÝÝÑ58697qu (where c “ ÝÝÝÝÝÝÝÑa0 . . . an´1 is such that
cpaiq “ ai`1 mod n). So, these permutations with interval cycles (we will denote their combinatorial
class by P) can be encoded with the symbolic method using the Set ‹ operator:

P “ Set ‹

pCycpZqq

Then, we obtain the generating functions P given by P pzq “ Bcp
1

1´Lcplogp 1
1´z qq

q or by elementary

combinatorial argument P pzq “
ÿ

ně0

˜

ÿ

cPCn

ˆ

n

c

˙

¸

zn

n! where Cn is the set of integer compositions

of n (see as tuples) and
`

n
c
˘

is a multinomial coefficient.
Then, noticing that Lcplog 1

1´z q has a zero convergence radius, we apply our transfer Theorem 17
and directly obtain rznsP pzq „ pn´ 1q!.

Example 21. Bell numbers.
The Bell numbers, denoted Bn, are known to count the number of partitions of a set. They verify
the recurrence equation Bn “

řn´1
k“0

`

n´1
k

˘

Bk (with B0 “ 1) and the labeled combinatorial class of
partitions of sets is specified by B “ SetpSetě1 Zq. A partition of a set is a set of sets such that
the sum of the sizes of the inner sets is equal to the size of the sliced set. From this specification,
by applying the symbolic method, we derive the formula of their exponential generating function:
Bpzq “

ř

ně0 Bn
zn

n! “ ee
z
´1.

We now propose to revisit the Bell numbers but in the unlabeled context. This provides an
interesting use case for the colored product.
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In the unlabeled world, a partition of a set can be seen as follows: let n be aligned points on a
line (in the plane), then a partition of a set of n elements in k parts is isomorphic to the k-coloring
of the n points. So, a partition of a set of n elements is a part of size p containing the first point
(a coloring of p points with the color 1), and an other partition of a set of size n´ p (a coloring of
the remaining points with k ´ 1 colors).

Translating this decomposition, using the symbolic method and the colored product, we obtain the
following unlabeled specification:

B “ E ` Z ˆ pSeqpZq e Bq .

The colored product is here used to make the choice of which atoms belong to the first part of the
partitions and which belong to the sub-partition.
Thus, we obtain the following functional equation for the ordinary generating series of Bell

numbers:
Bpzq “ 1` z ¨ Lc

ˆ

BcpBpzqq ¨ Bc

ˆ

1
1´ z

˙˙

.

Applying the Borel transformation on this equation, and after using one of the identities given in
Appendix A, we obtain:

BcpBpzqq
1 “ BcpBpzqq e

z.

Solving this differential equation leads to the expected result:

BcpBpzqq “ ee
z
´1.

3. Application: fork-join processes
We now illustrate the use of the ordered and colored products for enumerating the increasing
labelings of series parallel structures. The motivation comes from concurrency theory where the
control graph of concurrent processes can be seen as directed acyclic graphs (DAG). Each run (or
execution) of a given concurrent program then corresponds to an increasing labeling of the DAG.

Definition 22. An increasing labeling of a DAG D is a labeling of the n nodes of D where the
labels are distinct, between 1 and n, and such that the sequence of labels induced by a path of D is
strictly increasing.

In the figures, the direction of the edges of the DAGs are assumed from top to bottom. See
Figure 3 for an example of an increasing DAG.
We do not know how to deal with the increasing labellings of arbitrary DAGs. The counting

problem already is known to be 7P-complete [5]. Our objective is thus to find and study interesting
and more tractable subclasses. In [4] we provide a complete analytic study of the asymptotic
average number of increasing labelings for trees as well as a linear time counting algorithm. In
[3] we study the diamond processes. A diamond is a fork of two processes that must be later
joined, and the subprocesses are diamonds also. The main restriction is that diamonds may not be
composed in series, which is a very strong constraint.

In the present paper, we study the more expressive class of fork-join processes, defined as follows.

Definition 23. The DAG associated to a FJ process is structured according to the specification
depicted in Figure 1. Thus an unambiguous specification is

FJ “ ‚ | ‚ ˆ FJ | ‚ ˆ pFJ ˆ FJ q ˆ FJ .

This class is named after the way Unix processes work: A parent process can fork a child
sub-process, and wait for the termination of the child, which is named a join operation.

There is an elegant isomorphism between the unlabeled structure of FJ processes and a simple
variety of trees with nodes of arity 0, 1 or 3. An example is such a correspondance is given in
Figure 2. In the ternary nodes, the rightmost sub-tree is the sub-process rooted at the join node of
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FJ “ • | FJ

•

•

•

| FJ

•

•

•

•

FJ

•

•

FJ

•

Figure 1: The FJ processes.
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Figure 2: FJ processes as ternary trees.

the DAG, and the two leftmost sub-trees correspond to the sub-processes in parallel. This encoding
provides a natural induction principle for FJ processes.
Similarly to the hook-length formula for trees (cf. [11, p. 67]), we can get an efficient mean

of counting increasing labelings in FJ processes. The formula is based on the ternary tree
correspondence of a FJ process P . For each node ν in P , we define Pν to be the fringe subtree
rooted in ν (and containing all descendants of ν).

For each ternary node ν, whose children are the nodes ν1, ν2 and ν3 (from left to right), we get
the three fringe subtrees Pν1 , Pν2 and Pν3 . For example, for the node h in Figure 2, the fringe
subtree Ph1 is reduced to i and the fringe subtree Pν3 contains k and l.
Theorem 24. (Hook-length formula for FJ processes). The number of runs of a FJ process P
(i.e. the number of increasing labelings of the DAG of P ) is

|LE pP q| “
ź

ν ternary
node

|Pν1 Y Pν2 |!
|Pν1 |! ¨ |Pν2 |!

.

Furthermore, by denoting by n the size of P , then by memoizing all factorial values of the integers
from 1 to n, the number |LE pP q| is computed in Θpnq arithmetic operations in the worst case and
with a single traversal of P .

An application of the formula for our example in Figure 2 gives p2! 6! 2!q { p1! 1! 4! 2! 1! 1!q “
2880{48 “ 60. Thus there are 60 different runs induced by the example process.

For a process P , if its tree correspondence contains no ternary node, i.e. P is a chain, thus
we put |LE pP q| “ 1. Theorem 24 is derived directly from Möhring’s formula for series-parallel
Posets [12] (the connection between FJ processes and SP-posets is obvious).

A first step to understanding what a typical FJ processes looks like is computing the number of
processes of a given size. Let F pzq be the ordinary generating function enumerating FJ processes.
We denote by Fn the number of FJ processes of size n. Thus we get F pzq “

ř

n Fnz
n. The first

coefficients pFnqną0 are

1, 1, 1, 2, 5, 11, 24, 57, 141, 349, 871, 2212, 5688, 14730,
38403, 100829, 266333, 706997, 1885165, 5047522, . . .
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This sequence is stored in OEIS3 A071879 and enumerates the subclass of p0, 1, 3q-trees according
to the number of edges instead of nodes. The bijection is direct.

Proposition 25. Asymptotically when n tends to infinity, the number of FJ processes of size n is

Fn „
nÑ8

1
2

c

1
3 `

1
22{3

ρ´n
?
πn3

,

with the dominant singularity ρ “ p1` 3 ¨ 2´2{3q´1.

The latter Proposition 25 is directly derived from the enumeration of simple varieties of trees
based on the symbolic method. This method is well introduced in the book of Flajolet and
Sedgewick [8]. However we give a complete proof in Appendix A.
Once this first measure computed, our aim is to compute the average number of runs of a FJ

process. We would like to follow the strategy from [4], however a major barrier appears immediately.
The classical operators defined in the symbolic method are not sufficiently expressive to apply to
FJ processes.

That is the point, where the ordered product appears to express the constraints of the increasing
labelings of FJ processes DAG.

From the structure of FJ processes (specified in Definition 23) and the definition of the ordered
product, we deduce immediately the specification of FJ processes that are increasingly labeled.

Definition 26. Let P be the labeled class of increasing FJ processes. Then

P “ Z ` Z ˝ ‹ P ` Z ˝ ‹ ppP ‹ Pq ‹ Pq .

First, note that the classical boxed product ˝‹ could be replaced by the ordered product ‹ .
Furthermore, although we have proposed several tools to deal with the ordered product, the
quantitative analysis of the class P seems very difficult: It relies on a second order integral equation

P pzq “ z `

ż z

0
P ptq dt`

ż z

0

ż t

0
P 2puqP 1pt´ uq du dt.

Our approach to circumvent the problem is to introduce subclasses that get closer and closer to P .
A first way is to bound the fork depth, that is the number of fork nodes on each path of the

DAG. An alternative way is to bound the number of subprocesses that can be put in series. In
fact, the limit case where no series operation was allowed corresponds to the diamonds [3].

3.1. Parallel-constrained processes
The specification of parallel-constrained FJ processes is as follows

W0 “ Seq
ě1

Z,

W` “ Z ` Z ˝
‹W`

` Z ˝
‹ pp2 ¨W`´1 ‹ Seq Z ´W0 ‹W0q ‹ W`q .

These subclasses of FJ processes are an increasing iteration of subclasses, in the sense that
W0 Ă W1 Ă W2 Ă . . . . There are two major restrictions in front of FJ processes, both of them
are related to the fork nodes. The first one, in W`, is such that we allow only ` nested fork nodes.
The second one is such that two processes can be put in parallel only when at least one of them is
a series of atoms (a wire of atoms), eventually empty.
Let us focus on the functional equation associated to W`.

Proposition 27. Let ` P N. The class W` is such that LcpW`pzqq is a rational function, i.e.
W`pzq is satisfying a linear differential equation.

3Online Encyclopedia of Integer Sequences
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Proof. First differentiate it according to z, then take the Laplace transform of the whole equation,
and recognize a colored product. We get

LcpW`pzq
1
q “ 1` LcpW`pzqq

`

´

2 LcpW`´1pzqq e Lcpexppzqq ´ LcpW0pzq
2
q

¯

¨ LcpW`pzqq.

Substitute LcpW 1
`pzqq by z´1 LcpW`pzqq (cf. Appendix A), and finally isolate LcpW`pzqq:

LcpW`pzqq “
z

1´ z ´ z p2 LcpW`´1pzqq e Lcpexppzqq ´ LcpW0pzq2qq
.

By induction we prove that LcpW`pzqq is a rational function, since the colored product of two
rational functions is rational (cf. Proposition 15). ˝

Easily we compute
LcpW0pzqq “

z

1´ z ; LcpW1pzqq “
zp1´ 2zq

1´ 3z .

Let us denote by P`

Q`
pzq the rational function LcpW`pzqq, and by d` the degree of Q`pzq.

Proposition 28. Let ` ě 2. The class W` is such that, for

P`pzq “ zp1´ zqp1´ 2zq ¨ p1´ zqd`´1Q`´1

ˆ

z

1´ z

˙

Q`pzq “ p1´ 4z ` 5z2
q ¨ p1´ zqd`´1Q`´1

ˆ

z

1´ z

˙

´ 2zp1´ 2zq ¨ p1´ zqd`´1P`´1

ˆ

z

1´ z

˙

,

we get LcpW`pzqq “ P`pzq{Q`pzq. Furthermore the polynomial P` and Q` are coprime and the
degree of Q` is d` “ 3`´ 2.

Remark that both products p1´ zqd`´1Q`´1

´

z
1´z

¯

and p1´ zqd`´1P`´1

´

z
1´z

¯

are polynomials.
The proposition is proved by recurrence, in particular P` and Q` cannot have a common root,
otherwise P`´1 and Q`´1 would have one. Furthermore, for ` ě 1, we get that the differential
equation satisfied by W` is of order d` since the polynomial Q`pzq corresponds to the characteristic
equation associated to the differential equation of W`. Thus, then smallest root of Q` is the
exponential order in the asymptotic behavior of rznsW`pzq. The sequence of dominant singularities,
from W1 to W20 is decreasing (due to the growth of the families W`). It starts at 1{3 and ends, for
` “ 20 around 0.044743.

Proposition 29. The average number of runs in W20 processes, of size n, is asymptotically Θprnq,
with r « 5.4314.

A simple improvement of the previous specification avoids the empty wire as a parallel sub-process.
Thus, the latter specification is replaced by

W̃0 “ Seq
ě1

Z,

W̃` “ Z ` Z ˝
‹ W̃`

` Z ˝
‹
``

2 ¨ W̃`´1 ‹ W̃0 ´ W̃0 ‹ W̃0
˘

‹ W̃`

˘

.

This obvious modification in the specification induces many difficulties in the analysis. In fact,
the binomial transform given by the term Seq Z is now perturbed and, although the class W̃` is
still satisfying a linear differential equation, its order is d` “ 2 ¨ d`´1 ` 1 ` p` ` 1 mod 2q, with
d1 “ 4 (thus d2 “ 10, d3 “ 21, d4 “ 44 . . . ). While in the first subclasses, the order was growing
linearly with `; here it grows quadratically, and consequently, from a calculation point of view, we
are quickly unable to compute numerically the main statistics.
The last subclasses with some parallel constraint, we are interested in are given by

N0 “ Seq
ě1

Z,

N` “ Z ` Z ˝
‹N` ` Z ˝

‹ ppN`´1 ‹N`´1q ‹ N`q .
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The single constraint distinguishing N` from the whole class FJ is such that the number of nested
fork nodes in a process of N` is bounded by ` (i.e. at most 2` processes can be run in parallel). With
the same proof as before, we prove that each class N` is satisfying a linear differential equation.
We get the recurrence

LcpN0pzqq “
z

1´ z ,

LcpN`pzqq “
z

1´ z ´ z LcpN`´1pzqq e LcpN`´1pzqq
.

Because of the colored product whose both operands depend on `, the degrees of the numerator
and denominator polynomials are growing very rapidly. The sequence starts by 3, 10, 66, 2278, . . . .
We prove that the degrees are satisfying the following recursive equation

d1 “ 3; d` “
pd`´1 ` 1qpd`´1 ` 2q

2 .

Consequently, the class N4 seems to be the limit to obtain quantitative results. We are thus far
from the whole class of FJ processes, especially if we assume that, as we have shown for trees [4],
most of the runs are given by the widest structures.

3.2. Series-constrained processes
In the latter models we bounded the number of nested forks, i.e. the fork depth, trying to play with
this parameter with the hope to guess the shape of the asymptotic number of increasing labellings
of FJ processes. Unfortunately, those models, while interesting by their technical properties are
not as a nice approximation of P as expected.

Now, we focus on another parameter: the series depth. We will no longer constrain the branching
of the processes, within the meaning of constraining their parallelism. We will constrain the
processes on their possibility to execute sequences of subprocesses. The processes will branch
without restrictions, then execute only sequences of simple actions before joining all their parallel
subprocesses. Once this global synchronization is done, the processes are allowed to begin a new
forking step, etc.
In order to model these series-constrained processes, let us introduce the model of increasing

binary diamonds which we studied in details in [3]. They are the basic blocks of this model.

Definition 30. Let T (resp. D) the unlabeled (resp labeled) class of (resp. increasing) binary
diamonds. They are specified4 as follows:

T “ Z ` Z ˆ
`

1` T ` T 2˘ˆ Z,
D “ Z ` Z˝ ‹ pE `D `D ‹Dq ‹ Z.

Thus, a binary increasing diamond is similar to an increasing FJ process where the join DAG
is reduced to a single node (see Figure 3).
The generating functions for T and D satisfy T pzq “ z ` z2 `1` T pzq ` T 2pzq

˘

and D2pzq “
1`D `D2 with Dp0q “ 0 and D1p0q “ 1.

As seen in [3], the solution of this differential equation can be expressed as a Weierstrass ℘
function from which we easily extract the asymptotic of rznsD. The radius of convergence ρ of D
is equal to

ż 8

0

dt
b

2
3 t

3 ` t2 ` 2t
« 3.1721709321 . . . ,

and thus
rznsDpzq „

nÑ8
6 pn` 1q!
ρn`2 .

4The specification of D can be described only with the two Greene’s boxed products detailed in [8, pp.139–142]
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Figure 3: A binary increasing diamond

D is a subclass of the FJ processes but we can increase the expressivity of this this model by
putting several increasing binary diamonds in an ordered set. This construction models programs
which can continue their execution after the last join action of the diamond.

Theorem 31. Let S “ Set ‹

pDq be the class of ordered sets of increasing binary diamonds and
T pzq the ordinary generating function of unlabeled binary diamonds.

• The asymptotic number of ordered sets of increasing binary diamonds is equivalent to the
asymptotic number of increasing binary diamonds

rznsS „
nÑ8

rznsD.

• The asymptotic average number of increasing labelings of sequences of binary diamonds of
size n is

rzns Spzq

rzns p1´ T pzqq´1 „
nÑ8

6 T 1pσq σ
n`1 ¨ pn` 1q!

ρn`2

σ “ 1
6 p
?

13´ 1q is a solution of T pzq “ 1, and thus T 1pσq “
?

13{σ.
Approximations of the constant are given in the following form

rzns Spzq

rzns p1´ T pzqq´1 „
nÑ8

α ¨ βn`1 ¨ pn` 1q!

with α « 15.7042 . . . and β « 0.136896 . . . .

Proof. The first asymptotic behavior is obtained by a direct application of the Theorem 17. The
second one is equal to the asymptotic number of ordered set of increasing binary diamonds, divided
by the asymptotic number of sequences of unlabeled binary diamonds. rznsSeqpT q where T is the
ordinary generating function of unlabeled binary diamonds: in bijection with a simple variety of
trees. This is achieved using the asymptotics of supercritical sequence theorem of [9].
Note that the specification S is a bit ambiguous: the sequences of atoms are counted several

times. The length k sequence is counted exactly 2k´1 times, the number of integer compositions
of k. But the asymptotic behavior is still relevant because the correction is asymptotically small.
˝

3.3. Increasing FJ processes
Finally, let us go back to the specification of increasing FJ processes (cf. Definition 26). It can be
seen as the limit of the increasing sequence pN`q, however, the interesting property of holonomicity
seems to be lost. The dominant singularity of P satisfies η « 2.31198062902106 . . . . Let us first
give an approximation of the asymptotic behavior of Pn.
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Theorem 32. Let r “ 2.31197 and ε “ 2 ¨ 10´5. Then r ă η ă r ` ε. The average number on
runs in all FJ processes of size n ě 127, satisfies

γ0 n
3{2 ρn0 pn` 1q! ď Cn

Fn
ď γ1 n

3{2 ρn1 pn` 1q!,

with γ0 “ 12
?
πpr` εq2{

a

1{3` 1{22{3 and γ1 “ 12
?
πr2{

a

1{3` 1{22{3. Recall ρ is the dominant
singularity of unlabeled FJ processes, thus ρ0 “ ρ{pr ` εq and ρ1 “ ρ{r.

Obviously both bounds are exponentially far from the asymptotic behavior, however we have a
detailed shape of it. The proof is given in Appendix B.
Let us remark that the shape of the asymptotic behavior favors a single large structure rather

than a sequence of several FJ processes. Finally, let us conclude the paper with the following
result, based on an important technical assumption about the nature of the generating function
P pzq around its dominant singularity. In order to prove the result without assumption, we are
trying to prove that the generating function P pzq is a combination of elliptic functions, thus more
complicated structures than diamonds.

Theorem 33. If P pzq is ∆-analytic around η. Then the average number of runs of FJ processes
of size n is asymptotically

Pn
Fn

„
nÑ8

12
?
π n3{2

ρ2
b

1
3 `

1
22{3

ˆ

η

ρ

˙n

pn` 1q!,

with η

ρ
« 0.149670346096653 . . .

The average number above is to be compared to the average number of runs in tree-structures
processes [4] of size n that is 0.5n ¨ n!. We note thus that the synchronization constrain drastically
the number of runs.

4. Conclusion and future work
We defined two operators for building combinatorial classes. First, the ordered product impose a
global increasing labeling constraint that can be found in many combinatorial structures such as
search trees, integer compositions and of course concurrent processes. The colored product allows
to specify the partition of structures. We only provided the example of Bell numbers but we intend
to explore the range of possibilities concerning this operator.
Both products support the symbolic method with associated generating functions. They enjoy

interesting algebraic properties (e.g. the preservation of holonomy) and we also demonstrated useful
transfer theorems. As our development of fork-join processes suggests, it remains very difficult to
work with the generating functions obtained from recursive specifications containing ordered and
colored products. There are probably useful analytic tools that could be used to obtain interesting
quantitative results (e.g. Borel resummation theory).

References
[1] E. A. Bender. An asymptotic expansion for the coefficients of some formal power series.

Journal of the London Mathematical Society, s2-9(3):451–458, 1975.

[2] F. Bergeron, G. Labelle, and P. Leroux. Combinatorial Species and Tree-like Structures.
Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1998.

[3] O. Bodini, M. Dien, X. Fontaine A. Genitrini, and H.-K. Hwang. Increasing Diamonds. In
LATIN 2016: Theoretical Informatics - 12th Latin American Symposium, pages 207–219, 2016.

Page 15 of 20



[4] O. Bodini, A. Genitrini, and F. Peschanski. A Quantitative Study of Pure Parallel Processes.
Electronic Journal of Combinatorics, 23(1):P1.11, 39 pages, 2016.

[5] G. Brightwell and P. Winkler. Counting linear extensions is 7P-Complete. In C. Koutsougeras
and J. S. Vitter, editors, STOC, pages 175–181. ACM, 1991.

[6] A. Darrasse, K. Panagiotou, O. Roussel, and M. Soria. Biased Boltzmann samplers and
generation of extended linear languages with shuffle. In 23rd International Meeting on
Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms, (AofA),
pages 125–140, Montreal, Canada, June 2012.

[7] P. Flajolet and A. M. Odlyzko. Singularity analysis of generating functions. SIAM J. Discrete
Math., 3(2):216–240, 1990.

[8] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009.

[9] P. Flajolet and M. Soria. General combinatorial schemas: Gaussian limit distributions and
exponential tails. Discrete Mathematics, 114(1-3):159–180, 1993.

[10] D. H. Greene. Labelled Formal Languages and Their Uses. PhD thesis, Stanford, CA, USA,
1983. AAI8320712.

[11] D. E. Knuth. The art of computer programming, volume 3: (2nd ed.) sorting and searching.
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1998.

[12] R. H. Möhring. Computationally Tractable Classes of Ordered Sets. Institut für Ökonometrie
und Operations Research: Report. 1987.

Page 16 of 20



A. Appendix: ordered and colored products

A.1. Reminders on Borel and Laplace transforms
Let us recall here classical relations between combinatorial Laplace transform and the tra-
ditional Laplace transform. By definition, the traditional Laplace transform is defined by
Lf “

ş8

0 expp´ztqfptqdt instead of Lcf “
ş8

0 expp´tqfpztqdt.
This operator is clearly linear. By a simple change of variable, we get that Lfpzq “ 1

z
pLcfq

` 1
z

˘

or equivalently Lcfpzq “
1
z
pLfq

` 1
z

˘

(Notice the perfect involution !)
Laplace transforms admit a functional inverse called Borel transforms. This transform also

has an integral representation: for traditional Laplace transforms, the Borel transform is Bpfq “
1

2iπ
şc`i8

c´i8
exppztqfptqdt where c is greater than the real part of all singularities of fptq.

By analogy, the combinatorial Borel transform is Bcpfq “
1

2iπ
şc`i8

c´i8

exppztq
t

fp1{tqdt where c is
greater than the real part of all singularities of fp1{tq{t. The link with traditional Borel transforms
is Bcpfq “ Bp1{zfp1{zqq or equivalently Bpfq “ Bcpfp1{zqq1 “ Bcp1{zfp1{zqq
Now, let us essentially concentrate our attention on combinatorial transforms. Combinatorial

Laplace transforms create a bridge between exponential generating functions (
ř

ně0 an
zn

n! ) and
ordinary generating functions (

ř

ně0 anz
n). Precisely, we have:

Lcp
ÿ

ně0
an
zn

n! q “
ÿ

ně0
anz

n

Reciprocally, we have
Bcp

ÿ

ně0
anz

nq “
ÿ

ně0
an
zn

n!
From those formulas on formal series, one can easily derive the following identities:

• Lcf 1 “ 1
z pLcf ´ f0q

• Lcp
ş

fq “ zLcf

• Bcpzfq “
ş

Bcf

• Bcp f´f0
z q “ pBcfq1

As for traditional Laplace transforms, the product of Laplace transform can be express using
convolution product. We have :

zLcf ˆ Lcg “ Lcp
ż z

0
fptqgpz ´ tqdtq.

Or equivalently,
Lcf ˆ Lcg “ Lcp

ż z

0
fptqg1pz ´ tqdt` g0fpzqq.

Observe that the ordered product, in fact, gives a combinatorial interpretation of this adapted
convolution. We denote by f ˚ g the combinatorial convolution

şz

0 fptqg
1pz ´ tqdt` g0fpzq.

The product of combinatorial Borel transforms can also be expressed with convolution in the
complex plane as follow: using the traditional

Bf ˆ Bg “ Bp 1
2iπ

ż c`i8

c´i8

fptqgpz ´ tqdtq,

and compose it with the latter identities leads to the following formula

Bcf ˆ Bcg “ Bcp
1

2iπ

ż c`i8

c´i8

1
p1´ ztqtfp1{tqgpz{p1´ ztqqdtq.
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A.2. Proofs of Section 2
Proof. Proof of Proposition 3
Using Definition 1, we note that an object from C is given by an object from A and one from B
only by shifting the labels of the second one. Thus the number of objects of size n in C is given by
řn´1
k“1 Ak ¨Bn´k. The result of the composition BpLpApzqq ¨ LpBpzqqq gives directly this sum.

˝

Proof. Proof of Proposition 6
Let us denote F rA,Bspzq “

şz

0 AptqB
1pz ´ tqdt`ApzqBp0q and differentiate it.

F 1rA,Bspzq “ ApzqB1p0q `
ż z

0
AptqB2pz ´ tqdt`A1pzqBp0q “ F rA,B1spzq `A1pzqBp0q.

Since we use exponential generating functions, the differentiating operation can be seen as the
removal of the atom with the smallest label. Thus we get an isomorphism between objects
enumerated by F 1rA,Bs and by C 1. In conclusion, both associated generating functions are equal.
˝

Proof. Proof of Theorem 16
Let us give the proof of the result, when both dominant singularities are equal and belong to

ρ Ps0,`8r. The other cases are simpler and their proof is a slight adaptation of this case.
For all ε ą 0, there exists an integer n0, such that for all n ě n0 we get

1´ ε
ρ

ď
An

nAn´1
ď

1` ε
ρ

and 1´ ε
ρ

ď
Bn

nBn´1
ď

1` ε
ρ

.

Thus, let us denote by R “ maxtn0, ru, then we partition the number Cn:

Cn “
n´b
ÿ

k“a

AkBn´k “ AaBn´a `An´bBb `
n´b´1
ÿ

k“a`1
AkBn´k

“ AaBn´a `An´bBb `

˜

R´1
ÿ

k“a`1
AkBn´k `

n´b´1
ÿ

k“n´R`1
AkBn´k `

n´R
ÿ

k“R

AkBn´k

¸

.

Let us focus on the first sum, and prove that it is negligible in front on Bn´a.

Bn´pR´1q

Bn´a
¨

R´1
ÿ

k“a`1

AkBn´k
Bn´pR´1q

“
Bn´pR´1q

Bn´a
¨

R´1
ÿ

k“a`1
Ak

Bn´k
Bn´pk`1q

Bn´pk`1q

Bn´pk`2q
¨ ¨ ¨

Bn´pR´2q

Bn´pR´1q

ď
Bn´pR´1q

Bn´a
¨

R´1
ÿ

k“a`1
Ak

ˆ

pn´ pa` 1qp1` εq
ρ

˙R´1´k
.

For n sufficiently large, there exists a constant γ such that

Bn´pR´1q

Bn´a
¨

R´1
ÿ

k“a`1

AkBn´k
Bn´pR´1q

ď
Bn´pR´1q

Bn´a
¨ γ

ˆ

pn´ pa` 1qp1` εq
ρ

˙R´a´2

ď
Bn´pR´1q

Bn´pR´2q

Bn´pR´2q

Bn´pR´3q
¨ ¨ ¨

Bn´pa`1q

Bn´a
¨ γ

ˆ

pn´ pa` 1qp1` εq
ρ

˙R´a´2

ď γ

ˆ

pn´ pa` 1qqp1` εq
pn´ pR´ 2qqp1´ εq

˙R´a´2
¨

ρ

pn´ pR´ 2qqp1´ εq .

We thus deduce that

lim
nÑ8

Bn´pR´1q

Bn´a
¨

R´1
ÿ

k“a`1

AkBn´k
Bn´pR´1q

“ 0.
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In the same way we prove

lim
nÑ8

An´pR´1q

An´b
¨

n´b´1
ÿ

k“n´R`1

AkBn´k
An´pR´1q

“ 0.

By assumption, the last sum satisfies
řn´R
k“R AkBn´k “ OpAn´R`Bn´Rq. And thus the statement

(for this case) is proved.
˝

B. Appendix: Fork-Join processes
Proof. Proof of Proposition 25
Let F pzq be the ordinary generating function enumerating FJ processes. We denote by Fn the
number of FJ processes of size n. Thus we get F pzq “

ř

n Fnz
n. By using the specification of

FJ processes, and the symbolic method, we get directly a functional equation of F pzq

F pzq “ z ` zF pzq ` zF pzq3.

We can compute the first coefficients of the generating function F pzq “ z ` z2 ` z3 ` 2z4 ` 5z5 `
11z6 ` 24z7 ` 57z8 ` 141z9 ` 349z10 ` . . . . The combinatorial class of FJ processes is a simple
variety of trees (cf. [8, Part VII.3.]) and thus the way of analysing it is almost classical.

A first step consists in determining the closed form for the generating function. By solving the
functional equation for F pzq a first problem arises: in fact, the solution involves complex (and not
real) coefficients and is thus not nice. Although the transformation we use in order to write F pzq
only with real coefficients is almost technical, our Computer Algebra Systems are not able to do it
on their own. After technical works, we get

F pzq “ ´2
c

1´ z
3z sin

¨

˝

π

6 `
2
3 arctan

¨

˝

2
b

1´ 3z ` 3z2 ´ 31
4 z

3

p3zq3{2 ´ 2p1´ zq3{2

˛

‚

˛

‚.

Thus the dominant singularity of F pzq is the solution of 1´ 3z ` 3z2 ´ 31
4 z

3 “ 0. The singularity
is thus ρ “ 1

1`3¨2´2{3 and is of square-root type. Using these details, we can exhibit the Puiseux
expansion (cf. [8, Part VII.7.]) of F pzq in order to analyze the asymptotic behavior of its coefficients.

F pzq “zÑρ 2´1{3 ´

c

3` 22{3

3 ¨ 21{3 ¨

c

1´ z

ρ
`O

˜

ˆ

1´ z

ρ

˙3{2
¸

.

From the Puiseux development around the dominant singularity, we deduce

Fn „
nÑ8

1
2

c

1
3 `

1
22{3

ρ´n
?
πn3

.

˝

Proof. Proof of Theorem 32
Let us introduce a proof by recurrence on n to obtain the upper bound for Cn. Let r “ 2.31197
and ε “ 2 ¨ 10´5. Then r ă ρ ă r ` ε.
We will prove by recurrence the upper bound. First, by calculating the first terms we get, for

all k P t3, . . . 20u we get Ck ď 6kγ0 k! r´k´2, with γ0 “ 1.08. Second, for all k P t21, . . . 126u we
get Ck ď 6kγ1 k! r´k´2, with γ1 “ 1.004. By calculating the terms for k P t127, . . . 951u we get
Ck ď 6k k! r´k´2,
Let n be an integer and suppose that for all k P t127, . . . n´ 1u, we get Ck ď 6k k! r´k´2.
We take C0 “ 0, C1 “ 1 and C2 “ 1, and Γ0 and γ1 are fixed.

Page 19 of 20



The recurrence for the coefficients pCnq is

Cn “ Cn´1 `
n´1
ÿ

`“3

`´2
ÿ

k“1

ˆ

`´ 1
k

˙

CkC`´1´kCn´`.

Thus, by dividing both sides by 6n n! r´n´2, we get (for n ą 990):

Cn
6n ¨ n! ¨ r´n´2 “

Cn´1

6n ¨ n! ¨ r´n´2

`
C1

6n ¨ n! ¨ r´n´2

˜

2pn´ 2qC1Cn´3 ` pn´ 2qpn´ 3qC2Cn´4 `
n´5
ÿ

k“3

ˆ

n´ 2
k

˙

CkCn´2´k

¸

`

n´2
ÿ

`“3

Cn´`
6n ¨ n! ¨ r´n´2

˜

2p`´ 1qC1C`´2 `
`´3
ÿ

k“2

ˆ

`´ 1
k

˙

CkC`´1´k

¸

In order to obtain a straight upper bound, some sum must be decompose according to small terms
smaller than 21 and then the terms smaller than 126 and the other terms.

Cn
6n ¨ n! ¨ r´n´2 ď

pn´ 1qr
n2 `

2pn´ 3qr3 ` pn´ 4qr4

n2pn´ 1q ` γ0

20
ÿ

k“3

6kpn´ 2´ kq
n2pn´ 1q ` γ1

126
ÿ

k“21

6kpn´ 2´ kq
n2pn´ 1q

`

n´127
ÿ

k“127

6kpn´ 2´ kq
n2pn´ 1q ` γ1

n´21
ÿ

k“n´126

6kpn´ 2´ kq
n2pn´ 1q ` γ0

n´5
ÿ

k“n´20

6kpn´ 2´ kq
n2pn´ 1q

`
4pn´ 3q2r3 ` 6pn´ 4qr4

n2pn´ 1qpn´ 2qpn´ 3q ` γ
3
0

n´3
ÿ

`“5

pn´ `qpn´ `q!r`
n ¨ n!

¨

˜

12p`´ 2qp`´ 1q!r´` ` 6p`´ 3qp`´ 1q!r´``1 ` 36p`´ 1q!r´`´3
`´4
ÿ

k“3
kp`´ 1´ kq

¸

`
1

n ¨ n!

˜

2pn´ 4qpn´ 3q!r4 ` pn´ 5qpn´ 3q!r5 ` 6γ0pn´ 3q!r
20
ÿ

k“3
kpn´ 3´ kq

` 6γ1pn´ 3q!r
126
ÿ

k“21
kpn´ 3´ kq ` 6pn´ 3q!r

n´127
ÿ

k“127
kpn´ 3´ kq

`6γ1pn´ 3q!r
n´21
ÿ

k“n´126
kpn´ 3´ kq ` 6γ0pn´ 3q!r

n´6
ÿ

k“n´21
kpn´ 3´ kq

¸

The less important sums (that have been multiplied by a γ factor) can be easily bound by n times
their dominant term. We thus prove that

Cn
6n ¨ n! ¨ r´n´2 ď 1` 2r ´ 5

n
`
´7r ` 1008γ3

0r
´3 ` 2r3 ` 45474 ˚ γ1 ` r

4 ´ 46512` 1008γ0

n2

`Rpn, r, γ0, γ1q,

where the function Rpn, r, γ0, γ1q is negative for a positive n.
By evaluating r, γ0 and γ1 we prove that for all n ą 990 we have

Cn ď 6n ¨ n! ¨ r´n´2.

The lower bound is proved in a simpler way, because from n ą 7 we have

Cn ě 6n ¨ n! ¨ pr ` εq´n´2.

˝
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