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Abstract
In this paper, we study the shuffle operator on concurrent processes (represented as trees)

using analytic combinatorics tools. As a first result, we show that the mean width of shuffle
trees is exponentially smaller than the worst case upper-bound. We also study the expected
size (in total number of nodes) of shuffle trees. We notice, rather unexpectedly, that only
a small ratio of all nodes do not belong to the last two levels. We also provide a precise
characterization of what “exponential growth” means in the case of the shuffle on trees. Two
practical outcomes of our quantitative study are presented: (1) a linear-time algorithm to
compute the probability of a concurrent run prefix, and (2) an efficient algorithm for uniform
random generation of concurrent runs.

Keywords: Concurrency theory. Analytic combinatorics. Shuffle. Random generation. Linear
extension.

1 Introduction
Much of concurrency theory is articulated around a simple shuffling (or interleaving) opera-
tor [Mil80]. The basic underlying idea is that two independent processes running in parallel,
commonly denoted P 9Q, can be faithfully simulated by the shuffling of their computations. We
denote a.P (resp. b.Q) a sequential process that first executes an atomic action a (resp. b) and then
continue as a process P (resp. Q). The shuffle law then states a.P 9b.Q = a.(P 9b.Q)+b.(a.P 9Q)
where + is interpreted as a branching operator. In analytic combinatorics, the shuffle on words
has already been intensively studied [MZ08, GDG+08, DPRS10]. The shuffle on words can be seen
as a specific case of the interleaving of processes (for processes of the form (a1 . . . an)9 (b1 . . . bm)).

The shuffle on trees can also be seen as a simplistic form of sequential scheduling, finding
admissible concurrent runs based on precedence constraints. The latter corresponds to tree-
structured partial orders, thus connecting our study to ordered set theory [BW91], in particular
to the problem of counting the linear extensions of (tree-structured) partial orders (i.e. the set of
compatible total orders).

Another approach of this operator is taken in algebraic combinatorics [BFLR11], and specially
in the context of partly commutative algebras [DHNT11]. The shuffle is often seen in this case as
a binary operator that decomposes in separate left and right shuffles.

Thus shuffle operator is the principal source of combinatorial explosion when analyzing concur-
rent processes, e.g. for model checking [CGP99]. Despite the depth and richness of concurrency
theory, there are very few (if none, yet) fine-grained analyzes of quantitative properties of this
phenomenon, at least from the point of view of analytic combinatorics.
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Figure 1: A process tree (left) and the corresponding shuffle tree (right)

The present paper is organized as follows. In Section 2 we define the shuffle operator on trees
and study its basic structural properties. In Section 3 we provide a quantitative study of the shuffle.
As a first result, we show that the mean width of shuffle trees is exponentially smaller than the
worst case upper-bound, which is reached. This is detailed in Section 3.1. In Section 3.2 we study
the expected size (in total number of nodes) of shuffle trees. We notice, rather unexpectedly,
that only a small ratio (≈ 0.26) of all nodes do not belong to the last two levels. To address
the combinatorial explosion problem, we study the growth of shuffle trees in Section 3.3. This
allows us to provide a precise characterization of what “exponential growth” means in our case.
Section 4 describes two practical outcomes of our quantitative study: (1) a linear-time algorithm
to compute the probability of a concurrent run prefix, and (2) an efficient algorithm for uniform
random generation of concurrent runs. The first algorithm can also be used to compute the linear
extension of tree-like partial orders, for which the “best” known algorithm performs in quadratic
time [Atk90]. The second algorithm has sub-quadratic average complexity, which is to relate to
the exponential complexity of generating computations by explicit construction of the shuffle trees.

2 Concurrent computations and shuffle trees
As a starting point, we consider a process specification as a set of (abstract) atomic actions (de-
noted a, b, . . .) related by precedence constraints (tree-like partial orders), and reflect upon the
associated admissible computations, i.e. the sequences of atomic actions that satisfy the specifi-
cation. In the remainder of the paper such admissible computation will be called a (concurrent)
run.

On the left of Fig. 1 we depict a process specification - or process tree. It says that the root
action a must be executed first and then b. There is no relation between c and d, and e, f may
only happen after d. This corresponds to a syntactic process P = a.b.(c 9 d.(e 9 f)). On the
right we build an object that we will call a shuffle tree consisting of all the admissible runs for the
specification, with the sharing of common prefixes - it is thus a kind of prefix tree. Each branch
of the shuffle tree is a run (admissible computation) of the given specification, e.g. the leftmost
branch yields the run 〈a, b, c, d, e, f〉. Moreover, the shuffle is complete in the sense that it covers
all the runs of the process specification.

More formally we consider process specifications as general plane rooted trees (denoted T, T1, T2, . . .)
with uninterpreted distinct labels t, t1, t2, . . . corresponding to the actions of the associated process
specification. We denote by T (α) the subtree of T rooted in node α. The size of a tree T (or of a
shuffle tree) is its total number of nodes, and is denoted |T |. The degree of a node corresponds
to the number of its children. The height of a tree corresponds to number of nodes minus 1 of
its longest branch from root to leaf. The width of a tree corresponds to the maximal number of
nodes present in the same level.

In order to build shuffle trees, we use an elementary operation of child contraction.
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Definition 1. Let T be a tree and v1, . . . , vr be the root-labels of the children of the root. For
i ∈ {1, . . . , r}, the i-contraction of T is the tree with root vi and whose children are, from
left to right, T (v1), . . . , T (vi−1), T (vi1), . . . , T (vim), T (vi+1), . . . , T (vr) (where vi1 , . . . , vim are the
root-labels of the children of T (vi)). We denote by T C i the i-contraction of T .

For example, if T is a

cb d

e f

then T C 2 is c

e fb d

Note that the root (here a) is replaced by the label of the root of the i-th child (here c). Now,
the shuffling operation follows a straightforward recursive scheme.

Definition 2. Let T be a process tree, then its shuffle tree Shuf(T ) is defined inductively as:

• if T is a leaf, then Shuf(T ) is T

• if T has root t and r children (r ∈ N\{0}), then Shuf(T ) is the tree with root t and children,
from left to right, Shuf(T C 1 ), . . . ,Shuf(T C r )

The mapping between process trees and shuffle trees is clearly one-to-one. Below we start
enumerating the process trees (by size n) together with their shuffle tree. First, we notice that
shuffle trees are plane rooted trees.
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Definition 3. Let C(z) be the generating function enumerating the combinatorial class C of plane
trees with respect to the number of nodes.

As a basic recall of analytic combinatorics and statement of our conventions, we remind that
for a combinatorial class C, we define its counting sequence Cn consisting of the number of objects
of C of size n. This sequence is linked to a formal power series C(z) such that C(z) =

∑
n≥0 Cnz

n.
We denote by [zn]C(z) = Cn the n-th coefficient of C(z). Analogous writing conventions will be
used for all combinatorial classes.

We remind the reader that for the function C(z) enumerating plane trees then Cn corresponds
to the Catalan numbers (indeed, shifted by one). For further reference, we give the asymptotic
approximation of the Catalan numbers (obtained by an approximation of n! as in e.g. [Com74, P.
267]):

Fact 4. Cn = 4n−1
√
πn3

(
1 + 3

8n + 25
128n2 + 105

1024n3 + 1659
32768n4 +O(1/n5)

)
.

Perhaps the most important observation is that the shuffle trees are balanced, and even more
importantly that the height of the shuffle tree is n−1 where n is the size of the associated process
tree. This is obvious since each branch of a shuffle tree corresponds to a complete traversal of the
process tree. Thus there are as many shuffle trees of height n− 1 as there are plane trees of size
n (as counted by Cn above).

A further basic observation is that the contraction operator (cf. Definition 1) ensures that the
number of nodes at a given level of a shuffle tree is smaller or equal to the number of nodes at the
next level. Thus, the width of the shuffle tree corresponds to its number of leaves.

The following observation bears witness to the high level of redundancy exhibited by shuffle
trees.
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Proposition 5. The knowledge of a single branch of a shuffle tree is sufficient to recover the
corresponding process tree.

To go slightly further into the details, we may indeed exhibit a familiy of inverse functions
from singled-out shuffle tree branches to process trees. These inverse functions exploit the concept
of a degree-sequence, defined as follows.

Definition 6. A degree-sequence (up)p∈{1,...,n} is a sequence of non-negative integers of length
n satisfies:

u1 > 0; ∀p > 1, up > up−1 − 1; un is the single term equal to 0.

The degrees of the nodes from the root to a leaf in any branch of a shuffle tree is a degree
sequence.

Proposition 7. Let (up) be a degree-sequence of length n that is linked to the leftmost branch of
a shuffle tree S. Let us define the new sequence (vp) such that:

v1 = a1 ∀p > 1, vp = up − up−1 + 1.

We build a tree T of size n such that the sequence (vn) corresponds to the degrees of each node of
the tree, ordered by the prefix traversal. The shuffle of T is the tree S.

A crucial remark on this proposition is that we only considered the leftmost branch of the
shuffle tree to construct the corresponding degree-sequence, from which we recover the initial tree.
We can show, in fact, that the initial tree can be recovered by considering any of the branches of
its shuffle tree, not just the leftmost one. Each branch corresponds to a degree sequence visiting
the nodes of the initial tree by a specific traversal. For example, if the leftmost branch encodes
the prefix traversal; the rightmost branch enumerates its mirror. Last but not least, the set of
degree-sequences of length n is only of cardinality Cn (hence, degree-sequences are also in bijection
with binary trees). This confirms that shuffle tree structures are highly symmetrical because many
branches must be defined by the same degree-sequence.

3 Quantitative study of shuffle trees
Our quantitative study begins (in Section 3.1) by measuring the number of different concurrent
runs for process trees of size n. This indeed boils down to measuring the mean width of the
associated shuffle trees. To understand the degree of sharing in shuffle trees, we provide a much
more involved study of their expected size in Section 3.2. This, together with basic facts, sketches
some typical measures of shuffle trees, as summarized in Fig. 2.

tree
n

∼
√
πn

∼ 2
√

2πn

shuffle tree
∼ e n!

2n−1

n− 1

∼ n!
2n−1

Figure 2: Some typical measures of a tree of size n (left) and its shuffle tree of height n−1 (right).

The shuffling operator induces an exponential growth when considering process trees of increas-
ing sizes. Section 3.3 offers some quantitative arguments relative to the infamous (and imprecise)
combinatorial explosion problem [CGP99].
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3.1 Mean width of shuffle trees
The mean values for rooted plane trees have been studied in [dBKR72] for the average height and
in [DG04] for the average width. Shuffle trees are however much more constrained than in the
general case, as highlighted by our main result.

Theorem 8. The mean number of concurrent runs built on process trees of size n is:

W̄n = n!
2n−1 ∼n→∞

n!
2n−1 ∼n→∞ 2

√
2πn

( n
2e

)n
.

Let us first observe that this mean value is much smaller than the reached upper bound equal
to (n − 1)!. The proof of Theorem 8 relies on a one-to-one correspondance between the shuffle
trees and the increasing trees [Drm09].

Definition 9. An increasing tree is a labelled plane rooted tree such that the sequence of labels
along any branch starting at the root is increasing.

For example, to label the tree of Fig. 1, a must take the label 1, b must take the label 2. Then
we can choose for the node c: its label belongs to {3, 4, 5, 6} but then it induces constraints on
the other nodes. Finally, we have 6! labelled trees derived from this tree, but only 8 of them
correspond to increasing trees.

Lemma 10. Let T be a process tree. The number of concurrent runs associated to T corresponds
to the number of increasing trees whose structure is the unlabelled tree T .

This is simply by observing that each labelling of an increasing tree corresponds to a distinct
way to traverse the process tree, i.e. a distinct branch of the corresponding shuffle tree.

Fact 11. Hook length in trees [Knu98, p.67].
Let T be a unlabelled tree. The number `T of increasing trees built on T equals:

`T = |T |!∏
S subtree of T |S|

.

Corollary 12. The number of concurrent runs of a process tree T is the number `T .

The proof is obvious by using Lemma 10.

Proof for Theorem 8: The mean number is obtained by dividing by Cn the number of runs
build on trees of size n. General increasing trees are satisfying the following specification (using
the classical boxed product ? see [FS09, p.139] for details): G = Z ? Seq G. So, let G(z)
denote the exponential generating function enumerating G, where Z marks all the nodes. The
function G(z) is the unique solution analytic in zero of G′(z) − G′(z) · G(z) − 1 = 0 with the
condition G(0) = 0. Consequently, G(z) = 1−

√
1− 2z. So, the number of increasing trees of size

n is [zn]G(z) = 1 · 3 · . . . · (2n − 3) . Using Lemma 10, we get the exact result and the Stirling
formula gives the asymptotic behaviour.

3.2 Expected size of shuffle trees
Our goal here is to compute the arithmetic average size of shuffle trees induced by process trees
of size n. The result can be obtained by a generalization of the hook length formula to work on
admissible cuts instead of just subtrees. Such objects are classical in algebraic combinatorics, see
in [CK98] for example.

Definition 13. Let T be a tree of size n (n > 1). An admissible cut of T of size n − 1 is a
tree obtained by removing one leaf from T . The set of all the admissible cuts of T is obtained
recursively.
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Figure 3: Some admissible cuts of the tree from Fig. 1 (with actions omitted).

As a remark we add that a tree T of size n is itself an admissible cut of T of size n.

Theorem 14. Let T be a process tree. The size nT of the shuffle tree built on T satisfies:

nT =
∑

S admissible cut of T
`S .

Proof. This direct results from the following observations. First, for every node of the process
tree T , let say at level i, there is a one-to-one correspondence between the branch ending at this
node in the shuffle tree and one run of an admissible cut of T of size i+ 1. Thus, the number of
nodes of the shuffle tree corresponds to the sum on all admissible cuts of their number of runs.

Working with number nT is non-trivial since the admissible cuts, unlike subtrees, do not follow
a simple recursive scheme. We first characterize the mean number m̄n of recursive calls to `S
required to compute nT .

Observation 15. The mean number m̄n of admissible cuts of trees of size n is:

m̄n = −1
2 +

n∑
l=1

∑
r1,...,rl∈N
r1+···+rl=n

Cl
4lCn

l∏
i=1

γri ∼n→∞
1√
15

(
5
4

)2n
, where γ1 = 6 and ∀k > 1, γk = Ck.

Proof sketch: Let us denote by M(z) the ordinary generating function enumerating the multiset
of admissible cuts of all trees. More preciselyM(z) =

∑
n∈NMnz

n whereMn =
∑
T ;|T |=n

∑
S admissible cut of T 1.

The tag Z marks the nodes of the tree carrying the admissible cut. The generating function C(z)
enumerates all trees. The specification ofM is Z ×Seq(M∪C). Once this specification is given,
the rest of the proof is very classical in analytic combinatorics.

This observation can be combined together with the notion of increasing trees to give the
specification of increasing admissible cuts, which in turn allows us to compute nT properly.

Theorem 16. The mean size S̄n of a shuffle tree induced by a tree of size n follows the linear
recurrence:

(2n4 + 12n3 + 22n2 + 12n)S̄n + (−4n4 − 32n3 − 87n2 − 87n− 18)S̄n+1

+ (2n4 + 24n3 + 85n2 + 106n+ 39)S̄n+2 + (−4n3 − 20n2 − 31n− 15)S̄n+3 = 0,

with the initial conditions: S̄0 = 0, S̄1 = 1 and S̄2 = 2. Consequently,

S̄n ∼n→∞ e
n!

2n−1 ∼n→∞ 2e
√

2πn
( n

2e

)n
.

Proof sketch: As for the expected number of admissible cuts, we are going to deal with spec-
ifications and generating functions. First of all, let us explain the following bivariate (in Z,U)
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specification for M: U × Z × Seq(M∪ C). The tag Z (resp. U) marks the nodes of the tree
carrying the admissible cut (resp. of the admissible cut). Now, observing Theorem 14, we see that
we are not interested in admissible cuts but in increasing admissible cuts. So, let us consider the
specification S = U�U ?Z×Seq(S∪C) where the boxed product operates on U . Its associated gen-
erating function S(z, u) verifies S(z, u) =

∫ u
v=0

z
1−S(z,v)−C(z)dv. So, S(z, u) =

∑
n,k∈N Sn,kz

nuk/k!
where Sn,k is

∑
T ;|T |=n

∑
S admissible cut of size k of T `S . Now, this differential equation can be easily

integrated:
S(z, u) = 1/2 + 1/2

√
1− 4z − 1/2

√
2 + 2

√
1− 4z − 4z − 8uz.

By substituting uk by k! in the series S(z, u), we obtain the generating function S(z) for the size
of the shuffle trees. That is to say, S(z) =

∑
n∈N Snz

n where Sn =
∑
T ;|T |=n

∑
S admissible cut of T `S .

This substitution can be done using a gamma transformation. So, we finally obtain:

S(z) =
∞∫

u=0

S(z, u) exp(−u)du.

At this stage, our goal is to analyze the asymptotic of the coefficients of S(z). Due to the unusual
expression of S(z), this analysis requires some attention. We proceed according to the following
plan which is based on multivariate holonomic closure [Lip89]:

(i) As S(z, u) is algebraic, we may characterize explicitly the minimal polynomial P ∈ C[z, u][X]
such that P (S(z, u)) = 0.

(ii) As algebraic functions are holonomic, one can give a partial differential equation for S(z, u)
using P .

(iii) The combinatorial Laplace transform allows to obtain a partial differential equation for
Ŝ(z, u) =

∫∞
v=0 S(z, uv) exp(−v)dv.

(iv) Using the holonomic stability under partial evaluation, a differential equation for S(z) is
obtained.

This calculation has been done with a computer algebra system (see [SZ94], the package Gfun
of Maple) and produced very huge equations (including more than one thousand terms). However
following this technical but conceptually straightforward calculation, we finally reach a relatively
simple linear differential equation for S(z):(

20z2 − 14z + 2
)
S(z) +

(
−48z4 − 8z3 + 18z2 − 3z

)
S′(z)+(

−192z5 + 112z4 − 24z3 + 2z2)S′′(z) +
(
−64z6 + 32z5 − 4z4)S′′′(z) = 4z2 − z,

with the initial conditions S(0) = 0, S′(0) = 1 and S′′(0) = 4. From this differential equation, we
deduce a P-recurrence for the coefficients Sn:

16n(1−4n2)Sn+4(8n3+28n2+18n+3)Sn+1−2(2n3+18n2+31n+13)Sn+2+(2n2+7n+5)Sn+3 = 0,

with the initial conditions S0 = 0, S1 = 1 and S2 = 2.
Now, consider the series of the mean size of the shuffle tree S̄(z) whose coefficients are S̄n = Sn/Cn.
The function S̄(z) is also holonomic and yields the following differential equation:(

10z2 + 7z + 6
)
S̄(z) +

(
48z4 − 28z3 − 11z2 − 7z

)
S̄′(z) +

(
72z5 − 91z4 + 27z3 + 4z2) S̄′′(z)+(

24z6 − 40z5 + 20z4 − 4z3) S̄′′′(z) +
(
2z7 − 4z6 + 2z5) S̄′′′′(z) + 4z2 + z = 0

with S̄(0) = 0, S̄′(0) = 1 and S̄′′(0) = 4. And now, the coefficients S̄n follow the recurrence:

2n(n3 + 6n2 + 11n+ 6)S̄n − (4n4 + 32n3 + 87n2 + 87n+ 18)S̄n+1+
(2n4 + 24n3 + 85n2 + 106n+ 39)S̄n+2 − (4n3 + 20n2 + 31n+ 15)S̄n+3 = 0,
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with the initial conditions S̄0 = 0, S̄1 = 1 and S̄2 = 2.
This achieves the first part of the theorem.

For the asymptotic part of the theorem, we introduce new auxiliary generating functions which
are more tractable than S(z). For that purpose, recall that the total number of leaves in the shuffle
trees induced by process trees of size n (which is also the number of increasing trees of size n) is
equal to n!/2n−1. So, it is natural to study the series R(z) with general terms S̄n2n−1/n! which
is also holonomic and verifies:

− 2
(
10z2 + 7z + 3

)
R(z) +

(
−16z4 + 32z3 + 18z2 + 7z

)
R′(z)+

4
(
4z4 − 6z3 − z2)R′′(z) + 4

(
−z4 + z3)R′′′(z) = 4z2 + z,

with the initial conditions R(0) = 0, R′(0) = 1, R′′(0) = 4. The coefficients Rn follow the
recurrence:

−16nRn+4(4n2 +12n+3)Rn+1−2(2n3 +18n2 +31n+13)Rn+2 +(4n3 +20n2 +31n+15)Rn+3 = 0,

with R0 = 0, R1 = 1 and R2 = 2. Now, we can easily prove that this recurrence is conver-
gent. Indeed, the recurrence is non-negative and asymptotically decreasing, just by observing that
Rn+3 − Rn+2 =

( 4
n +O( 1

n2 )
)

(Rn+2 −Rn+1) + O( 1
n2 )Rn implies that for n sufficiently large the

difference is always negative.
By calculating the first terms of the series (using a computer algebra software), we were sur-

prised to see that the series seems to converge to exp(1). In order to prove it, we need to make
some another technical calculation following the plan below:

(i) We are going to compare Rn with another P-recursive sequence that converges to exp(1).
For that, we consider the holonomic function f(z) = exp(z)/(1− z) whose coefficients tend
to exp(1).

(ii) We find a differential equation for R′(z)− f ′(z) (it is easy thanks to holonomicity).

(iii) The sequence n(Rn− fn) tends to a constant (because it is non-negative and asymptotically
decreasing). So, we can conclude that Rn tends to exp(1) (as fn).

The structure of shuffle trees is such that both last levels contain the same number of nodes
and this number corresponds to the width of the shuffle tree. So by observing both average width
and size of the shuffle trees, we notice that only a ratio 1− 2/e ≈ 0.26 of all nodes do not belong
to the last two levels.

3.3 Analysis of growth
To analyse quantitatively the growth between the process trees and their shuffle trees, we measure
the typical explosion of the number of concurrent runs induced by large trees of size n. Although
the arithmetic mean is the usual way to measure in average, in our case it is more natural to
compute the geometric mean since the ratio between these quantities is exponential.

Theorem 17. The geometric mean number of concurrent runs built on process trees of size n is:

Γ̄n =
n−1∏
k=2

k1−n+1−k
2

CkCn−k+1
Cn ∼n→∞

√
2πnn exp

(
−(1 + 2L(1/4))n+

√
πn+ L(1/4)

)
,

where L (1/4) =
∑
n>1 logn · Cn · 4−n ≈ 0.5790439217± 5 · 10−9.

The explosion is less important than the one that one could have conjectured with the arith-
metic mean, but is however very large. For both means, the result is far from the upper bound
(n − 1)!. Concerning the constant, the exact digits of the constant are written in bold type. It
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has been computed by a computer algebra software, in the following way: (i) The first 5 · 104

terms have been computed with the exact value of Cn; (ii) The terms from 5 · 104 to 3.3 · 105

have been calculated with an approximation of Cn based on the four first terms in its asymptotic
decomposition (see Fact 4); (iii) The queue of the series has been approximated by two Riemann
sums. In order to obtain one digit more in the approximation of L(1/4), one should do the second
approximation for terms from 5 · 104 to 1.7 · 106.

Proof sketch for Theorem 17: We will just give some key ideas here. To obtain the geometric
mean, we will use another recursive equation for `T :

`T = (|T | − 1)! ·
( ∏
R child of the root of T

`R
|R|!

)
.

Then, by taking the logarithm of the latter sequence, we are able to compute the arithmetic mean
value of the logarithm of what we are interested in, so by using the exponential function, we obtain
the result.

4 Application: random generation of concurrent computa-
tions

We describe in this section the way one can choose uniformly at random one specific run among
those induced by a given process tree. Moreover we present some results that allow us to compute
the number of such concurrent runs and also to give the probability of a given prefix run, both
in linear time. Fortunately, we do not need to build the shuffle trees to obtain these results. The
basic idea is to associate a weight to each node of a process tree, according to the size of its subtree.

Definition 18. Let T be a process tree and σ = 〈α1, . . . , αp〉 a prefix of a run in Shuf(T ). Let
Tσ be the tree whose root is αp and its children are all children of nodes α1, . . . , αp (in T ) that are
distinct from T (α1), . . . , T (αp) and ordered according to the prefix traversal of T .

For the process tree T of Fig. 1, we obtain T〈a,b,d〉 with root d and with three children (from
left to right): the leaves c, e and f .

Let T be a process tree. Suppose now that σp+1 = 〈α1, . . . , αp, αp+1〉 and let us denote
σp = 〈α1, . . . , αp〉. We are interested in the probability of choosing αp+1, once σp has already been
chosen. To obtain this probability, we need to count how many runs in Tσp are first running αp+1.

Proposition 19.

P(σp+1 | σp) =
`Tσp+1

`Tσp
= (|T | − p)!∏

S subtree of Tσp+1
|S|
·

∏
S subtree of Tσp

|S|
(|T | − p+ 1)! = |T (αp+1)|

|T | − p+ 1 .

The proof directly derives from the Hook length formula (cf. Fact 11).

Corollary 20. Let T be a process tree and σ = 〈α1, . . . , αp〉 be a prefix of a run in Shuf(T ). For
the uniform probability distribution on the set of all concurrent runs, the induced probability on
prefixes satisfies P(σ) = `Tσ/`T .

Corollary 21. Let T be a process tree. The probability of a prefix run σ = 〈α1, . . . , αp〉 in the
shuffle tree of T is equal to

∏p
k=1 |T (αk)|/(|T | − k + 1).

Corollaries 20 and 21 give us a simple way to compute `T , i.e. the number of concurrent
runs in the shuffle of process tree T . This is indeed the inverse of the probability of any complete
traversal of T . From this we can deduce a linear-time algorithm to compute the linear extensions
of T seen as a tree-like partial order, which is clearly an improvement if compared to the quadratic
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Data: T : a weighted process tree of size n
Result: σ: a run (a list of nodes)
σ := 〈〉
µ := {{aweight(a)}} # initialize a multiset with the root a with cardinality its
weight
for i from n− 1 to 1 by -1 do

# invariant: the total weight (sum of cardinalities) of µ is i
α :=sample(µ) # sample an action α according to its cardinality in the
multiset
σ := σ ∪ {|σ| 7→ α} # append the sampled action to the sequence
µ := µ ∪ {{α0}} # α cannot be sampled anymore
µ := µ ∪ {{γweight(γ) | γ a child of α}} # insert the children of α in the multiset

return σ

Figure 4: Algorithm: uniform random generation of concurrent runs

algorithm proposed in [Atk90]. A slight adaptation of the algorithm also offers a way to generate
the probability of a prefix concurrent run in linear time.

We are now interested in building uniformly at random one concurrent run for a specified
process tree without building its shuffle tree. The main idea is to sample in a multiset containing
the actions of the process trees as elements, each one associated to its weight. There are various
ways to implement the multiset sampler, see e.g. [WE80]. One idea is to implement a partial sum
tree, i.e. a balanced binary search tree in which all operations (adding or removing a node) are
done in logarithmic time.

Let T be a process tree. First by one traversal, we add a label to all nodes of T that corresponds
to the size of the subtree rooted in that node. We say that this size corresponds to the weight of
each node. We build a list σ, at the end of size n, such that at each step i, we add one action
to σ that corresponds to the (i)-th action in our random run. To choose this i-th action, we
sample in the multiset of all possible actions available in the considered step. Initially only the
root is available (with probability 1 thus cardinality n the size of the process tree T ). Then it is
added to σ and removed from the multiset. Finally its children are enabled with the weight as
cardinality. And we proceed until all actions have been sampled. In the case of the partial sum
tree implementation, we have the following complexity results.

Proposition 22. Let n be the size of the weighted process tree T . To obtain a random execution,
we need n random choices of integers and the operations on the multiset is of order Θ(n logn) (for
the worst case).

5 Conclusion and perspectives
The quantitative study of the shuffle operator represents a preliminary step towards our goal of
investigating concurrency theory from the analysis of algorithms point of view. In the next step, we
shall address other typical constructs of formalisms for concurrency, especially non-deterministic
choice and synchronization [AI07]. There are indeed various forms of synchronization, in general
corresponding to reflecting the action labels within the shuffle operator. Other operators, such
as hiding, also deserve further investigations. A way of generalizing our results would be to take
into account non-plane process trees. An approach based on analytic combinatorics would still be
possible, albeit more intricate, by considering multisets instead of sequences in the specifications.
Another interesting continuation of the work would be to study the compaction of the shuffle trees
by identifying common subtrees. This would amount to study the shuffling of process trees up-to
bisimilarity, the natural notion of equivalence for concurrent processes. Note that our algorithmic
framework would not be affected by such study, since they do not require the explicit construction
of the shuffle trees (wether compacted or not).
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From a broader perspective, we definitely see an interest in reinterpreting semantic objects
(from logic, programming language theory, concurrency theory, etc.) under the lights of analytics
combinatorics tools. Such objects (like shuffle trees) may be quite intricate when considered as
combinatorial classes, thus requiring non-trivial techniques. This is highlighted here e.g. by the
generalized hook length formula characterizing the expected size of shuffle trees. Conversely, we
think it is interesting to know – precisely, not just by intuition – the high-level of sharing and
symmetry within shuffle trees. This lead us naturally to practical algorithms, making us confident
that real-world applications (in our case, especially related to random testing and probabilistic
model-checking) might result from such study.
Acknowledgements. We are grateful to M. Dien and O. Roussel for fruitful remarks about the
algorithms.
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