
Entropic Uniform Sampling of Linear
Extensions in Series-Parallel Posets∗

Olivier Bodini†, Matthieu Dien‡, Antoine Genitrini; and Frédéric Peschanski;.
Olivier.Bodini@lipn.univ-paris13.fr and
{Matthieu.Dien,Antoine.Genitrini,Frederic.Peschanski}@lip6.fr .

July 13, 2017

In this paper, we introduce a uniform random sampler for linear extensions of Series-
Parallel posets. The algorithms we present ensure an essential property of random
generation algorithms: entropy. They are in a sense optimal in their consumption of
random bits.

1 Introduction
The state-space of a concurrent program is interpreted, in what is called the interleaving semantics,
as the linearization of partially ordered sets (posets). This linearization process is highly combina-
torial, a topic we studied thoroughly in previous papers. The uniform random generation of linear
extensions provides a stochastic approach for the linearization process, hopefully avoiding the
so-called “combinatorial explosion”. For instance, in [1] we develop an efficient algorithm to draw
linear extensions of tree-shaped posets. The algorithm has worst-case time complexity Opn lognq
(counting arithmetic operations) with n the size of the poset (more precisely, the number of nodes
of its covering tree). A uniform random sampler for posets of dimension 2 is introduced in [2]. A
perfect sampling algorithm for arbitrary posets is presented in [4]. These are polynomial algorithms
but in the order Õpn3q hence not usable on large posets. Our goal is to identify subclasses of posets
for which more efficient algorithms can be proposed. In this paper, we introduce a uniform random
sampler for linear extensions of Series-Parallel (SP) posets. This represents a very important class
of posets that can be found in many practical settings. Generating linear extensions uniformly at
random for this subclass can be done in a relatively straightforward way. However, such a naive
algorithm fails an essential property of random generation algorithms: entropy. When studying
random generation, the consumption of random bits is a very important measure. An entropic
algorithm minimizes this consumption, which has a major impact on efficiency. The algorithms we
describe in the paper are entropic, i.e. they are in a sense optimal in their consumption of random
bits.

The outline of the paper is as follows. First, in section 2 we define a canonical representation of
Series-Parallel posets. Based on this representation we develop our random generation algorithms
in section 3. We propose two variants of the random sampler: a bottom-up and a top-down variant.
In section 4 we describe the common stochastic core of both algorithms. This is where we discuss,
and prove, the property of entropy. In this extended abstract, we only provide outlines for the
correctness and entropy proofs.

∗This research is partially supported by the ANR project MetACOnc, ANR-15-CE40-0014.
†Laboratoire d’Informatique de Paris-Nord, CNRS UMR 7030 - Institut Galilée - Université Paris-Nord, 99,

avenue Jean-Baptiste Clément, 93430 Villetaneuse, France.
‡Laboratoire d’Informatique de Paris 6, CNRS UMR 7606 and Université Pierre et Marie Curie, 4 place Jussieu,

75005 Paris, France.

Page 1 of 11

Olivier.Bodini@lipn.univ-paris13.fr
{Matthieu.Dien, Antoine.Genitrini, Frederic.Peschanski}@lip6.fr

2 Canonical representation of Series-Parallel posets
The Series-Parallel posets are not easily handled from an algorithmic point of view. The ground set,
the set of relations, and the inductive structure of a Series-Parallel poset must be adapted in order
tu use them automatically through algorithms, see for example [11]. So, to work with Series-Parallel
posets we introduce a canonical representation of such posets, based on their covering directed
acyclic graph (DAG). Then we design an effective algorithm that can be precisely analyzed, thanks
to the canonicity of our representation. In this section we detail such a DAG representation whose
main objective is to preserve the necessary informations such that the uniformity property of the
sampling process is preserved. We first recall the classical construction of Series-Parallel posets [10]
(SP posets). This is based on the two basic composition rules below.

Definition 1 (Poset compositions). Let P and Q be two independent partial orders, i.e. posets
whose ground sets are disjoint.

• The parallel composition R of P and Q, denoted by R “ P ‖ Q, is the partial order obtained
by the disjoint union of the ground sets of P and Q and such that

@E P tP,Qu,@x, y P E, x ăR y iff x ăE y.

• The series composition S of P and Q, denoted by S “ P.Q, is the partial order obtained by
the disjoint union of the ground sets of P and Q and such that

@x, y P P YQ, x ăS y iff

$

&

%

x P P and y P Q
x, y P P and x ăP y
x, y P Q and x ăQ y

.

We are now ready for the definitions of SP posets.

Definition 2 (Series-Parallel partial orders). The class of Series-Parallel orders is the smallest
class containing the atomic order and closed under series and parallel composition.

‚b ‚c

‚d ‚e ‚f

‚i ‚j

‚k

‚l

˝

‚b
‚c

‚d ‚e
‚f

˝

˝

‚i ‚j

‚k

‚l

˝

‚b
‚c
‚d
‚e
‚f

˝

˝

‚i
‚j

‚k
‚l

˝

‚b
‚c
‚d
‚e

˝
‚f

˝

‚i
‚j

‚k
‚l

˝

‚b
‚c
‚d

˝

‚e
‚f

˝

‚i
‚j

‚k
‚l

‚b
‚c
‚d
‚e
‚f

‚i
‚j

‚k
‚l

Figure 1: (Left to Right) The covering of a Poset P ; A SP DAG for P ; The topological sorts of a given
equivalence class and the associated linear extension.

In the mathematical definition, a partial order is a set of relations between points of the ground
set. We must adapt this context to obtain an efficient representation in computers. So, a common
way to handle such a poset for an algorithmic need, is to exploit their covering DAG.

Definition 3. Let P be a partial order. The covering G of P is the directed acyclic graph (DAG)
whose nodes are the points of the ground set V of P and whose set of directed edges is such that

tpx, yq P V 2 | px ăP yq ^ pDz P V, x ăP z ăP yqu.

Page 2 of 11

Note that the combinatorial class of coverings is the one of intransitive DAG.
The leftmost part of Fig. 1 represents the covering of a Series-Parallel poset. It represents the

poset with ground set tb, c, d, e, f, i, j, k, lu. The set of order relation is tb ă d, b ă e, c ă f, d ă
i, d ă j, e ă i, e ă j, f ă i, f ă j, i ă k, j ă k, k ă lu and all transitive relations. We will use the
common representation of coverings as Hasse diagrams in which edges are directed from top to
bottom.

Definition 4. Let P be a poset. A linear extension of P is a total order of the points of the ground
set of P and satisfying the relations of P .

The rightmost chain represented in Fig. 1, is the following linear extension of P : b ă c ă d ă e ă
f ă i ă j ă k ă l. For the rest of the paper, the points of P will be called nodes. The following is
folklore.

Fact 5. Let P be a poset. Each linear extension of P corresponds to a topological sort of the nodes
of the covering of P .

We now introduce our special flavor of coverings, with the objective of getting effective and
elegant algorithms presented in the next sections.

Let P a poset, and G its covering. First we want to distinguish the different children of a node
in G. The classical way for this consists in a combinatorial embedding of G in the plane (cf. [5,
Chapter 3])1. In our context, we choose an arbitrary embedding, e.g. in Fig. 1, we have chosen
that b is on the left of c. Note that this arbitrary choice only impacts the representation and
not the poset itself. Thus, we will identify the covering of a poset with the chosen combinatorial
embedding.

A second simplification is that we only consider unary-binary DAGs instead of ones with nodes
of arbitrary in-degree and out-degree. This is important otherwise an extra level of loop would
be required in the algorithms. To reach this goal, we use the left-leaning principle [8] directly
on the combinatorial embedding: a poset composed of several posets in parallel, associated to a
combinatorial embedding of its covering, P1 ‖ P2 ‖ ¨ ¨ ¨ ‖ Pn is seen as a poset with a binary parallel
composition (relying on its associativity property): p. . . pP1 ‖ P2q ‖ . . . q ‖ Pn.
To encode the covering G with only unary-binary nodes, we need to introduce some “silent”

nodes that we call white nodes in the rest of the paper, among the original black nodes of G (the
points of the ground set of P). In the following, we explain the construction of this new structure.
We also show how to recover the linear extensions of P from this representation.

Definition 6. Let Ψ be the following function, from the set of combinatorial embeddings of Series
Parallel poset coverings to the set of bicolored unary-binary (combinatorially embedded) DAGs. It
is inductively defined as:

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

ΨpHq “ ˝ Ψp‚q “ ‚ Ψ

¨

˚

˚

˝

‚

...
‚

˛

‹

‹

‚

“

‚

...
‚

ΨpP.pQ ‖ Rq.Sq “

ΨpP q

ΨpQq ΨpRq

ΨpSq

,

where P,Q,R and S are arbitrary coverings of Series-Parallel posets. P and S may be empty. Q
and R must not be empty and R must verify DR1, R2, R “ R1 ‖ R2.

The Series-Parallel DAG (SP DAG) of a poset P is the image of an arbitrary combinatorial
embedding of the covering of P by the function Ψ.

1The combinatorial embedding allows to distinguish the two successors of a node: the left one and the right one.

Page 3 of 11

When the poset looks like P1 ‖ P2 ‖ ¨ ¨ ¨ ‖ Pn, the last pattern condition means R “ Pn. Note
that the unique constraint for P and S is that they are SP posets, eventually empty. In particular,
they can contain substructure like pA ‖ Bq. Thus the application of the last rule is not deterministic,
in the sense that we can apply it sometimes successively, but the order of application is arbitrary.
However the rules are trivially confluent.

In Fig. 1, on the left, a poset is represented by its covering. In the middle, it is the SP DAG we
associate to this covering. A SP DAG contains bicolored nodes. The black nodes are the nodes
of the initial covering, while the white nodes have been added to fulfill the unary-binary arity
constraint.
The SP DAGs are by essence recursively decomposable, and thus we use the classical notation

from Analytic Combinatorics [3] for their characterization.

Proposition 7. The class D of SP DAGs is unambiguously specified by:
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

D “ ‚ `
‚

Dt

`

‚ ` ˝

D Dr

D ` ˝

Dt “ ‚ `
‚

Dt

`

‚

D Dr

D ` ˝

Dr “ Dt `

˝

D Dr

D

Let us recall the basic notation from Analytic Combinatorics, by describing the first equation.
A DAG in D is either a single node ‚ or a root ‚ followed by a DAG from the class Dt or a top
root (either a black node ‚ or a white node ˝) with a left substructure belonging to D and a right
substructure from Dr, both followed by a bottom substructure corresponding either to a DAG in D
or to a white node ˝. In the rest of the paper we will use the terms top, left, right and bottom
substructures.
Remark that the class Dt contains the connected Series-Parallel coverings with a single source

(i.e. a node smaller that all other nodes), and Dr encodes the class of connected Series-Parallel
coverings.

Theorem 8. For each Series-Parallel poset, we choose an arbitrary combinatorial embedding
of the covering. Let E be the set of the chosen embeddings of the Series-Parallel posets. Ψ is a
bijection from E to the set of SP DAGs.

The proof is direct by a structural induction.
By successively using the combinatorial embedding, the left-leaning principle and the transfor-

mation Ψ, we have an effective and canonical way for representing Series-Parallel posets.
Another central property is the correspondence between the linear extensions of the poset P and

the topological sorts of ΨpP q.
Let P be a poset, and S “ ΨpP q be its associated SP DAG. We consider the set of topological

sorts of S. Obviously each of them contain all nodes of S, the black ones but also the white ones,
although the latter have no meaning for P .

Definition 9. Let P be a poset, and S “ ΨpP q be its associated SP DAG. Let ρ be the function,
from the set of topological sorts of S to the set of linear extensions of P , such that, applied to a
topological sort all white nodes are removed.

Page 4 of 11

Definition 10. Let P be a Series-Parallel poset, and S “ ΨpP q be its associated SP DAG. We
define the following equivalence relation based on the function ρ:
Two topological sorts s1 and s2 of S are equivalent if and only if ρps1q “ ρps2q.

Let us remark some fundamental constraint in the equivalence relation: for two distinct linear
extensions of a poset, the numbers of sorts in the two corresponding equivalence classes are not
necessary equal. In fact, in Fig. 1 (right-hand side), we have represented the three topological sorts
corresponding to the same linear extension. But the following linear extension c ă f ă b ă d ă
e ă i ă j ă k ă l, is given by a single topological sort, where both white nodes appear between e
and i. As a consequence, we cannot directly sample uniformly a topological sort of S and then
apply the transformation ρ to obtain uniformly a linear extension of P .

Definition 11. Let P be a Series-Parallel poset, S “ ΨpP q be its associated SP DAG. In an
equivalence class of topological sorts of S, we define the representative to be the sort whose white
nodes appear as soon as possible. If two white nodes are incomparable and appear successively in
the representative we choose the leftmost one (in S) to appear first.

In Fig. 1 (on the right side), among the three topological sorts, the rightmost one is considered to
be the representative for the linear extension. The case where several white nodes are incomparable
and successive in the topological sort is handled similarly.

Theorem 12. Let P be a Series-Parallel poset, S “ ΨpP q be its associated SP DAG. An uniform
sampling of the linear extension of a Series-Parallel poset P is obtained by drawing uniformly at
random a representative ΨpP q and by applying the function ρ to it.

The proof of the theorem is a direct consequence of the previous results.
To conclude this section, we exhibit the computational complexity for the construction of the

SP DAG resulting of a Series-Parallel poset.

Proposition 13. The SP DAG corresponding to a Series-Parallel poset, whose ground set contains
n nodes is built in Opnq time complexity.
The number of black nodes of the SP DAG is n and the number of white nodes is at most 2pn´1q.

This last proposition guarantees that the complexity of building and using a SP DAG in place of
its associated Series-Parallel poset, will be negligible in front of the complexity of the algorithms
presented below.

3 Random generation of linear extensions
Based on the SP DAG structures defined in the previous section, we now begin the presentation of
the uniform random samplers. In this section, we give the outline of the algorithms, and in the
next section we discuss their common stochastic core. We present two complementary generation
schemes: a bottom-up scheme that recursively generates the linear extensions “from the inside-out”,
and a top-down variant that does the converse. Both algorithms have an interest. The bottom-up
approach is arguably the simplest, in that it follows the recursive decomposition of the input DAG.
The correctness proofs are much easier in this setting. Comparatively, the top-down approach
seems more convoluted, and it is best seen as a transformation of the bottom-up scheme in the
proofs. But in practice the top-down algorithm is better in that it can be implemented in-place.

The bottom-up variant is Algorithm 1. We illustrate it on the poset example of Fig. 1. The root
is an unlabeled white node, with two subposets with respective roots b and c. The join node is
white and itself the root of the poset comprising the labels ti, j, k, lu. In the case of such a fork/join
structure2, the algorithm works as follows. First, the algorithm is recursively applied on the two
subposets in parallel: the one with labels tb, d, eu and the one with labels tc, fu. For the latter,
there is only one possibility: taking first the label c and then f , resulting in the partial linear

2in reference to the Unix fork and join system calls to manage processes

Page 5 of 11

Algorithm 1 Bottom-up variant of the uniform random generation of linear extensions
function RandLinExt-BU(P)

if P “ ˝ then return r s
else if P “ ‚x then return rxs
else if P “ ‚x . T then return cons(x, RandLinExt-BU(Q))
else if P “ ˝ . pL ‖ Rq . T then

h :“ Shuffle(RandLinExt-BU(L), RandLinExt-BU(R))
t :“ RandLinExt-BU(T)
if ˝ “ ‚x then return concat(cons(x, h), t)
else return concat(h, t)

extension rc, f s. For the left part, the label b is prepended to the uniform shuffle of the singleton
linear extensions rds and res. The shuffle algorithm will be presented in detail, but in this situation
it simply consists in taking either rd, es or re, ds both with a probability of 1

2 . Suppose we take the
latter, we ultimately obtain the linear extension rb, e, ds. Note that nothing is appended at the end
since the join node is white in this subposet. In the next step, the extensions rc, f s and rb, e, ds
are shuffled uniformly, one possible outcome being rc, b, e, d, f s. This is then concatenated with a
linear extension of the downward poset. For example rc, b, e, d, f, i, j, k, ls is one such possibility,
and is thus a possible output of the algorithm.

Algorithm 2 Top-down variant of the uniform random generation of linear extensions
function RandLinExt-TD(P)

function RecRandLinExt-TD(P , rankings, positions)
if P “ ˝ then return rankings
else if P “ ‚x then

rankingsrxs :“ pop(positions)
return rankings

else if P “ ‚x . T then
rankingsrxs :“ pop(positions)
return RecRandLinExt-TD(T , rankings, positions)

else if P “ ˝ . pL | Rq . T then
if ˝ “ ‚x then rankingsrxs :“ pop(positions)
upPositions :“ positionsr 0 . . . |L| ` |R| ´ 1 s
botPositions :“ positionsr |L| ` |R| . . . |P | ´ 1 s
l, r :“ Split(upPositions, |L|, |R|)
rankings :“ RecRandLinExt-TD(L, rankings, l)
rankings :“ RecRandLinExt-TD(R, rankings, r)
return RecRandLinExt-TD(T , rankings, botPositions)

rankings :“ an empty dictionary
positions :“ r 1 . . . |P | s
return RecRandLinExt-TD(P , rankings, positions)

The top-down variant is described by Algorithm 2. The main difference with the bottom-up
algorithm is that it samples positions in an array, instead of labels directly. The advantage is that
most operations can then be performed in-place, at the price of having to deal with a level of
indirection. The rankings structure is a mapping associating the node labels to a position in the
sampled linear extension. The positions are organized as a stack structure, initially containing all
the available positions from 1 to |P | (the size of the poset in the number of labels i.e. black nodes).
For our example poset the initial contents of positions is r1, 2, 3, 4, 5, 6, 7, 8, 9s. The rankings map
is empty. In the first step, the white root is simply skipped and the two sets of positions are
computed: the upPositions taking the front part of the poset i.e. r1, 2, 3, 4, 5s and botPositions

Page 6 of 11

what is remaining i.e. r6, 7, 8, 9s. The algorithm then performs an uniform split of the positions
1 to 5 e.g. in a subset l “ t2, 3, 4u for tb, d, eu and r “ t1, 5u for tc, fu. The details about the
splitting process are given below. The rankings of each subposet are computed recursively, and
the result naturally interleaves since we work with disjoint sets of positions. Once again, we can
ultimately obtain the linear extension rc, b, e, d, f, i, j, k, ls. We have to show that it is obtained
with the same exact (uniform) probability as in the bottom-up case.

Algorithm 3 Algorithm of uniform random splitting and shuffling
function Split(S, p, q)

`, r :“ r s, r s
i :“ 0
v :“ RandomCombination(p, q)
for all e P v do

if e then
append Sris to `

else
append Sris to r

return `, r

function Shuffle(`, r)
t :“ r s
v :“ RandomCombination(|`|, |r|)
for all e P v do

if e then
append pop(`) to t

else
append pop(r) to t

return t

In fact, those two algorithms are dual. In the bottom-up case, randomness comes from the
Shuffle function which is the dual of the Split function in the sense of a coproduct. A shuffle
takes two lists and mixes them into one, while the split takes one list and divides it into two. The
key property comes from the fact that the shuffle (resp. split) of one (resp. two) lists is sampled
uniformly: each shuffle (resp. splits) has the same probability to be drawn. For example, there is
`5

2
˘

“ 10 possible shuffles between the sets ta, b, cu and td, eu. Equivalently there is 10 possibles
splits of the set ta, b, c, d, eu into two subsets, one of size 3 and the other of size 2.
Both algorithms operate in the same way: they draw a random combination of p elements among
p` q, then shuffle or split using this combination. This will be discussed in the next section. Based
on the assumption that the stochastic process is uniform, we obtain a first important result about
the algorithms.

Theorem 14. Algorithm 1 and Algorithm 2 both generate a linear extension of a series-parallel
poset P uniformly at random. Their worst-case time complexity is Θpn2q (by measuring the number
of memory writings). The average time complexity is equivalent to 1

4

b

π n3

3
?

2´4 .

Fact 15. (Möhring [7]). Let P be a SP poset and `P be its number of linear extensions. If
P “ P1 ˆ P2 is the series composition of P1 and P2, then `P “ `P1 ¨ `P2 . If P “ P1 ` P2 is the
parallel composition of P1 and P2, then `P “

`

n1`n2
n1

˘

¨ `P1 ¨ `P2 , where n1 (resp. n2) is the size of
P1 (resp. P2).

sketch. The correctness of both algorithms is easily proved by a structural induction and by using
the Fact 15.

To compute the average complexity, the idea is to find a recurrence equation for the number of
size n SP DAGs and another recurrence equation for counting the number of cumulated memory
writings on size n SP DAGs. Thus, using standard analytic combinatorics tools [3], we derive the
asymptotic behaviors of the solutions of both recurrences. The result is obtained by dividing the
asymptotic number of cumulated memory writings by the one of size n SP DAGs.

4 Entropic sampling core
The bottom-up and top-down algorithms described in the previous section both depend upon the
same stochastic core: namely the procedure we named RandomCombination. Random generation
must adopt the point of view of probabilistic Turing machines, i.e. deterministic machines with

Page 7 of 11

a tape containing random bits. As a consequence, an important measure of complexity for such
an algorithm is the entropy (information theoretic meaning [9]) of the targeted distribution: the
number of random bits consumed to produce a possible output. Our objective is to define entropic
algorithms, according to the following definition.

Definition 16 (Entropic algorithm). Let A be an algorithm sampling an element of a finite set
S at random according to a probability distribution µ. We say that A is entropic if the average
number of random bits ne it uses to sample one element e P S is proportional to the entropy of µ,
in the sense of Shannon’s entropy:

DK ą 0,@e P S, ne ď K ¨
ÿ

xPS

´µpxq log2pµpxqq.

The key idea in the following entropic algorithms is to show that Bernoulli random variable (i.e.
r.v.) of small or big parameter has weak entropy and because we are unable to use fraction of bits
we group it in packs to draw Bernoulli r.v. of large entropy i.e. 1. The maximum entropy of a
Bernoulli is reached when the parameter is 1

2 , in this case the Bernoulli r.v. is just a random bit.

Algorithm 4 Algorithm of uniform random generation of combination
function RandomCombination(p, q)

l :“ r s
7True is the number of True in l
7False is the number of False in l
rndBits :“ a stream of random booleans produced with k-Bernoulli

´

p
p`q

¯

if p ą logpqq2 ^ q ą logppq2 then
while 7True ă“ p^ 7False ă“ q do

if pop(rndBits) then l :“ conspTrue, lq
else l :“ conspFalse, lq

remaining :“ popplq
else

if p ă q then
l :“ a list of q times False
remaining :“ True

else
l :“ a list of p times True
remaining :“ False

for i :“ 7True` 7False´ 1 to p` q ´ 1 do
j :“ uniformRandomIntr0 . . . is
insert remaining at position j in l

return l

The core of the random samplers is presented in Algorithm 4. The objective is to draw, in an
entropic way, a list l of booleans of size p ` q such that p cells contains a True value and the q
remaining are set to False.
We give an example of the sampling process for p “ 6 and q “ 2. In the first step, the list l

is filled with True and False values, with respective probability p
p`q and q

p`q . For this we use a
stream of Bernoulli random variables rndBits that is produced by a function named k-Bernoulli,
which we explain below. The filling process stops when one of the boolean values is drawn once
more than needed (e.g. reaching p` 1 (resp. q ` 1) times True (resp. False) values). The last
value is then discarded. For example, if l “ F :: T :: T :: F :: T :: F :: T :: r s then F is drawn 3 times
although only 2 is needed. So the last F is discarded. In the second step of the algorithm, a number
remaining of boolean values is needed to complete the list l. These are randomly inserted among

Page 8 of 11

the bits already drawn, by using uniform integer random variables. For example:

l “ T :: T :: F :: T :: F :: T :: r s
ãÑ l “ T :: T :: F :: T :: T :: F :: T :: r s
ãÑ l “ T :: T :: F :: T :: T :: F :: T :: T :: r s

At the end, the list l contains the required number of booleans values, and as we justify below, it
is drawn uniformly.
An important part of the algorithm is the first test p ą logpqq2 ^ q ą logppq2. This tests if p is

largely smaller than q (or q largely smaller than p). In this case we skip the Bernoulli drawing step
to directly insert the smallest number of booleans in the bigger one. This particular case is due to
a change of rate in the distribution of the binomial coefficient.
Theorem 17. The RandomCombination algorithm uniformly samples a list of p True and q
False. It uses an entropic number of random bits.
sketch. Let l be a drawn list of p True and q False. The correctness proof, is divided into two
cases:

• l was drawn entirely during the first step: in this case the probability to draw l is directly
the product of the probability to draw each boolean i.e.

´

p
p`q

¯p ´
q
p`q

¯q

and because this
probability does not depend of l it is the same for each l

• l was drawn after p` q´ k Bernoulli samples: using the previous argument, this combination
of p` q ´ k values is uniformly drawn. Then each remaining boolean is uniformly inserted,
and so, each combination of p ` q ´ k ` 1 to p ` q booleans is uniformly built from the
previous one

Concerning the random bit efficiency of the algorithm, we assume that k-Bernoulli is entropic,
which we will establish later. Assuming this, the main idea of the proof is to analyze the number
of consumed booleans in the stream rndBits.
To do this we let the random variable T to be the sum of 7True and 7False at the end of the

first step (when the list l if filled initially). Thus, we have

PpT “ tq “

ˆ

t

p

˙ˆ

p

p` q

˙p`1 ˆ
q

p` q

˙t´p

`

ˆ

t

q

˙ˆ

p

p` q

˙q´tˆ
q

p` q

˙q`1

Then, we compute the expected value T and get ErT s “ pp` qq ` opp` qq when p ą logpqq2 (resp.
q ą logppq2). The latter condition justifies the first test of the algorithm. It remains to count the
number of random bits used and to compare it to the entropy of the combinations of p among
p` q elements i.e. the entropy of

`

p
p`q

˘

.
We recall that a uniform integer between 0 and n can be drawn with Oplognq random bits. We

let Bp,q the number of random bits used to sample a Bernoulli random variable of parameter p
p`q .

We recall that the entropy of such variable is ´p log p
p`q ´ q log q

p`q .
Thus, the number of average random bit used is ErT sBp,q`opp`qqOplognq. The opp`qqOplognq

term come from the second step of the algorithm i.e. the uniform insertions of remaining booleans.
To conclude, the average number of random bits used is asymptotically equal to pp` qqBp,q which
is equivalent to the entropy of

`

p
p`q

˘

.

The entropic property of the RandomCombination relies on the entropy of the k-Bernoulli
function, which is described by Algorithm 5. The key idea is to draw Bernoulli random variables of
parameter p by packs, using the fact that a successful Bernoulli r.v. of parameter pk corresponds
to a sequence of k successes of a Bernoulli r.v. of parameter p. Thus, the parameter k “

Y

log 1
2

log p

]

is
such that pk is close to 1

2 . This allow to draw Bernoulli r.v. of parameter close to 1
2 , for which

our Bernoulli is entropic. Let us consider the following example of a call to k-Bernoulli with
the argument 2

7 . In that case we let p “ 1´ 2
7 “

5
7 and so k “ 2. Then we present the different

possible runs in the form of a decision tree. We draw a Bernoulli r.v. of parameter
` 5

7
˘2 and:

Page 9 of 11

Algorithm 5 Sampling of k Bernoulli random variables
function k-Bernoulli(p) Ź p is less than 1

function k-BernoulliAux(p)
k :“

Y

log 1
2

log p

]

, i :“ 0
v :“ a vector of k times True
while Bernoulli(

ři
`“0

`

k
`

˘

pk´`p1´ pq`) do
i :“ i` 1
j :“ uniformRandomIntpr0 . . . k ´ 1sq
vrjs :“ False

return v
if p ă 1

2 then return negate(k-BernoulliAux(1´ p))
else return k-BernoulliAux(p)

• if the Bernoulli draw is successful then two successes of Bernoulli r.v. of parameter 2
7 is

returned

• else, it is a fail, it means that at least one of the two Bernoulli r.v. of parameter 2
7 is a fail,

which has a probability 2 ¨ 5
7 ¨

2
7 to happen, so we need to redraw a new r.v.

– if it is successful, this means that only one variable is a fail and so we need decide which
one

– else, we need to draw one more r.v. of parameter 1, in other words a successful r.v., and
we return two failed r.v.

The last brick of this framework is the Bernoulli algorithm, already known in the litterature
(as explained by [6]).

Algorithm 6 Sampling of Bernoulli random variable
function Bernoulli(p) Ź p is less than 1

function RecBernoulli(a, b, p)
if RandomBit() “ 0 then

if m ą p then return False
else RecBernoulli(a`b2 , b, p)

else
if m ă p then return True
else RecBernoulli(a, a`b

2 , p)
return RecBernoulli(0, 1, p)

Theorem 18. The Algorithm 6 draws a Bernoulli random variable of parameter p using, in
average, 2 random bits.

Proof. The correction proof is direct. Just remark that if we note K the number of calls to the
recursive RecBernoulli function, K is equal to the length K prefix of the binary writings of p.
The average number of random bits used is the expectation of K:

ErKs “
8
ÿ

k“1
k ¨

1
2
k

“
1
2 ¨

ˆ

d
dz

1
1´ z

˙
∣∣∣∣
z“ 1

2

“ 2

˝

Theorem 19. The Algorithm 5 draws
Y

log 1
2

log p

]

Bernoulli random variable of parameter p entropi-
cally.

Page 10 of 11

sketch. Let N be the number of iteration of the while loop in the k-Bernoulli algorithm, we get
that the number of random bits used is upper bounded by 2N `N log k: the number of bits used
to draw N Bernoulli plus the number of bits used for the N uniform (over r0 . . . ks) r.v. draws.
So, the expected number of random bits used is

k
ÿ

n“0

ˆ

k

n

˙

pk´np1´ pqnp2pn` 1q ` n log kq “ 2` p1´ pqp2` log kq

We have to average it by the number of Bernoulli r.v. drawn this way i.e. k. So, the average
number of random bits used to draw one Bernoulli r.v. of parameter p is 2

k ` p1´ pqp2` log kq.
The minimum of this function in k is reached when k “ 2 log 2

1´p , in other word when the average
number of random bits used is greater or equal to 2. This corresponds to the case where k “ 1 in
the algorithm k-Bernoulli: in this case we should directly use Bernoulli. In the other case, we
obtain that the average number of random bits used is entropic. ˝

References
[1] Bodini, O., Genitrini, A., Peschanski, F.: A Quantitative Study of Pure Parallel Processes.

Electronic Journal of Combinatorics 23(1), P1.11, 39 pages (2016)

[2] Felsner, S., Wernisch, L.: Markov chains for linear extensions, the two-dimensional case. In:
SODA. pp. 239–247. Citeseer (1997)

[3] Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press (2009)

[4] Huber, M.: Fast perfect sampling from linear extensions. Discrete Mathematics 306(4), 420–428
(2006)

[5] Klein, P., Mozes, S.: Optimization Algorithms for Planar Graphs (To appear)

[6] Lumbroso, J.: Optimal discrete uniform generation from coin flips, and applications. CoRR
abs/1304.1916 (2013), http://arxiv.org/abs/1304.1916

[7] Möhring, R.H.: Computationally Tractable Classes of Ordered Sets. Institut für Ökonometrie
und Operations Research: Report (1987)

[8] Sedgewick, R.: Left-leaning red-black trees. In: Dagstuhl Workshop on Data Structures. p. 17
(2008)

[9] Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mobile Com-
puting and Communications Review 5(1), 3–55 (2001)

[10] Stanley, R.P.: Enumerative Combinatorics: Volume 1. Cambridge University Press, New York,
NY, USA, 2nd edn. (2011)

[11] Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs. In: Proceed-
ings of the Eleventh Annual ACM Symposium on Theory of Computing. pp. 1–12. STOC ’79,
ACM, New York, NY, USA (1979), http://doi.acm.org/10.1145/800135.804393

Page 11 of 11

http://arxiv.org/abs/1304.1916
http://doi.acm.org/10.1145/800135.804393

	Introduction
	Canonical representation of Series-Parallel posets
	Random generation of linear extensions
	Entropic sampling core

