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Abstract

We study the asymptotic relation between the probability and the complexity of

Boolean functions in the implicational fragment which are generated by large random

Boolean expressions involving variables and implication, as the number of variables

tends to infinity. In contrast to models studied in the literature so far, we consider

two expressions to be equal if they differ only in the order of the premises. A precise

asymptotic formula is derived for functions of low complexity. Furthermore, we show

that this model does not exhibit the Shannon effect.

1 Introduction

Since almost two decades a rising interest in probability distributions on a set of Boolean
functions which are induced by random Boolean expressions can be observed. To our
knowledge the first systematic investigations in this direction have been done by Paris
et al. [18] on expressions composed of the two connectives AND and OR. Lefmann and
Savický [16] proved the existence of a limiting distribution (as the size of the expressions
tends to infinity) and established estimates relating probability and complexity. These
bounds were later improved in [1] and the precise asymptotic behaviour for functions of
low complexity was determined by Kozik [15]. A generalisation which takes commutativity
of the connectives into account and maps this property into the model was presented
recently in [10]. The question for the probability of a tautology was pursued for instance
in [12, 13, 14, 17] for various logical systems. An overview is presented in Gardy’s survey [8].
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In this paper we consider Boolean formulas built of positive variables taken from a
fixed set {x1, . . . , xn} of Boolean variables and the logical connective of implication. The
functions which can be represented by such formulas form the so-called implicational frag-
ment. The implicational fragment plays an important role in the theory of programming
since there are linear time satisfiability tests for such expressions (see [2]). A thorough
study of a closely related model was carried out in [6]: There expressions of the form
A1 → (A2 → (A3 → . . . (Ap → α))) have been represented by binary trees where inter-
nal nodes represent implication and external nodes (leaves) carry labels which correspond
to the variables. Though technically more convenient, a drawback of using plane binary
trees (i.e., binary trees embedded in the plane) is that two expressions which differ only
w.r.t. the order of the premises are considered different. It is more natural to consider
x → (y → z) and y → (x → z) to be the same expression since both represent the function
(x ∧ y) → z. The aim of this paper is to study a model of Boolean expressions which
takes into account that the premises of an implication can be permuted. In particular, we
present a quantitative relation between the probability of a function and its (formula size)
complexity.

Plan of the paper: In the next section we will give a precise description of the model
and state our main result. It will turn out that it is a priori not guaranteed that the
probability measure we introduce actually exists. This issue is discussed in Section 3. In
Section 4 we study the structure of tautologies. We will show that asymptotically almost
all tautologies are simple, i.e. of a particular shape. Section 5 is then devoted to the
asymptotic computation of the probabilities of a general Boolean function. We will succeed
by following the approach of [6] and introducing certain expansion techniques which may
be applied repeatedly to formulas. After all, we prove that applying one expansion to a
minimal formula representing f yields a sufficiently rich class of formulas from which the
asymptotic probability can be computed. In the last section we disprove the Shannon
effect for our model. Roughly speaking, a model exhibits the Shannon effect if a random
function asymptotically almost surely has exponential complexity (w.r.t. to the number
of variables). This is, for instance, true for the set of all Boolean functions on n variables
equipped with the uniform probability.

2 Model and main result

We start with a precise description of the model:

Definition 1. An implicational formula (or expression) is either a single variable taken
from {x1, . . . , xn} or defined recursively as an expression of the form {A1, A2, . . . Ak} → α
where A1, . . . , Ak are themselves formulas and α is a variable. The order of the premises
A1, . . . , Ak is not relevant, i.e., all expressions {Aσ(1), Aσ(2), . . . , Aσ(k)} → α where σ is a
permutation of {1, . . . , k} are equal. We call α the goal of the expression. The size of a
formula is the number of variables it is composed of, where repetitions are counted.

Remark 2. Let us illustrate this definition by an example: Both formulas {(x → y), x} → z
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and {x, (x → y)} → z are the same object. Its size is 4 and it represents the Boolean
function (x ∧ (x → y)) → z.

Expressions according to the above definition can be easily represented by trees:

Definition 3. A rooted and non-plane tree where the vertices are labelled by variables
from {x1, . . . , xn} (see Figure 1) is called a general implication tree. The set of all
general implication trees is denoted by An, the set of those with m vertices by An,m.

Obviously, general implication trees represent expressions. The label of the root is the
goal and the subtrees are trees representing the premises. Clearly, the tree must be non-
plane, since the order of the subtrees is irrelevant. The size of the corresponding expression
equals the number of vertices of the tree.

α

T1 T2 · · · Tp

Figure 1: A general implication tree representing the expression A1 → (A2 → (A3 →
. . . (Ap → α))) where A1, . . . , Ap are the expressions represented by T1, . . . , Tp, respectively.

x1

x3

x1

x2 x1 x1 x2

x3

x1

Figure 2: A general implication tree representing the Boolean function x3 → x1.

Our particular interest is the relation between probability and complexity of a Boolean
function. Let Fn denote the implicational fragment of all Boolean functions in the variables
x1, . . . , xn. We do not require that a function in Fn actually depends on all the variables.
E.g. the constant functions ⊤ (tautologies) and ⊥ (contradictions) do not depend on any
variable.

Definition 4. We call a variable x an essential variable for a function f =
f(x, x1, . . . , xn−1) if there exists an assignment of True or False to the variables
x1, . . . , xn−1, which we denote by x0, such that f(True, x0) 6= f(False, x0).

3



Definition 5. Let f ∈ Fn. The complexity L(f) is defined as the minimal size of
expressions representing f .

Let Pm,n be the probability distribution induced by the uniform distribution on the set
of all general implication trees of size m. The probability measure Pn is defined as the
limit of the measures Pm,n as m tends to infinity, i.e., Pn = limm→∞ Pm,n. We call Pn(f)
the probability of f .

A general implication tree representing f and having L(f) vertices is called a minimal

tree of f . The set of all minimal trees of f is denoted by Mf .

Remark 6. Note that the probability of the function is defined as the limit of a sequence
of probabilities. A priori, we cannot be sure that this limit exists. We will see in the next
section that this limit indeed exists.

We aim at a quantitative description of the asymptotic probability of a function, as n
tends to infinity, and its relation to the complexity. Precisely, we will show:

Theorem 1. Let n0 be a fixed positive integer and f ∈ Fn0. Then we have

Pn(f) =
λf

nL(f)+1
+ O

(

1

nL(f)+2

)

, as n → ∞,

where λf is a constant independent of n.

Remark 7. Note that we fix the function in advance. Thus the number of essential variables
is fixed as well. Nevertheless, we may always regard a function in n0 variables as an element
of Fn for n > n0. For instance, x → y is the same function as {z → z, x} → y.

3 Existence of the limiting probability Pn

In order to show our result we will use the so-called symbolic method (see [5] for a descrip-
tion of this method). A general implication tree can be formally described by a grammar:
If P denotes the set of all general implication trees and L the set of all variables, then
obviously P = L × multiset(P). Let us denote by P (z) =

∑

m≥0 Pmzm the generating
function of general implication trees. Then the coefficient Pm = [zm]P (z) is the number of
general implication trees of size m. According to the symbolic method, the grammar can
be translated into the functional equation

P (z) = nz exp





∑

i≥1

P (zi)

i



 .

Moreover, let Pf(z) =
∑

m≥0 Pf,mzm denote the generating function of general implication
trees representing the Boolean function f . Pf,m is the number of all general implication
trees with m vertices which represent f . Similarly as before, we get

Pf(z) = z l1{f lit} + z
n
∑

j=1

∞
∑

l=1

∑

{g1∧...∧gl}→xj=f

l
∏

k=1

exp

(

∞
∑

i=1

Pgk
(zi)

i

)
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where l1{f lit} gives 1 if f is a variable and 0 otherwise, the index j chooses the label of
the root of the tree and the index l counts the number of different Boolean functions
represented by at least one subtree of the root. Thus the range of the innermost sum is the
set of all choices of mutually different functions g1, . . . , gl. For every f we get an equation
like this, altogether forming a system of functional equations.

We can apply the Drmota-Lalley-Woods theorem (DLW) to this system. We will not
go into details here but refer the reader to [5, Chapter VII] or [3, Sec. 2.2.5].

DLW states that, under certain technical conditions, all functions in the system have
the same dominant singularity η and admit, locally around η, an expansion of the form

Pf(z) = gf(z) − hf(z)

√

1 − z

η
(1)

where gf(z) and hf (z) are analytic at z = η. The system above fulfills all assumptions
of DLW. We refer to [6, Sec. 3] where an application of DLW in a very similar context is
carried out in detail.

By the transfer lemma (see [4, Corollary 2]) we can further extract asymptotic coeffi-
cients from an expansion like (1) and obtain

[zm]Pf (z) ∼ an(f)n−3/2η−nas m → ∞, (2)

where an is a positive constant. Note that P (z) =
∑

f Pf(z) and P (z) admits a singular
expansion of the same type, it has the same singularity and therefore has coefficients of
the same asymptotic behaviour. Since the limiting distribution Pn is determined by the
limits limm→∞[zm]Pf(z)/[zm]P (z), (2) immediately implies the existence of the limiting
distribution.

4 Simple tautologies

The proof of our main result relies on the expansion techniques introduced in the next
section. These are essentially sets of rules how to attach certain trees to a given tree. For
instance, adding a tautology as a premise never changes the function. Thus we want to
count the number of trees obtained by expansions and in particular the trees representing
a tautology. Exact counting of tautologies is not easy, but fortunately only tautologies of a
simple shape are asymptotically relevant. The three families that will be presented in the
next definition have been introduced in the paper [7] in the case where premises cannot
commute.

Definition 8. A simple tautology is a general implication tree in which exactly one
subtree of the root is a leaf labelled by the same label as the root itself (c.f. Figure 3). If
this label is x, we say that the simple tautology is realised by x.

A simple non-tautology is a general implication tree such that the label of the root
is different from the labels of all its children (c.f. Figure 4).

A less simple non-tautology is a general implication tree such that (c.f. Figure 5):
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x

x T1 · · · Tp

Figure 3: A simple tautology realised by the variable x.

x

xi1

· · ·

xi2

· · ·

· · · xip

· · ·

Figure 4: A simple non-tautology: x /∈ {xi1 , . . . , xip
}.

• exactly one of the children of the root, say s, has the same label x as the root itself,

• the subtree rooted at s has more than one vertex,

• every child of s has a root labelled by a label different from all the labels appearing
on the first level of the tree, and all the grand-children of s have root-labels different
from x and from their parent’s label.

In order to proceed, we will show that asymptotically almost every expression is a
simple tautology, a simple non-tautology or a less simple non-tautology.

Definition 9. Let Bn ⊆ An and Bn,m = {t ∈ Bn | t has m vertices}. We define the
limiting ratio of Bn by

µn(Bn) = lim
m→∞

|Bn,m|
|An,m| .

Remark 10. Note that we can easily construct sets Bn such that µn(Bn) does not exist.
But the considerations of the previous section imply that for all f ∈ Fn the set An,f of
all general implication trees which represent f has a limiting ratio and even more we have
µn(An,f) = Pn(f).

Let T denote the set of tautologies, Ts the set of simple tautologies, Ns and Nℓ the set
of simple and less simple non-tautologies, respectively.

Theorem 2. Asymptotically almost every tautology is simple, i.e. µn(Ts) ∼ µn(T ) as
n → ∞.

In order to prove this theorem we will show that µn(Ts ∪ Ns ∪ Nℓ) = 1 − O
(

1
n2

)

which

implies µn(T \ Ts) = O
(

1
n2

)

. On the other hand, the set of simple tautologies is much
larger, as the following proposition shows.
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x

y1

· · ·

y2

· · ·

· · · yr

· · ·

x

T1 · · · Tp

the (Ti)i=1...p are trees rooted by wi /∈ {x, y1, . . . , yr} and whose sons are
labelled by labels zij /∈ {x, wi}:

wi

zi1

· · ·

zi2

· · ·

· · · ziq

· · ·

Figure 5: A less simple non-tautology

Proposition 11. The limiting ratio of simple tautologies satisfies µn(Ts) = 1
en

+ O
(

1
n2

)

,
as n → ∞.

Proof. A simple tautology is constructed by L × Z × multiset(P \ Z) where P and L are
the set of general implication trees and the set of variables, respectively, and Z is the set of
a single variable. The Z corresponds to the distinguished leaf in the first level determined
by the label of the root. Hence the generating function of simple tautologies is

S(z) = nz2 exp





∑

i≥1

P (zi) − zi

i



 = zP (z) exp



−
∑

i≥1

zi

i



 = z(1 − z)P (z).

We know that S(z) and P (z) have the same singularity η and singular expansions of
the kind (1) around them. It follows that (cf. [10, Lemma 3.4])

µn(Ts) = lim
m→∞

Sm

Pm

= lim
z→η

S ′(z)

P ′(z)
.

We have
S ′(z)

P ′(z)
=

(1 − z)P (z)

P ′(z)
− zP (z)

P ′(z)
+

z(1 − z)P ′(z)

P ′(z)
.
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From (1) we can deduce that P ′(z) tends to infinity as z tends to η, while P (η) is bounded.
Therefore, the first two summands become negligible compared to the third one if z tends
to η, and

lim
z→η

S ′(z)

P ′(z)
= η(1 − η).

We now have to determine an asymptotic expansion of η, as n → ∞. By an application
of the implicit function theorem (cf. [3, Theorem 2.19]), (η, P (η)) is a solution of the
system

{

P = nzeP Q
1 = nzeP Q

where Q = exp
(

∑

i≥2
P (zi)

i

)

is analytic in η. Therefore, P (η) = 1 and η = 1
neQ(η)

. Further,

as P (z) = nz +O(z2), we know that Q(z) = 1+nz2 +O(z3), which implies η = O
(

1
n

)

and

Q(η) = 1 + O
(

1
n

)

. We can thus conclude that η = 1
en

+ O
(

1
n2

)

. By further bootstrapping
it is possible to show

η =
1

en
− 1

2e2n2
+ O

(

1

n3

)

. (3)

We finally get limz→η
S′(z)
P ′(z)

= η(1 − η) = 1
en

+ O
(

1
n2

)

.

Proposition 12. The limiting ratio of simple non-tautologies satisfies µn(Ns) = 1 − 2
n

+

O
(

1
n2

)

.

Proof. The set of simple non-tautology satisfies Ns = L×multiset((L\Z)×multiset(P)).
Since (L \ Z) × multiset(P) gives

(n − 1)z exp





∑

i≥1

P (zi)

i



 =
n − 1

n
P (z),

the generating function of simple non-tautologies is given by the equation

Ns(z) = nz exp





n − 1

n

∑

i≥1

P (zi)

i



 = nz

(

P (z)

nz

)
n−1

n

= (nz)
1/nP (z)

n−1
n .

The limiting ratio of simple non-tautologies is µn(Ns) = limm→∞
[zm]Ns(z)

Pm
= limz→η

N ′

s(z)
P ′(z)

,
and

N ′
s(z) =

1

n
(nz)

1−n
n P (z)

n−1
n +

n − 1

n
(nz)

1/nP ′(z)P (z)
n−1−n

n .

If we divide by P ′(z) and consider the limit when z tends to η, the first term of the sum
becomes negligible compared to the second. Eventually, P (η) = 1 implies

lim
z→η

N ′
s(z)

P ′(z)
=

n − 1

n

(

1

e

)1/n

+ O
(

1

n2

)

=
(

1 − 1

n

)2

+ O
(

1

n2

)

= 1 − 2

n
+ O

(

1

n2

)

,

which completes the proof.
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Proposition 13. We have µn(Nℓ) =
(

2 − 1
e

)

· 1
n

+ O
(

1
n2

)

.

Proof. First, we may assume that y1, . . . , yr (c.f. Figure 5) are pairwise different. Any de-
pendency introduces an additional factor 1/n and therefore the set of such trees is negligibly
small.

Let us fix an integer r ≥ 0 and variables {x, y1, . . . , yr}. Moreover, let T (z) be the
generating function of the Ti, i = 1 . . . p, as in Figure 5. Since for the choice of the root-
label r + 1 possible labels are forbidden, and for the labels in the first generation two
possible labels are ineligible, we obtain

T (z) = (n − r − 1)z exp





∑

i≥0

n − 2

n

P (zi)

i



 = (n − r − 1)z

(

P (z)

nz

)
n−2

n

. (4)

To construct Nℓ we start with a pair of equally labelled vertices (the root and one of

its children). Then we have
(

n−1
r

)

possibilities to choose y1, . . . , yr. The resulting subtrees
are all different, hence this is no multiset but an ordinary set of trees. Finally, from the
multiset comprising the Ti’s (c.f. Figure 5) we must exclude the empty set, since x is not
a leaf. These considerations yield the formal relation

Nℓ = L × Z ×
⋃

r≥0

(

n − 1

r

)

(Z × multiset(P))r × (multiset(Tr) \ {∅}),

where Tr is the set of trees with the generating function given in (4). Therefore, the
generating function Nℓ(z) of less simple non-tautologies is given by

Nℓ(z) = nz2
∑

r≥0

(

n − 1

r

)(

P (z)

n

)r


exp





∑

i≥1

T (zi)

i



− 1





= nz2
∑

r≥0

(

n − 1

r

)(

P (z)

n

)r


exp





∑

i≥1

(n − r − 1)zi

i

(

P (zi)

nzi

)
n−2

n



− 1



 .

As before, the limiting ratio of less simple non-tautologies is µn(Nℓ) = limz→η
N ′

ℓ
(z)

P ′(z)
. Let

Q(z) = exp

(

∑

i≥2
(n−r−1)zi

i

(

P (zi)
nzi

)
n−2

n

)

. Then

lim
z→η

N ′
ℓ(z)

P ′(z)
∼ nη2

∑

r≥0

(

n − 1

r

)

P (η)r−1

nr
×









n − 2

n
(n − r − 1)η

(

P (z)

nη

)
n−2

n

+ r



Q(η)e(n−r−1)η( P (η)
nη )

n−2
n − r



 .

We know that P (η) = 1 and η ∼ 1
en

. Therefore Q(η) ∼ 1 and hence

lim
z→η

N ′
ℓ(z)

P ′(z)
∼ 1

ne2

∑

r≥0

(n − 1)r

r!nr

((

n − 2

n
(n − r − 1)

1/ne

(1/e)
n−2

n

+ r

)

e(n−r−1) 1
en

e
n−2

n − r

)

9



Truncating the sums at n1/3 causes a negligibly small error, moreover we can use the
estimate (n − 1)r/nr ∼ 1 and obtain

lim
z→η

N ′
ℓ(z)

P ′(z)
∼ 1

ne2

⌈ n
3

⌉
∑

r=0

1

r!
((r + 1)e − r) ∼ 2

n
− 1

en
.

It is interesting to note that, asymptotically, these three families of trees play the same
rôle in the model without commutativity of the premises [7] and in our model.

5 Probability of a general Boolean function

To show Theorem 1 we follow the ideas used in [6] and define different kinds of expansions:
tautology expansions, premise expansions and goal expansions.

Definition 14. Given a general implication tree, the tree obtained by adding a new subtree
te to a node ν of t is called an expansion of t.

• If the expanded tree represents the same function as t, we call the expansion a valid

expansion.

• If te is a simple tautology, the expansion is called a tautology expansion of t.
For any choice of ν, the expanded tree represents the same function as t and the
expansion is valid.

• If te has exactly one subtree being a leaf labelled by x, then the expansion is an
x-premise expansion. If ν has an ancestor labelled by x, or is labelled by x, then
the expansion is valid(c.f. Figure 6).

• If the root of te is labelled by x, then the expansion is called x-goal expansion. If
ν is the parent of a leaf labelled by x or if ν has an ancestor which is a brother of a
leaf labelled by x, then the expansion is valid (c.f. Figure 7).

Fix a Boolean function f ∈ Fn0. We denote by Et(Mf) (resp. Ep(Mf), resp. Eg(Mf))
the set of trees obtained by a valid tautology (resp. premise, resp. goal) expansion of a
minimal tree of f , and by E(Mf) the union of these three sets.

Lemma 15. The limiting ratio of the family E(Mf) verifies, asymptotically when n tends
to infinity,

µn(E(Mf)) =
λf

nL(f)+1
+ O

(

1

nL(f)+2

)

,

with λf being a constant depending only on f .
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root

x

ν

y

x

Figure 6: A valid x-premise expansion in ν (y can be any label in {x1, . . . , xk}).

Proof. Let Ex denote the set of trees with exactly one child of the root being a leaf labelled
by x and by Gx the set of trees with root labelled by x. Every x-premise (resp. x-goal)
expansion of a tree t is realised by attaching a tree from Ex (resp. Gx) to some node of t.

We already know (cf. Section 4) that µn(T ) ∼ 1/en, as n → ∞. Using again the
symbolic method, we obtain the generating function of the family Ex:

Ex(z) = nz2 exp
∑

i≥0

P (zi) − zi

i
= z(1 − z)P (z) = S(z),

and therefore µn(Ex) = 1
en

+ O( 1
n2 ). The generating function of the family Gx is given by

Gx(z) = P (z)/n and therefore µn(Gx) = 1/n.
Let t be a tree and define

p(t) =
∑

x∈{x1,...,xn}

#vertices of t where a valid x-premise expansion is possible,

g(t) =
∑

x∈{x1,...,xn}

#vertices of t where a valid x-goal expansion is possible.

Note that a tautology expansion is always valid. Hence the limiting ratio of E(Mf) is
given by

µn(E(Mf))= lim
m→∞

∑

t∈Mf

(

p(t)
[zm−L(f)]Ex(z)

[zm]P (z)
+ g(t)

[zm−L(f)]Gx(z)

[zm]P (z)
+ L(f)

[zm−L(f)]S(z)

[zm]P (z)

)

=
1

(en)L(f)

(

λp
1

en
+ λg

1

n
+ L(f)

1

en

)

,
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root

z

x y

ν

x

Figure 7: A valid x-goal expansion in ν (y and z can be any label in {x1, . . . , xk}).

where λp =
∑

t∈Mf
p(t) and λg =

∑

t∈Mf
g(t). Set

λf =
1

eL(f)

(

λp

e
+ λg +

L(f)

e

)

.

Thus,

µn(E(Mf)) =
λf

nL(f)+1
+ O

(

1

nL(f)+2

)

.

Note that trees obtained by at least two distinct kinds of expansions have been counted
several times here. These trees have two constraints though: either two premises with spe-
cific labels, or a premise and the goal with fixed labels. As λp, λg and L(f) are independent
of n, such double expansions have a limiting ratio O(1/nL(f)+2).

Lemma 16. Further expansions yield an asymptotically negligible contribution to the lim-
iting ratio. Precisely, we have

µn





⋃

k≥2

Ek(Mf) \ E(Mf)



 = O
(

1

nL(f)+2

)

, when n → ∞.

Proof. First, consider a minimal tree t and expand it once by a tree t′, such that the
resulting tree t′′ is in Eg(Mf). Then any tree obtained from t′′ by doing a second expansion
at a node of t′ lies in E(Mf).

Second, consider a minimal tree t and expand it once (by attaching a tree t′) such that
the resulting tree t′′ lies in Ep(Mf) ∪Et(Mf). If we expand a second time, then we obtain
a tree not in E(Mf) if and only if the second expansion is done at a node of t or the

12



expansion is done at the (unique) child of the root of t′ which is a leaf labelled by the
variable realising the expansion (or the child labelled in the same way than the root in
tautology expansions, respectively).

Let us calculate the limiting ratio of the set of premise expansion trees where the
expansion is done at the child of the root which realises the expansion: the generating
function of this family is

N(z) = Ex(z)(Ex(z) + Eg(z) + S(z)).

Hence, its limiting ratio is of order 1
n2 and the trees obtained by such a nested expansion

of a minimal tree have limiting ratio O
(

1
nL(f)+2

)

.
We obtain an analogous result for the set of trees obtained by a second expansion in

the specific node related to the first tautology expansion.
The considerations above imply that the only possibly non-negligible family of expanded

trees in
⋃

k≥2 Ek(Mf)\E(Mf) is the set of trees obtained by k expansions of some minimal
tree t, all of which have been done at nodes of t. The limiting ratio of the family of trees
obtained by k expansions of a minimal tree, done in k of its initial nodes (counted with
possible repetitions), is

Gk(z) =
L(f)k

k!
(Et(z) + Ep(z) + Eg(z))kmf zL(f),

where mf is the number of minimal trees of f . Its limiting ratio is O( 1
nL(f)+k ) which is

negligible compared to 1
nL(f)+1 for all k ≥ 2.

Note that expanding a tree is obviously a reversible procedure. Thus valid expansions
have valid reductions as their counterparts. In [6] the authors presented an example of a
tree which cannot be reduced though it is not minimal.

Definition 17. We pick a tree representing f and simplify it by removing every subtree
which is a tautology, a premise or a goal expansion. If the tree cannot be simplified further
and is not minimal, we call the obtained tree an irreducible tree of f . The set of such
trees is denoted by If .

In order to complete the proof of Theorem 1, we have to show that the set of trees
obtained by sucessive expansions of all irreducible trees has a negligibly small limiting ratio.
The reader will observe that these reductions are not confluent, consequently by expanding
irreducible trees we will obtain some trees several times. The following results will state
that this double counting is negligible. We will adopt some ideas of the corresponding
proof in [6] for binary plane implication trees. In fact, we only have to prove the analogue
of [6, Corollary 25]:

Lemma 18. Fix a subset Γ ⊆ {x1, . . . , xn}. Let Ap
q be the set of trees having at least p

nodes labelled by a variable in Γ at depth less than or equal to q. Moreover, set E∗(Ap
q) =

⋃

k≥0 Ek(Ap
q). Then

µn(E∗(Ap
q) = O

(

1

np

)

.

13



Proof. Let us consider the set Bp
q of trees of height less than or equal to q and with at

most pq vertices, at least p of which have labels chosen from Γ. Let X(Bp
q ) denote the set

of trees obtained by adding an arbitrary number of general implication trees at nodes of
Bp

q . Note that Ap
q ⊆ X(Bp

q ). If we denote by Φq,p(z) the generating function of Bp
q , then

[zℓ]Φq,p(z) ≤ cℓ

(

ℓ
p

)

γpnℓ−p,

with γ being the cardinality of Γ and cℓ a constant. Adding a multiset of trees at a node
z of Bq,p gives an additional exp(

∑

i≥1
P (zi)/i) = P (z)/nz. Therefore, the generating function

ΦXq,p
(z) of X(Bq,p) verifies

[zm]ΦXq,p
(z) ≤ [zm]

∑

ℓ≤pq

cℓ

(

ℓ
p

)

γpnl−p P (z)ℓ

nℓ
=

1

np

∑

ℓ≤pq

[zm]CℓP (z)ℓ,

where Cℓ is a constant. Thanks to the asymptotic coefficients derived from the singular

expansion of type (1) by a transfer lemma (see [4]), we know that [zm]P (z)ℓ

[zm]P (z)
tends to a

constant as m → ∞, since P (z) and P ℓ(z) both have a square-root singularity at η.
Therefore, there are constants Kℓ such that

[zm]ΦXq,p
(z)

[zm]P (z)
≤ 1

np

∑

ℓ≤pq

Kℓ,

which implies that the limiting ratio of the set Ap
q is of order O

(

1
np

)

.

Thanks to this lemma the proofs of [6] can easily be adapted to our new model: The
idea is to define a set N which is the union of certain sets of the form Ap

q, all of them
satisfying p > L(f) + 1 which implies µn(N ) = O (1/nL(f)+2). Then the set of irreducible
trees If is partitioned according to the tree size and the number of essential and inessential
variables of f that occur among the labels. The final step is to show that the sets in this
decomposition are either empty or subsets of N . All those arguments are independent of
whether the premises are considered permutable or not. Thus the following lemma holds
in our model.

Lemma 19. The limiting ratio of the set E∗(If ) verifies

µn(E∗(If )) = O
(

1

nL(f)+2

)

.

Proof. See [6, Sec. 5].

Proof of Theorem 1. The set of implication trees representing a fixed Boolean function f
is the union of the following sets: the set Mf of minimal trees of f , the set E(Mf) of
minimal trees of f expanded once, the set E≥2(Mf) of minimal trees of f expanded at
least twice, and the set E∗(I) of (iterated) expansions of irreducible trees representing f .

When n tends to infinity, thanks to Lemmas 16 and 19, the set E(Mf) is the only one to
contribute to the asymptotic probability of f . This contribution is given in Lemma 15.
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6 Disproving the existence of the Shannon effect

Theorem 3. If g(n) is a function in n growing faster than n2, then limn→∞ Pn({f |L(f) ≤
g(n)}) ≥ α > 0. Consequently, there is no Shannon effect in our model.

Let us count the number of valid premise expansions of trees of size at most n2. All
such expansions thus compute functions of complexity at most n2. We will prove that the
limiting ratio of valid premise expansions of trees of size at most n2 tends to a positive
constant as n tends to infinity.

Note that one large tree can be a valid premise expansion of two different trees of size at
most n2. To avoid the multiple-counting of such trees, we restrict the family of expansions
as follows: in this section, we only consider premise expansions where the expanding tree
has exactly three subtrees, one labelled by the variable according to which the expansion
is done, and the two others being two implicational trees of size at least n2. Let us denote
by E the family of trees that are obtained by such a premise expansion of a tree of size at
most n2. Given such a tree, it is possible to find where the expansion has been done, just
by looking for the topmost internal node that has two subtrees of size at least n2. This
property ensures not to count several times the same tree in E by expanding smaller trees.

To calculate the limiting ratio of E , we have to answer the following question: Consider
an implicational tree of size r. How many different valid premise expansions can be done
in this tree? A possible answer is based on the following bivariate generating function,
already introduced in the binary planar case (cf. [9]). First fix a variable y ∈ {x1, . . . , xn},

• T (u, z) is the generating function of implicational trees where z marks all nodes
and u marks the nodes having at least one ancestor labelled by y, counted with
multiplicity. This means that, given a tree t, each node having k ancestors labelled
by y contributes a multiplicative factor zuk to the weight of t.

• V (u, z) is the generating function of implicational trees where z marks all nodes and
u marks the nodes having at least two ancestors labelled by y, again counted with
multiplicity. This means that in a tree t each node having k ancestors labelled by y
contribute a multiplicative factor zuk−1 to the weight of t.

Now observe: Let F (z) =
∑

m≥0 Fmzm where Fm is the cumulative number of vertices in
all implicational trees of size m in which a valid y-premise expansion is possible. Then
F (z) = ∂u∆(1, z) where ∂u∆ := ∂/∂u∆ denotes the partial derivative of ∆(u, z) w.r.t. u.
Moreover, observe that by symmetry T (u, z) and V (u, z) do not depend on y.

We thus get the following lower bound (because we have restricted the expansions):

∑

f | L(f)≤n2

Pn(f) ≥
n2
∑

r=1

∑

y∈{x1,...,xn}

[zr]∂u∆(1, z) lim
m→+∞

[zm−r]Gy(z)

[zm]P (z)
,

=n
∑

[zr]∂u∆(1, z) lim
m→+∞

[zm−r]Gy(z)

[zm]P (z)
(5)
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where Gy(z) is the generating function of implicational trees having three subtrees, one of
them of size one, labelled by y, and the two others being implicational trees of size at least
n2. Of course, again by symmetry Gy(z) is independent of y.

Lemma 20. The dominant singularity η of P (z) satisfies

η =
1

en
− 1

2e3n2
− 8e + 9

24e5n3
+ O

(

1

n4

)

.

Proof. The first two terms in the asymptotic expansion were given in [11, Eq. (3)]. Further
bootstrapping yields the next term.

Corollary 21. For large enough n we have

en ≥ η−1
(

1 − 1

2e2n
− 1

n2

)

and, for all m,

e−m

2
exp

(

− m

n2

(

1 +
1

4e4

))

≤ ηm
(

n +
1

2e2

)m

≤ 2e−m exp
(

− m

4e4n2

)

.

Lemma 22. Let R(z) be the unique solution of R(z) =
(

n + 1
2e2

)

z ·exp(R(z)) that satisfies

R(z) =
∑

m≥0 Rmzm with Rm ≥ 0. Then for sufficiently large n and m we have

Rm ≥ η−m

√
2πm3

(

1 − 1

12m

)

exp
(

− m

n2

(

1 +
1

4e4
+

1

2e2n

))

.

Moreover, for m ≥ 3, Pm ≥ Rm.

The idea of the rest of the proof is to deal with R(z) instead of P (z), because it is
simpler to deal with and the coefficients R(z) are a good approximation of those of P (z).

Proof. Using Lagrange inversion [5, e.g. p. 127], we deduce

Rm =
(

n +
1

2e2

)m mm−1

m!
.

Using Stirling’s formula [5, p. 407] and Lemma 20, we get, for large enough m and for all n

Rm ≥ (en)m

√
2πm3

(

1 − 1

12m

)(

1 +
1

2e2n

)m

≥ η−m

2
√

2πm3

(

1 − 1

12m

)

(

1 − 1 + 4e4

4e4n2
− 1

2e2n3

)m

.

Thus, for large enough m and n we obtain

Rm ≥ η−m

2
√

2πm3

(

1 − 1

12m

)

exp
(

− m

n2

(

1 +
1

4e4
+

1

2e2n

))

.
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Let us now turn to the second statement of the lemma, that asserts that Rm is a lower
bound for Pm, when m ≥ 3. By differentiating the functional equation satisfied by R(z),
we get:

R′(z) =
R(z)

z
+ R′(z) · R(z). (6)

This equation translates directly to a recurrence satisfied by the coefficients of R(z):

Rm+1 =
1

m
·

m−1
∑

k=0

(k + 1)Rk+1Rm−k ∀m ≥ 2, (7)

with the first coefficients R0 = 0 and R1 = n+1/(2e2). Let us now introduce the generating
function S(z) satisfying S(z) = nz exp(S(z) + S(z2)/2). Since the functional equation of
S(z) is a truncation of the one satisfied by P , we must have Sm ≤ Pm. By differencing
this functional equation we get

S ′(z) =
S(z)

z
+ S ′(z) · S(z) + z · S ′(z2) · S(z)

which translates to

Sm+1 =
1

m
·







m−1
∑

k=0

(k + 1)Sk+1Sm−k +

m−1
2
∑

k=0

(2k + 1)S2k+1Sm−2k−1





 ∀m ≥ 2, (8)

with initial condition S0 = 0 and S1 = n. Comparing (7) with (8) we deduce that the
sequence (Sm)m≥0 grows faster than the sequence (Rm)m≥0 if Sm ≥ Rm for some m. But
indeed S3 = 3n3/2 + n2/2 and R3 = 3n3/2 + 9e−2n2/4 + 9e−4n/8 + 3e−6/16, thus S3 ≥ R3

(for all n ≥ 1). Hence, we get Pm ≥ Sm ≥ Rm for m ≥ 3.

Let us now turn to the generating function Gy(z) that enumerates the trees used for
the valid y-premise expansions. Recall that those trees have a root with three children,
one being a single leaf y and the two other being both of size larger than n2.

Lemma 23. There exists a constant γ > 0 such that, for all (fixed) integer r ≥ 0,

lim
m→+∞

[zm−r]Gy(z)

[zm]P (z)
≥ γηr+2.

Proof. The generating function Gy(z) is given by

Gy(z) = nz2 1

2
(G(z)2 + G(z2)) where G(z) =

∑

m≥n2

Pmzm,

the integer Pm being the coefficient of the generating function P (z) of all implicational
trees. Therefore, Gy(z) has the same dominant singularity η as P (z) and it is also of
square-root type, which implies that

lim
m→+∞

[zm]Gy(z)

[zm]P (z)
= lim

z→η

G′
y(z)

P ′(z)
=

nη2

2
2G(η) lim

z→η

G′(z)

P ′(z)
= nη2G(η),
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since limz→η
G′(z)
P ′(z)

= limm→+∞
[zm]G(z)
[zm]P (z)

= 1. We thus have to estimate

G(η) =
∑

m≥n2

Pmηm ≥
2n2
∑

m=n2

Pmηm.

Using Lemma 22, there exists a constant γ̃ such that for large enough n, and for m ∈
{n2, n2 + 1, . . . , 2n2}:

Pm ≥ Rm ≥ γ̃η−m

√
m3

, and γ̃ ≤ 1

2
√

2π

(

1 − 1

12n

)

· exp
(

−2 − 1

2e2
− 1

e2n

)

.

Thus, using Euler-McLaurin’s formula, we deduce there exists a constant γ = (2 −
√

2) · γ̃
such that:

G(η) ≥ γ̃
2n2
∑

m=n2

m− 3
2 ≥ γ

n
.

Therefore

lim
m→+∞

[zm]Gy(z)

[zm]P (z)
≥ γη2.

And thus, using a transfer theorem [5, Chapter IV], the statement is proved.

In view of Lemma 23, using a direct lower bound based on Equation (5), we get

∑

f | L(f)≤n2

Pn(f) ≥
n2
∑

r= n2

2

∑

y∈{x1,...,xn}

γηr+2 [zr]∂u∆(1, z). (9)

Lemma 24.

∂u∆(1, z) =
(n − 1)P (z)

n − (n − 1)P (z)
(S2(z) − S1(z)) +

zP ′(z)

n − (n − 1)P (z)
, (10)

where S1(z) =
∑

i≥2 ∂uV (1, zi) and S2(z) =
∑

i≥2 ∂uT (1, zi).

Proof. In order to study ∂u∆(1, z) we must establish the functional equations satisfied by
T and U . The derivation is the same as in the paper [9]. First,

T (u, z) = (n − 1)z exp





∑

i≥1

T (ui, zi)

i



+ uz exp





∑

i≥1

T (ui, uizi)

i



 .

Since T (1, z) = P (z), we thus deduce

∂uT (1, z) = z exp





∑

i≥1

P (zi)

i







(n − 1)
∑

i≥1

∂uT (1, zi) + 1 +
∑

i≥1

∂uT (1, zi) +
∑

i≥1

P ′(zi)zi



 .
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In view of [11, page 5, first display], we have

∑

i≥1

P ′(zi)zi =
zP ′(z)

P (z)
− 1,

and using the functional equation satisfied by P , we get

∂uT (1, z) =
P (z)

n

(

n∂uT (1, z) + nS2(z) +
zP ′(z)

P (z)

)

,

where S2(z) =
∑

i≥2 ∂uT (1, zi). Finally,

∂uT (1, z) =
P (z)

1 − P (z)

(

S2(z) +
zP ′(z)

nP (z)

)

.

Secondly,

V (u, z) = (n − 1)z exp





∑

i≥1

V (ui, zi)

i
+ z exp





∑

i≥1

T (ui, zi)

i







 ,

which implies, after similar calculations as for T (u, z),

∂uV (1, z) =
P (z)

n − (n − 1)P (z)
((n − 1)S1(z) + S2(z) + ∂uT (1, z)),

where S1(z) =
∑

i≥2 ∂uV (1, zi). Finally,

∂u∆(1, z) =
(n − 1)P (z)

n − (n − 1)P (z)
(S2(z) − S1(z)) +

zP ′(z)

n − (n − 1)P (z)
.

In order to complete the proof, we will derive a lower bound for the r-th coefficient of
∂u∆(1, z). Let us first note that the r-th coefficient of S2(z) − S1(z) is positive (for all

positive r). Thus, using Lemma 24, we obtain [zr] zP ′(z)
n−(n−1)P (z)

≤ [zr]∂u∆(1, z).

Lemma 25. Asymptotically when n tends to infinity, if r = Θ(n2), then

1

n
[zr−1]

R′(z)

1 − n−1
n

R(z)
= Ω

(

η−r

n

)

.

Proof. Set

σr =
1

n
[zr]

n
∑

i=2

(

1 − 1

n

)i

R′(z) · R(z)i.

Obviously, we get the next lower bound:

1

n
[zr−1]

R′(z)

1 − n−1
n

R(z)
≥ σr−1.
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Using the functional equation of R(z) or the recurrence for its coefficients (cf. Eq. (6)
and (7)) in the proof of Lemma 22) it is easy to see that, for all i ≥ 2,

[zr−1]R′(z) · R(z)i = (r − 1)Rr − [zr−1]
i
∑

k=2

R(z)k.

Consider the case where i ≤ n and r = Θ(n2), when n tends to infinity. We will show that
the second term of the r.-h. side is negligible: First observe that (r − 1)Rr = Θ(r−1/2η−r)
(by Lemma 22).

Second, let k ∈ {2, · · · , n}. Using Lagrange inversion (see for example Eq. (14) of [5,
p. 732]) yields

i
∑

k=2

[zr−1]R(z)k =
i
∑

k=2

1

r − 1
[Rr−2]k

(

n +
1

2e2

)r−1

Rk−1 exp((r − 1)R)

≤ i

r − 1

(

n +
1

2e2

)r−1 i
∑

k=2

(r − 1)r−k−1

(r − k − 1)!

≤ i2

r − 1

(

n +
1

2e2

)r−1 (r − 1)r−3

(r − 3)!
≤ i2

(

n +
1

2e2

)r−1 (r − 1)r−2

(r − 1)!
,

because the sequence (xk/k!)k is increasing while k ≤ x. Thus, using Stirling’s formula [5,
p. 407] and Lemma 20, we conclude, for r = Θ(n2), that

∑i
k=2[z

r−1]R(z)k = O (r−1η−r).
Consequently, σr−1 = Ω (n−1η−r).

Using the previous lemma and Eq (9) we conclude that
∑

f | L(f)≤n2 Pn(f) = Ω(1) as n
tends to infinity, and thus [11, Theorem 3] is proved.

7 Conclusion

It is interesting to note here that the ideas developed in [7] and in [6] in the implication
model without commutativity of the premises can be directly adapted to the present model
with commutativity. However, the singularity of the generating function of general trees,
which is the fundamental key point of the analysis, cannot be explicitely determined. This
makes all computations more intricate in this model, and whereas in the previous model
we got exact formulas, we must deal with approximations here. Finally, although both
distributions on Boolean functions (with or without commutativity of the premises) are
distinct, they are still quite similar: in fact the order of magnitude of the probability of
each fixed function is the same for both distributions (cf. Theorem 1). Moreover in both
distributions there is no Shannon effect.

We have already noticed that in fact the probability distributions with or without
associativity or commutativity in AND/OR trees are almost identical (see [10]). Would it
be possible to prove a meta-theorem that would give a relation between the probability
distributions induced by logical models taking some properties of the connectives into
account, or not?
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In this model of general implicational trees the connectives naturally disappear in the
tree representation and consequently the size is the number of occurrences of variables, or
the total number of nodes in the tree. When we studied commutativity and associativity
in AND/OR trees [10] we defined the size to be the number of leaves, which is equal to the
number of variables. In the non-associative case, this choice is equivalent to counting every
node, because the number of internal nodes is equal to the number of leaves minus one.
But in general trees, there is no link between the number of leaves and the number of
internal nodes and one could imagine different definitions of the size. Since in [10] we
aimed to compare the distribution induced on Boolean functions of this model with the
model without the properties of commutativity and associativity (see [15]), the complexity
notion and therefore the size notion had to be kept.

But if we take into account the storage of the trees, the natural notion of size in general
AND/OR trees is the total number of nodes, i.e. the number of connectives plus the
number of occurrences of variables. We are currently working on this different notion size
([11]), which induces a change of the notion of complexity: We expect that the induced
distribution will be biased to functions of larger complexity in this model.
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