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Abstract

We present a quantitative comparison of classical and intuitionistic logics, based on
the notion of density, within the framework of several propositional languages. In the
most general case - the language of the “full propositional system” - we prove that the
fraction of intuitionistic tautologies among classical tautologies of size n tends to 5/8 when
n goes to infinity. We apply two approaches, one with a bounded number of variables,
and another, in which formulae are considered “up to the names of variables”. In both
cases, we obtain the same results. Our results for both approaches are derived in a unified
way based on structural properties of formulae. As a by-product of these considerations
we present a characterization of the structures of almost all random tautologies.
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1 Introduction

One of the first papers to address the quantitative aspects of intuitionistic logic was [8].
According to the authors their work was partially motivated by the short note in some paper
of Statman saying: “It is a good bet but not a sure thing, that ρ (type) contains a closed
term”. The exact meaning of this sentence is not obvious. The set of types is countable,
and it is impossible to have an uniformly distributed probabilistic measure on it. It is a
standard approach to use the notion of the asymptotic density in a situation like this. The
general idea is to consider the subsets of elements of bounded size, and observe the uniform
measure of one subset in the other when the maximal allowed size tends to infinity. This
approach requires that the number of elements of bounded size is finite. This assumption
is not easy to be satisfied for propositional logic formulae, since we usually assume that the
number of variables is infinite. We analyse two approaches, which for implicational formulae
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have been considered in [3] and [5], obtaining the same results for both of them - “In the full
propositional logic, 5/8 of classical tautologies are intuitionistically valid. ”

The results presented in [8] were formulated in terms of inhabitation of types in simple
λ - calculus. The authors of [8] considered calculus with a finite number of ground types
and only functional types. In terms of logical formulae it corresponds to the situation when
the number of different variables in a formula is bounded by some constant, and an only
connective ⇒ is used. Although formulated in terms of type inhabitation, these results can
be translated to the language of propositional logic by Curry-Howard isomorphism (see e.g.
[10]). The authors proved that, for any finite, fixed number of available variables, at least 1/3
of classical tautologies are intuitionistic and gave some lower and upper bounds (dependent
on the number of allowed variables) for the density of intuitionistic tautologies among all the
formulae. They also stated a conjecture saying that among the formulae with a number of
different variables bounded by any constant the probability that a classical tautology of size
n chosen uniformly at random is intuitionistic tends to one, when n goes to infinity. The
conjecture turned out to be false, nevertheless its slight reformulation has been proved to be
true in [3]. The authors of [3] showed that the lower bound for the density of intuitionistic
logic in the classical one tends to 1, when the number of allowed variables tends to infinity.
It can be argued that the approach using a bounded number of variables is not appropriate
- we do not expect that “typical” formula of large size have a small number of variables. In
the paper [5] authors suggested another approach, in which formulae were considered up to
the names of variables (i.e. two formulae which differ only in the naming of variables were
assumed to be the same). In that case one can deal with formulae with an unbounded number
of variables, while preserving the property that there is only a finite number of formulae of
bounded size. In that setup, using methods similar as in [3] the authors obtained an analogous
result - the density is equal to 1. We want to emphasize at this point that the fact that both
results coincide is, in our opinion, no less surprising that the fact that the density tends to 1.

The work presented in this paper is a continuation of this research, considering other
languages of propositional formulae. Among them the most interesting is the language which
admits all the usual connectives ⇒,∧,∨, and the constant ⊥. We prove that in this case the
coherence of the results in both approaches is preserved, even though the limit is no longer
equal to 1, but to 5/8. We obtain these results by defining large families of intuitionistic
(resp. classical) tautologies with simple structures, which together have asymptotic density
1 in the set of all intuitionistic (resp. classical) tautologies.

Similar research has been done for the random generation of so called And/Or trees (see
[1] and [4] for a detailed survey). Especially the method of “subcritical pattern languages”
presented in [7] is very close to the development we preset in this paper.

The paper is organized as follows. Section 2 recalls some definitions on intuitionistic logic
and states the main results of this paper. Section 3 is devoted to the analysis of the structures
of some tautologies. In Section 4 we prove that almost all tautologies in both models (with a
bounded and an unbounded number of variables) have these structures. Then we prove our
main results for the language of the full propositional system. Finally, in the last section we
summarize briefly our results for other propositional languages.
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2 Prerequisites and results

For any set A and n ∈ N we denote by A(n) the number of elements of set A with size n
(when the size is well defined for the elements of A).

2.1 Formulae and logics

Let Var = {x1, x2, x3, . . .} be a countable set of variables, ⊥ be a constant, and C = {⇒,∨,∧}
be a set of binary connectives. A term in our system is a binary complete tree with internal
nodes labelled by the elements of C and leaves by the elements of Var∪{⊥} (precisely the tree
is rooted and plane i.e. the order of descendants matters). For every k ∈ N, let Fk denote
the set of terms in which all variables belong to the set Vark = {x1, . . . , xk}. The set of all
terms is denoted by Term. The size of a term is its number of leaves.

Two terms are α-equivalent if they differ only in the naming of variables, i.e. (ϕ,ψ) ∈ α
if there exists an injective relabelling function r : Var → Var, such that we obtain ψ after
relabelling variables from ϕ according to r. Clearly, α is an equivalence relation on Term. We
denote Term/α by F∞. We use the name formula both for terms and for elements from F∞.

2.1.1 Intuitionistic logic

For the general reference about intuitionistic logic we suggest [10]. In order to keep the
exposition as elementary as possible we recall here some simple (but quite specific) definitions.

Let O(R) denote the set of the open subsets of R with respect to the euclidean topology.
A valuation in O(R) is any function v : Var → O(R). We call the valuation of the type
v : Var → O(R) an intuitionistic valuation, for short. For every intuitionistic valuation we
define the function [[·]]Iv : Term → O(R) called intuitionistic interpretation inO(R) recursively
as follows

• [[x]]Iv = v(x), if x is a variable,

• [[⊥]]Iv = ∅,

• [[ψ1 ∨ ψ2]]
I
v = [[ψ1]]

I
v ∪ [[ψ2]]

I
v ,

• [[ψ1 ∧ ψ2]]
I
v = [[ψ1]]

I
v ∩ [[ψ2]]

I
v ,

• [[ψ1 ⇒ ψ2]]
I
v = Interior((R \ [[ψ1]]

I
v) ∪ [[ψ2]]

I
v).

If the interpretation of some formula does not depend on the valuation of the variables,
we omit the subscript v (e.g. we write [[⊥ ∧ ⊥]]I = ∅).

Definition 1 Formula ϕ ∈ Term is an intuitionistic tautology if and only if

[[ϕ]]Iv = R

for every valuation v : Var → O(R).

The definition above can be naturally extended to the set F∞: an element ϕ ∈ F∞ is an
intuitionistic tautology if all (or equivalently some of) its representatives are.
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Observation 1 The interpretation of the implication is an inflation with respect to the second
variable. I.e. for every valuation v we have:

[[ψ1 ⇒ ψ2]]
I
v ⊃ [[ψ2]]

I
v.

A Boolean valuation is any function v : Var → {True, False}. The Boolean interpretation
for a Boolean valuation is a function [[·]]Cv : Term → {True, False}; its definition is straight-
forward (⊥ is interpreted as False). Let us note the fact which belongs to folklore (and can
be easily derived from the presented definitions):

Observation 2 Every intuitionistic tautology is classical.

It is also a classical result that the converse is not true. The famous example of a tautology
which is classical but not intuitionistic is ((p ⇒ q) ⇒ p) ⇒ p and is known as the Peirce’s
law. Indeed, choosing an intuitionistic valuation v such that v(p) = R \ {0} and v(q) = ∅
gives [[((p ⇒ q) ⇒ p) ⇒ p]]Iv = R \{0}. The same valuation can be used to show that the law
of excluded middle p ∨ (p⇒ ⊥) is not an intuitionistic tautology.

2.2 Main results

Let Cl, Int ⊂ Term denote the sets of terms which are respectively classical and intuitionistic
tautologies. For every k ∈ N we put

Clk = Cl ∩ Termk, Intk = Int ∩ Termk

and
Cl∞ = Cl/α, Int∞ = Int/α.

Let a sequence (dk(n))n∈N\0,1 be defined as follows:

dk(n) =
Intk(n)

Clk(n)
.

Each fraction dk(n) equals the probability that a formula chosen uniformly at random among
the set Clk of size n is an intuitionistic tautology. Note, that the sequence is well-defined,
since there are classical tautologies of any size not smaller than 2. If the sequence converges,
its limit is denoted by Dk and is called the relative density of Intk in Clk. We do not address
the problem of the existence of Dk. We use following bounds instead:

D−
k = lim inf

n→∞
dk(n), D+

k = lim sup
n→∞

dk(n).

The first of our main results says that

lim
k→∞

D−
k = lim

k→∞
D+

k =
5

8
.

This is analogous to the approach taken in [3] for the implicational fragment. In that case
the limit was 1.

Considering the formulae “up to the names of variables” enables an arbitrary number of
different variables in formula, while preserving the property that there is only a finite number
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of formulae with bounded size. In this approach we consider the sequence (d∞(n))n∈N defined
as follows:

d∞(n) =
Int∞(n)

Cl∞(n)
.

The second of our main results says that

lim
n→∞

d∞(n) =
5

8
.

We could give an informal interpretation that “about 5
8 of classical tautologies are intuition-

istic”. It was proved in [5] that the analogous approach for the implicational fragments gives
the density 1.

2.3 Structure and labelling

For a term ϕ, the structure of ϕ is a binary tree constructed from ϕ by forgetting about the
labelling of its leaves (e.g. by changing it so that each leaf is labelled by •). The definition
can be naturally extended to the formulae from F∞, since all the terms in each equivalence
class have the same structure. The set of structures in our system is denoted by T . It is the
set of binary, complete trees with internal nodes labelled by ⇒,∧ or ∨ and all leaves labelled
by •.

We say that a node is an ⇒-node if the node is labelled with ⇒. We use an analogous
convention for the other connectives.

For a formula ϕ ∈ Fk with n leaves, a leaf labelling of ϕ is a function f : {1, . . . , n} →
Vark∪{⊥} such that f(i) coincides with the label at the i-th leaf of ϕ. We call such a function
a k-labelling of size n.

For a formula [ϕ] ∈ F∞ with n leaves, a leaf labelling of [ϕ] is the equivalence relation
R on the set {0, 1, . . . , n} consisting of all the pairs of numbers of leaves which are labelled
by the same symbol (variable or ⊥) and all the pairs (0, j), (j, 0) for each leaf j labelled with
⊥. Note that the relation R does not depend on the chosen representative of the equivalence
class [ϕ]. It contains information about which leaves are labelled by the same variable (but
not by which variable), and which leaves are labelled with ⊥. We call such a relation the
∞-labelling of size n.

As usual, the size of a structure is the number of its leaves, and we denote by T (n) the
number of structures from T of size n.

In all considered cases (bounded for every k ∈ N and unbounded) we have a one-to-one
correspondence between the structure-labelling pairs of the size n and the formulae of that
size. This fact is reflected in simple expressions for the numbers of formulae of size n. We
have

Fk(n) = T (n) · (k + 1)n, F∞(n) = T (n) · B(n+ 1), (1)

where B(n+ 1) is the number of equivalence relations on the set {0, 1, . . . , n} known as Bell
number (see e.g. [6]).

2.4 Generating functions

Within this paper we make an extensive use of the theory of generating functions and analytic
combinatorics (see [2]). All the generating functions in this paper are ordinary.
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We use a notation which always exposes the formal parameters of a generating function.
E.g. we write g(z) instead g for some generating function

∑
n∈N gnz

n. Although the notation
may be a little bit misleading, it provides a convenient way of expressing substitutions for
formal parameters (e.g. we have g(y2) =

∑
n∈N gny

2n). It is a standard convention to denote
by [zn]g(z) the coefficient gn (for the function g(z) defined as above).

One of the most basic generating functions in this paper, is the one enumerating all the
structures: t(z) =

∑
n∈N T (n)zn. By a standard constructions we get an algebraic equation

for t(z):
t(z) = z + 3t(z)2.

This equation reflects the fact that a structure is either a leaf (this case corresponds to the
term z) or a tree with exactly two subtrees and root labelled by one of three connectives
(term 3t(z)2). Solving this equation (and choosing the proper solution) we get

t(z) =
1−

√
1− 12z

6
.

The radius of convergence of t(z) is ρ = 1/12, t(z) is bounded within its circle of convergence,
and t(ρ) = limz→Rρ−

t(z) = 1
6 .

We use the following technical lemma.

Lemma 1 Let f, g ∈ Z[[z]] be algebraic generating functions, having a common unique dom-
inating singularity at ̺ ∈ R+. Suppose, that these functions have Puiseux expansions around
̺ of the form

f(z) = cf + df (z − ̺)
1

2 + o((z − ̺)
1

2 )

g(z) = cg + dg(z − ̺)
1

2 + o((z − ̺)
1

2 ),

with both df , dg being nonzero. Then

lim
n→∞

[zn]f(z)

[zn]g(z)
= lim

z→R̺−

f ′(z)

g′(z)
.

By singularity analysis for algebraic generating functions (see e.g. Theorem VII.8 from
[2]) we obtain that:

lim
n→∞

[zn]f(z)

[zn]g(z)
=
df
dg
.

On the other hand it can be easily checked that limz→R̺−
f ′(z)
g′(z) =

df
dg
.

3 Structural properties of tautologies

In this section we analyse structural properties of tautologies. In order to obtain results inde-
pendent of the kind of labelling, we use F to denote the set of formulae under consideration,
and the function Lab : N → N, whose value for n is the number of different labellings of the
structures of size n. In particular we get results for the unbounded approach by setting F
equal to F∞ and Lab(n) to B(n+ 1). In an analogous way the results are translated to the
bounded case for every fixed number of variables k by substituting F with Fk and Lab(n)
with (k + 1)n. E.g. in this convention equations (1) are formulated as

F(n) = T (n) · Lab(n).
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3.1 Pointed structures

An m-pointed structure is a pair (t, s) of a structure t and a sequence s of m different leaves
of t. Usually we use a pointed structure to encode some constraints on the allowed labellings.
For example let A denote some set of 1-pointed structures and consider the set of formulae
FA, which can be constructed from the elements of A by labellings which assign ⊥ to the
pointed leaf. For every structure a ∈ A of size n we are free to label all the remaining leaves.
Therefore, there are Lab(n−1) labellings which, together with the structure a, give a formula
from FA. Therefore FA(n) 6 A(n) · Lab(n− 1).

3.2 Tree decomposition

We say that a node v in a tree t ∈ T is k-shallow if the path from the root to v goes at most
k times to the left from a node labelled with ⇒ (i.e. it goes into the left subtree). A node is
a k-layer node if it is k-shallow but not (k − 1)-shallow.

To obtain an upper bound for the number of tautologies we focus on 3-shallow leaves.
Let us consider the set of trees P ⊂ T such that every left subtree of every node labelled

with the connective ⇒ is a leaf (i.e. all 1-layer nodes are leaves). Let p(t, u) be the gener-
ating function for such trees with t marking leaves which are left sons of an ⇒-node, and u
marking the remaining leaves (t denotes a formal parameter, not the generating function for
all structures, which we denote by t(z)). The generating function is given implicitly by the
equation

p(t, u) = t · p(t, u) + 2 · p(t, u)2 + u, (2)

which, by standard combinatorial constructions ([2]), reflects the fact that every such a tree
is

• either an implication with its left subtree being an 1-layer leaf and its right subtree
belonging to P ,

• or a conjunction or a disjunction with both subtrees belonging to P ,

• or a leaf (which is in fact a 0-shallow leaf).

Clearly, p(t(z), uz) is the generating function of all structures, with z marking the size and u
marking 0-shallow leaves. We define a sequence of generating functions:

p60(t, u) = t p6(n+1)(t, u) = p(p6n(t, u), u).

Each function p6(n+1)(t, u) is the generating function of the set of structures in which all
(n + 1)-layer nodes are leaves, with u marking n-shallow leaves, and t marking leaves which
are left sons of n-layer ⇒-nodes (i.e. all (n+ 1)-layer leaves). Since every node in every tree
is an i-layer node for exactly one i, we get for every n ∈ N

t(z) = p6n(t(z), z).

Proposition 1 For s,m ∈ N let T (m)
6s denote the set of m-pointed structures with all pointed

leaves being s-shallow (we call them s-shallow m-pointed structures). There exists a positive
constant cs,m ∈ R such that

lim
n→∞

T (m)
6s (n)

T (n)
= cs,m.
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In fact we need this property only for the sets T (2)
63 ,T

(3)
63 ,T

(4)
63 , and the results for these sets

can be easily established by explicit calculations of their generating functions. Instead, we
present a proof of the general case, which we believe is shorter and more interesting than
algebraic computations.

Proof 1 Solving the equation (2) and using the fact that p(0, 0) = 0 we get

p(t, u) =
1

4
(1− t−

√
(1− t)2 − 8u).

It shows that the function p(t, u) is analytic in the set Dε = {(t, u) ∈ C
2 : |t| 6 1

6 + ε,
|u| 6 1

12 + ε} for a sufficiently small ε ∈ R (note that t(ρ) = 1
6 and ρ = 1

12). By non-
negativity of the coefficients of the expansion of p(t, u) at 0 we get that max(t,u)∈D0

|p(t, u)| =
p(16 ,

1
12) = 1

6 . Therefore each p6s(t, u) is analytic in Dǫ (for a sufficiently small, positive

ǫ ∈ R) and so are all its partial derivatives, in particular um
∂mp6s(t,u)

(∂u)m . Let us observe, that

since differentiation of generating function corresponds to pointing (see [2]), the latter function
is exactly the generating function of s-shallow m-pointed structures in which all (m+1)-layer
nodes are leaves (marked with variable t). It remains to substitute the generating function of
all structures for t to obtain the generating function for all s-shallow m-pointed structures.
We substitute u with z so that the variable z marks all leaves (after pointing, we are no longer
interested in s-shallow leaves). As a result we obtain the following function

pm,s(z) =

(
um

∂mp6s(t, u)

(∂u)m

)
|u:=z,t:=t(z),

which is the generating function of the set of all s-shallow m-pointed structures. Let D̂ǫ de-
note the set Dǫ \ [ρ,∞]. Then the function t(z) is analytically continuable to the set D̂ǫ, and

since the outer function is analytic in D̂ǫ we know that the function pm,s(z) is analytically
continuable to that set. On the other hand the combinatorial interpretation shows that pm,s(z)
must have a singularity in ρ. Therefore we know that pm,s(z) has a unique dominating singu-
larity in ρ. In fact we know also that limz→Rρ− pm,s(z) < ∞, therefore the singularity is not
a pole. Since pm,s(z) is algebraic, the singularity must be a branching point. By the fact that
t(ρ − v2) is analytic at ρ we get that pm,s(ρ − v2) is analytic as well, which shows that the
branching type of pm,s(z) at ρ is 2 (we excluded the existence of pole). Finally, the fact that
limz→Rρ− p

′
m,s(z) = ∞ shows that the singularity is of the square root type. A straightforward

application of the Lemma 1 proves the result.

3.3 Shallow repetitions

For every formula ϕ and set of its leaves L we say that ϕ has r repetitions among the leaves
from L, if r equals the difference between the cardinality of L and the number of different
variables assigned to the leaves from L. If the set L consists of all k-shallow leaves we say
that ϕ has r k-shallow repetitions. Note that the occurrence of the constant is treated as
repetition e.g. formula (y ⇒ x) ⇒ (x⇒ ⊥) has two repetitions among all its leaves.

Proposition 2 Within the set of elements of F of size n, the fraction of formulae with at

least two 3-shallow repetitions is asymptotically bounded by cLab(n−2)
Lab(n) . Formally, let F [>2]

63
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denote the set of formulae with at least two 3-shallow repetitions, we have

F [>2]
63 (n)

F(n)
. c · Lab(n− 2)

Lab(n)

for some positive c ∈ R.

Proof 2 Every formula ϕ ∈ F [>2]
63 satisfies at least one of the following properties:

A ϕ contains two 3-shallow leaves labelled with ⊥,

B ϕ contains one 3-shallow leaf labelled with ⊥ and two 3-shallow leaves labelled by the
same variable,

C ϕ contains three 3-shallow leaves labelled by the same variable,

D two variables occur at least twice among 3-shallow leaves of ϕ.

Let FA,FB ,FC ,FD denote the sets of formulae with the previous properties. Clearly

F [>2]
63 (n) 6 FA(n) + FB(n) + FC(n) + FD(n),

and since the sets are not disjoint, when n is large enough, the inequality is usually strict.
Every formula from FA contains at least two 3-shallow leaves labelled with ⊥. Therefore

all these formulae can be constructed from 3-shallow 2-pointed structures by labellings which
assigns ⊥ to the pointed leaves. Hence

FA(n) 6 T (2)
63 (n) · Lab(n− 2).

An analogous reasoning for the other sets gives

FB(n) + FC(n) 6 2 · T (3)
63 (n) · Lab(n− 2),

and
FD(n) 6 T (4)

63 (n) · Lab(n− 2).

Using these equations and Proposition 1 we obtain

F [2]
63(n)

F(n)
6

(T (2)
63 (n) + 2T (3)

63 (n) + T (4)
63 (n))

T (n)
· Lab(n− 2)

Lab(n)
∼ (c2,3 + 2 · c3,3 + c4,3) ·

Lab(n− 2)

Lab(n)

We use Proposition 2 to show that we can neglect all formulae with at least two 3-shallow
repetitions, since, as we will prove in Section 4, the number of all such formulae is essentially
smaller than the number of tautologies.

3.4 Shallow repetitions in Classical Tautologies

For a formula ϕ let a Boolean valuation v1ϕ assign True only to those variables that have

occurrences on the first layer, and let v1,3ϕ assign True only to those that have occurrences
on the first or the third layer. The following proposition is a consequence of the fact that if
there are no 1-shallow repetitions in ϕ, then the formula is valuated to False by v1ϕ and to
True by the opposite valuation.

Proposition 3 If a formula ϕ does not contain at least one 1-shallow repetition it does not
define a constant function.
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3.4.1 Positive/Negative leaves

Definition 2 A positive path in a formula (tree) is a path from the root to some node, which
never crosses an ∧-node, and never goes to the left subtree from an ⇒-node. A node is called
positive if there exists a positive path to it (see Figure 1).

∨
⇒
∨
⇒

∨
⇒
∨
⇒

∨
⇒
∨
⇒

∧

∨
⇒
∨
⇒

∧
⊥

Figure 1: From left to right: a positive path, not a positive path, a negative path, a tree with
a negative leaf labelled with ⊥.

It is easy to observe that for every formula it is enough to valuate one of its positive nodes
to True, to ensure that the valuation of the whole formula is True.

Definition 3 A negative path in a formula (tree) is a path from the root, which contains a
positive ⇒-node h, such that the path is going to the left subtree from h and then follows only
∧-nodes (if any). A node is called negative if there exists a negative path to it (see Figure 1).

The motivation for the negative path is also straightforward - whenever some Boolean
valuation assigns False to a negative node, then the whole formula evaluates to True (the
last positive node on the negative path is of the form φl ⇒ φr and we have a ∧-path in φl
to a node valuated to False, therefore φl is valuated to False and hence φl ⇒ φr to True,
which is propagated along the positive path to the root).

Those two definitions give rise to two large families of classical tautologies.

Observation 3 All the formulae in which some negative leaf is labelled with ⊥ are classical
tautologies. The set of these formulae is denoted by S⊥ (see Figure 1).

Observation 4 All the formulae in which some positive leaf is labelled by the same variable
as some negative leaf are classical tautologies. We denote this family by SR.

Proof 3 The proof of the first observation is straightforward. For the proof of the second
one, suppose that ϕ is a formula with a positive leaf and a negative leaf labelled with the same
variable. For every Boolean valuation we have either a negative leaf valuated to False or a
positive leaf valuated to True. In both cases the whole formula ϕ is valuated to True, which
proves that it is a classical tautology.

We call the formulae from the set SR ∪ S⊥, simple tautologies. We focus on the formulae
with exactly one 1-shallow repetition and at the same time exactly one 3-shallow repetition
(it means that taking into consideration also layers 2 and 3 does not increase the number of
repetitions). The set of such formulae is denoted by H. In the next two propositions we show
that all tautologies belonging to H are simple.
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Proposition 4 If a formula ϕ ∈ H \ S⊥ contains a 3-shallow leaf l labelled with ⊥, then it
is not a tautology.

Proof 4 If the leaf l is not 1-shallow then there are no 1-shallow repetitions and the Boolean
function defined by the formula is not constant (Proposition 3). If l is 0-shallow then we can
use the valuation v1ϕ which valuates all the 0-shallow leaves to False and all the 1-layer leaves
to True. In that case the formula is valuated by v1ϕ to False.

In the remaining case l is 1-layer leaf but is not negative. Let s be the last ∨-node or
⇒-node on the path from the root to l. The node s is an 1-layer node, because l is not
negative.

Suppose that s is labelled by ∨. One of its subtrees does not contain l. In that subtree
all the 0-shallow leaves are valuated by v1,3ϕ to True (because they are all 1-layer leaves in ϕ)
therefore the whole subtree with root s is valuated to True by v1,3ϕ .

If s is labelled by ⇒ then let s2 be its left son. Clearly s2 is a 2-layer node. Since we
have only one 3-shallow repetition and it is realized by a 1-shallow node labelled with ⊥, all
the labels of 2-layer and 3-layer leaves are not repeated among 3-shallow leaves. Therefore
the valuation v1,3ϕ assigns False to all the 2-layer leaves, and True to all the 3-layer leaves.
Consequently, every 2-layer node is valuated to False. It means that also s2 is valuated to
False, but then s is valuated to True.

In both cases the only 1-layer nodes which are valuated by v1,3ϕ to False are below the
node s, which is valuated to True anyway. Hence every 1-layer node which is a left son of a
0-shallow node is valuated to True. But then all 0-shallow nodes are valuated to False, which
proves that ϕ is not a classical tautology.

Proposition 5 If a formula ϕ ∈ H \ SR contains a 3-shallow variable repetition, then it is
not a tautology.

Proof 5 If ϕ does not contain any 1-shallow repetition, then according to the Proposition 3,
the formula does not define a constant function. If both leaves with the repeated variable are
on the same level, then the valuation v1ϕ valuates all the 0-shallow leaves to False and all
1-layer leaves to True, and the formula is valuated by v1ϕ to False.

Let l1, l2 be the 3-shallow leaves labelled with the same variable. We can assume that l1 is
0-shallow and l2 is a 1-layer leaf. If l1 is not positive then there exists a node s on the path
from the root to l1, which is labelled with ∧. In that case the only 0-shallow nodes which can
be valuated to True by v1ϕ are below s. But s is valuated to False, because it is a ∧-node and
one of its subtrees is valuated by v1ϕ to False (the one which does not contain l1).

In the remaining case we have two leaves l1, l2 labelled with the same variable, such that
l1 is positive (and hence 0-shallow), l2 is not negative but is a 1-layer leaf. In this case we use
the Boolean valuation b which assigns False only to those variables which have occurrences
among 0-shallow or 2-layer leaves. Then the leaf l2 is valuated to False and we can use the
same reasoning as in the case when some not negative 1-layer leaves is labelled with ⊥, to
prove that ϕ is not a tautology.

Observation 5 We have

S⊥(n) + SR(n)−F [>2]
63 (n) 6 Cl(n) 6 S⊥(n) + SR(n) + F [>2]

63 (n) (3)

The lower bound comes from the fact that every formula which belongs to S⊥ ∩ SR has at
least two 3-shallow repetitions. The upper bound is a consequence of Propositions 4 and 5,

which together say that all tautologies which are not simple belong to F [>2]
63 .
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3.5 Simple Intuitionistic Tautologies

It is easy to show that all the formulae from S⊥ are intuitionistic tautologies. This is not true
for SR, and a simple counterexample is x∨(x⇒ y) (consider valuation such that v(x) = R\{0}
and v(y) = ∅).

Proposition 6 A formula from SR∩H is an intuitionistic tautology if and only if the positive
prefix of the path leading to the negative leaf with the repeated variable is a prefix of the path
leading to the positive leaf with the repeated variable. The set of those formulae is denoted by
SRI (see Figure 2).

∨
⇒
∨
⇒

∧
α

∨
⇒
α

Figure 2: A tree with a negative path and a positive path with the same prefix.

Proof 6 Let ϕ ∈ SR ∩ H be a formula such that the positive prefix of the path leading to
the negative leaf with the repeated variable is a prefix of the path leading to the positive leaf
with the repeated variable. Let s be the last common node of the positive and negative paths
to the leaves with the repeated variable, v be any valuation in O(R), and X ∈ O(R) be the
value assigned by v to the repeated variable. We know that the node s is labelled with ⇒. Let
ϕL and ϕR be its left and right subtrees. By the definition of the negative path we have an
∧-path in ϕL to the leaf valuated to X. Since ∧ is interpreted as an intersection we know that
[[ϕL]]

I
v ⊂ X. In the similar way since ∨ is interpreted as an union and by the Observation 1

we get [[ϕR]]
I
v ⊃ X. Therefore [[ϕL ⇒ ϕR]]

I
v = R and the value is propagated to the root.

For the other directions, let us take ϕ ∈ SR such that the last positive leaf on the negative
path to the leaf with the repeated variable does not belong to the positive path to the other
leaf with the repeated variable . Let l1 and l2 be the pair of leaves with repeated variable and
s be the last common node of the paths to them. Obviously s is labelled with ∨. We use a
valuation v which assigns the set R \ {0} to the variable occurring at the leaves l1, l2 and R

to the other variables which have occurrences among 1-layer leaves, and ∅ to the remaining
variables. Let ϕL ∨ ϕR be the subtree of ϕ rooted in s. The easy structural induction shows
that [[ϕR]]

I
v = R \ {0} and [[ϕL]]

I
v = ∅ (the left subformula of the last positive node s2 on the

path to the negative node l2 is valuated to R \ {0}, it gives ∅ at the node s2). Then we have
[[ϕR ∨ ϕL]]

I
v = R \ {0} and since all the 0-shallow nodes, which are not below or above s,

are valuated by v to ∅, we get [[ϕ]]Iv = R \ {0}, which proves that ϕ is not an intuitionistic
tautology.

Analogously to the inequality (3) we get

S⊥(n) + SRI(n)−F [>2]
63 (n) 6 Int(n) 6 S⊥(n) + SRI(n) + F [>2]

63 (n). (4)
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4 Counting simple families of tautologies

Within this section we denote by T (2,3,3,4)
≤3 (n) the value T (2)

63 (n) + 2 · T (3)
63 (n) + T (4)

63 (n).
For any i ∈ N an i-positive-pointed structure is an i-pointed structure, whose pointed

leaves are all positive (note that positivity of leaves depends only on the structure). Negative-
pointed structures are defined analogously. We use the following sets of structures:

• TN - the set of 1-negative-pointed structures,

• TPN - the set of 2-pointed structures such that the first pointed leaf is positive and the
second is negative,

• T
P̂N

- the subset of TPN consisting of all the structures for which the positive prefix of
the path to the negative pointed leaf is a prefix of the (positive) path to the positive
pointed leaf.

In the following propositions we give bounds on the number of elements of S⊥ and SR of
size n.
Proposition 7

TN(n) · Lab(n− 1)− T (2,3,3,4)
≤3 (n) · Lab(n− 2) 6 S⊥(n) 6 TN (n) · Lab(n− 1)

Proof 7 From every 1-negative-pointed structure we can construct a formula from S⊥ by a
labelling which assigns ⊥ to the pointed leaf. If the pointed structure has n leaves we have
exactly Lab(n − 1) such labellings. Since every formula from S⊥ can be constructed in this
way we get:

S⊥(n) 6 TN (n) · Lab(n− 1).

The inequality is usually strict, since some formulae can be generated with more than one
structure-labelling pairs of considered type. These are exactly formulae, which have at least
two negative leaves labelled with ⊥ (hence they have at least two 3-shallow repetitions). The
number of pairs which generate formulae with that property is smaller than the number of
pairs which generate all the formulae with at least two 3-shallow repetition. We get (just as
in the proof of the Proposition 2)

TN(n)Lab(n − 1)− T (2,3,3,4)
≤3 (n) · Lab(n− 2) 6 S⊥(n).

Proposition 8

TPN(n) · Lab(n− 1)− T (2,3,3,4)
≤3 (n) · Lab(n− 2) 6 SR(n) 6 TPN (n) · Lab(n− 1)

Proof 8 The upper bounds comes from the number of structure-labelling pairs, such that the
structure has two pointed leaves, a first positive and a second negative, and the labelling is
such that it labels both pointed leaves with the same variable. Clearly, the set of formulae
constructed in this way equals SR. Therefore

SR(n) 6 TPN (n) · Lab(n− 1).

Just like in the proof of the lower bound on the family S⊥ (Proposition 7), each formula from
SR which is constructed by at least two structure-labelling pairs of considered type, has at least
two 3-shallow repetitions. Hence,

TPN(n) · Lab(n− 1)− T (2,3,3,4)
≤3 (n) · Lab(n− 2) 6 SR(n).

13



Corollary 1 Applying the same reasoning for SRI as in the Proposition 8 we get the following
inequalities

T
P̂N

(n) · Lab(n− 1)− T (2,3,3,4)
≤3 (n) · Lab(n− 2) 6 SRI(n) 6 T

P̂N
(n) · Lab(n− 1).

4.1 Structural limits

To prove our main results we need to calculate the following three “structural limits”:

DN = lim
n→∞

TN (n)

T (n)
, DPN = lim

n→∞

TPN(n)

T (n)
, D

P̂N
= lim

n→∞

T
P̂N

(n)

T (n)
.

(It is not even obvious, that such limits exist.)

Proposition 9

DN = lim
n→∞

TN(n)

T (n)
=

5

8

Proof 9 Let gN (y, z) be the generating function for all structures, with z marking the size
and y marking leaves which can be obtained from the root by paths containing only ∧-nodes.
It satisfies:

gN (y, z) = 2 · T (z)2 + gN (y, z)2 + yz.

Let fN (y, z) be the generating function for all structures with z marking size and with
negative leaves marked with y. We have

fN (y, z) = fN(y, z)2 + gN (y, z) · fN(y, z) + T (z)2 + z. (5)

The first term corresponds to the situation when the root of the tree is labelled by ∨. The
second one, to the situation when the root is labelled with ⇒ (the left subtree can add some
negative paths when all the following nodes are labelled by ∧ and the right subtree extends the
positive part of eventually negative paths). The third term corresponds to the situation when
the root is labelled by ∧, such trees do not contain any negative paths. Finally, a single leaf
gives the term z (it is 0-shallow leaf, therefore no negative path ends in it).

By the classical construction (pointing corresponds to differentiation), to obtain the gen-
erating function for 1-negative-pointed structures SN(z) it is enough to differentiate fN (y, z)
with respect to the variable y, multiply by y, and then substitute y by 1 (we no longer need
bivariate function). Therefore

SN(z) = y · ∂fN (y, z)

∂y
|y:=1.

After algebraic calculations and application of the Lemma 1 we get:

lim
n→∞

TN (n)

T (n)
= lim

n→∞

[zn]SN(z)

[zn]T (z)
= lim

z→R
1

12

−

SN ′(z)

T ′(z)
=

5

8
.

Proposition 10

DPN = lim
n→∞

TPN(n)

T (n)
=

11

8
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Proof 10 We proceed as in the previous proposition. We use the generating function fPN(x, y, z)
enumerating all structures where x marks positive leaves, y marks negative leaves and z marks
the size. This generating function satisfies modified equation (5):

fPN(x, y, z) = fPN (x, y, z)2 + gN (y, z) · fPN(x, y, z) + T (z)2 + xz.

By differentiation with respect to variables x and y, and then multiplication by x · y, we
get the generating function for the set TPN . Just as in the previous case we can substitute 1
for x and y, to obtain a univariate generating function SPN(z).

SPN(z) = x · y · ∂
2fPN (x, y, z)

∂x∂y
|x:=1,y:=1

By algebraic computations and Lemma 1 we get

lim
n→∞

[zn]SPN(z)

[zn]T (z)
= lim

z→R
1

12

−

SPN ′(z)

T ′(z)
=

11

8
.

Proposition 11

lim
n→∞

T
P̂N

(n)

T (n)
=

5

8

Proof 11 The set T
P̂N

consists of elements of TPN , for which the positive prefix of the path
to the negative pointed leaf is a prefix of the path to the positive pointed leaf. Every such a
structure can be uniquely decomposed into three 1-pointed structures. Let s be the last positive
node on the negative path to the pointed leaf. The first structure is obtained by substituting
s by a leaf, and pointing to this leaf (it is an 1-positive-pointed structure). The second one
is the right subtree of s - it is an 1-positive-pointed structure (pointing is inherited). The
last structure is the left subtree of s, it inherits one pointed leaf, this time it is an 1-pointed
structure such that all the nodes on the path to the pointed leaf are labelled by ∧. It is easy
to observe that such a decomposition is unique, and from a pair of positive-pointed structures
and one “∧-pointed” structure we can construct a structure belonging to T

P̂N
. The size of the

constructed structure is smaller by 1 than the sum of the sizes of its component. Therefore
the generating function for the elements of T

P̂N
is

SPNI(z) =
1

z

(
x · y · ∂fPN(x, y, z)

∂x
|x:=1,y:=1

)2 (
y · ∂gN (y, z)

∂y
|y:=1

)
.

Just like in the previous cases the functions are algebraic and after algebraic computations
the application of Lemma 1 yields:

lim
n→∞

T
P̂N

(n)

T (n)
= lim

n→∞

[zn]SPNI(z)

[zn]T (z)
= lim

z→R
1

12

−

SPNI ′(z)

T ′(z)
=

5

8
.

Using the bounds from Proposition 7 and the “structural limits”, that we have just com-
puted, we get:

S⊥(n)

F(n)
6

TN (n)

T (n)
· Lab(n− 1)

Lab(n)
∼ 5

8

Lab(n− 1)

Lab(n)
(6)
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and

S⊥(n)

F(n)
>

TN(n)

T (n)

Lab(n− 1)

Lab(n)
−

T (2,3,3,4)
≤3 (n)

T (n)

Lab(n− 2)

Lab(n)
∼ 5

8

Lab(n− 1)

Lab(n)
−C⊥

Lab(n− 2)

Lab(n)
, (7)

for some C⊥ ∈ R.
In the similar way, using Proposition 8, for SR we get

SR(n)

F(n)
6

TPN(n)

T (n)
· Lab(n− 1)

Lab(n)
∼ 11

8

Lab(n − 1)

Lab(n)
(8)

and

SR(n)

F(n)
>

TPN(n)

T (n)
· Lab(n− 1)

Lab(n)
−

T (2,3,3,4)
≤3 (n)

T (n)

Lab(n− 2)

Lab(n)
∼ 11

8

Lab(n− 1)

Lab(n)
−CPN

Lab(n− 2)

Lab(n)
,

(9)
for some CPN ∈ R.

Finally, from Corollary 1, we obtain

SRI(n)

F(n)
6

T
P̂N

(n)

T (n)
· Lab(n− 1)

Lab(n)
∼ 5

8

Lab(n− 1)

Lab(n)
(10)

and

SRI(n)

F(n)
>

T
P̂N

(n)

T (n)
· Lab(n− 1)

Lab(n)
−

T (2,3,3,4)
≤3 (n)

T (n)

Lab(n− 2)

Lab(n)
∼ 5

8

Lab(n− 1)

Lab(n)
−C

P̂N

Lab(n− 2)

Lab(n)
,

(11)
for some C

P̂N
∈ R.

4.2 Main result - bounded case

We specialize now to the case with the number of variables bounded by k. In that case we
have Lab(n) = (k + 1)n. For the clarity of the exposition we keep using F instead of Fk.
From inequalities 6 and 7, we get

lim sup
n→∞

S⊥(n)

F(n)
6

5

8k
(12)

and

lim inf
n→∞

S⊥(n)

F(n)
>

5

8k
− C

k2
. (13)

Analogous reasoning for families SR and SRI , using inequalities 9, 8, 11, 10 gives

lim sup
n→∞

SR(n)

F(n)
6

11

8k
lim inf
n→∞

SR(n)

F(n)
>

11

8k
− C

k2
, (14)

and

lim sup
n→∞

SRI(n)

F(n)
6

5

8k
lim inf
n→∞

SRI(n)

F(n)
>

5

8k
− C

k2
. (15)
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We want to estimate D+
k = lim supn→∞

Intk(n)
Clk(n)

. Clearly, we have

D+
k = lim sup

n→∞

F(n)−1Intk(n)

F(n)−1Clk(n)
.

Applying upper bound from 4 and lower bound from 3 we get

D+
k 6 lim sup

n→∞

F(n)−1(S⊥(n) + SRI(n) + F [>2]
63 (n))

F(n)−1(S⊥(n) + SR(n)−F [>2]
63 (n))

.

Since both sequences (in numerator and in denominator) are positive, for large enough n and
k, and bounded, we can apply following upper bound:

D+
k 6

lim supn→∞F(n)−1(S⊥(n) + SRI(n) +F [>2]
63 (n))

lim infn→∞F(n)−1(S⊥(n) + SR(n)−F [>2]
63 (n))

6
10
8k + o( 1

k
)

2
k
− o( 1

k
)
∼k

5

8

The last inequality is a consequence of inequalities 12, 13, 14, 15 and Proposition 2.
In the analogous way we obtain

D−
k >

lim infn→∞Fk(n)
−1(S⊥(n) + SRI(n)−F [>2]

63 (n))

lim supn→∞Fk(n)−1(S⊥(n) + SR(n) + F [>2]
63 (n))

=
10
8k − o( 1

k
)

2
k
+ o( 1

k
)
∼k

5

8

Hence we get the first of our main results:

lim
k→∞

D−
k = lim

k→∞
D+

k =
5

8
.

4.3 Main result - unbounded case

In this section we specialize to the case when the number of variables is unbounded, but
formulae are considered “up to the names of variables”. We put Lab(n) = B(n + 1), where
B(n) is a Bell number (see [6]). The asymptotic behaviour of the Bell numbers is known due
to the result of Moser and Wyman [9]. For our needs it is sufficient to note that Bell numbers

satisfy the following property: B(n−2)
B(n) = o(B(n−1)

B(n) ). Then, from inequalities 4, Proposition 2
and structural limits, we get

Int∞(n)

F∞(n)
=
S⊥(n) + SRI(n)

F∞(n)
+ o

(
B(n)

B(n+ 1)

)
∼ 10

8

B(n)

B(n+ 1)
+ o

(
B(n)

B(n+ 1)

)
.

Analogously for classical tautologies we have

Cl∞(n)

F∞(n)
=
S⊥(n) + SR(n)

F∞(n)
+ o

(
B(n)

B(n+ 1)

)
∼ 16

8

B(n)

B(n+ 1)
+ o

(
B(n)

B(n+ 1)

)
.

Both asymptotic equivalents are precise enough to derive the second of our main results:

Int∞(n)

Cl∞(n)
∼ 5

8
.
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5 Summary and smaller logics

Going from the simplest language (a single connective: ⇒) up to the full propositional logic
(⇒,∧,∨,⊥), we note that there exists a difference between the intuitionistic logic and the
classical logic (when the number of variables tends to infinity) as soon as the ∨ connective
is used. We note that we obtain classical tautologies that are not intuitionistic in SR, if and
only if the positive prefix of the path leading to the negative leaf with the repeated variable is
not a prefix of the path leading to the positive leaf with the repeated variable. See Figure 3.
So we conclude that there exists a difference between the asymptotic density of intuitionistic

∨
⇒
∨
∨

∨
α

⇒
∧
α

Figure 3: A tree with a negative path and a positive path without the same prefix.

tautologies into classical ones (in both models) if and only if the connective ∨ belongs to
the set of connectives. Here we summarise some computations of such fractions. For both
models the results are always identical. If we restrict the connectives to {⇒,∨}, without ⊥,
the fraction is equal to 3/13. With these connectives and the constant ⊥, we get 2/7. Now,
if the connectives are {⇒,∨,∧}, without the constant, the fraction between both logics is
5/11 and it becomes 5/8 is ⊥ is permitted. Finally, we want once again to emphasise that
the coherence of the results in the bounded and unbounded approaches is quite an interesting
fact in itself. We believe that Proposition 1 sheds some light on this phenomenon.
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