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A class of diamond-shaped combinatorial structures is studied whose enumerating
generating functions satisfy differential equations of the form f2 “ Gpfq, for some
function G. In addition to their own interests and being natural extensions of increasing
trees, the study of such DAG-structures was motivated by modelling executions of series-
parallel concurrent processes; they may also be used in other digraph contexts having
simultaneously a source and a sink, and are closely connected to a few other known
combinatorial structures such as trees, cacti and permutations. We explore in this extended
abstract the analytic-combinatorial aspect of these structures, as well as the algorithmic
issues for efficiently generating random instances.

1 Introduction

Simple combinatorial structures that are both mathematically tractable and physically useful in different
modeling purposes have received much attention in the literature. Typical representative examples
include the simply-generated family of trees characterized by the functional equation (see [13])

f “ zGpfq,

and the varieties of increasing trees by the differential equation (see [3])

f 1 “ Gpfq.

Due to their simplicity, these tree models also appeared naturally under various guises in many areas.
Three simple prototypical cases are given in the following table.
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G f “ zGpfq f 1 “ Gpfq

1` z2

p1` zq2
Binary tree

(Catalan tree)
Binary increasing tree
(Binary search tree)

exppzq Cayley tree Recursive tree
1

1´z Planted (ordered) tree Plane-oriented recursive tree

In particular, binary trees have long been studied in the computer science literature (see Knuth’s
book [9]) and a compilation of 214 combinatorial objects leading to the same enumerating Catalan
numbers can be found in Stanley’s recent book [14]. On the other hand, binary increasing trees are
isomorphic to binary search trees, which represent another class of fundamental data structures with a
huge number of variants; they are also closely related to Quicksort in Algorithms, to Yule-Harding
models in Phylogenetics, to random permutations in Combinatorics, Rényi’s car-parking problem in
Applied Probability, and to Eden model in Statistical Physics, to name just a few; see [8, 6] for more
information.

We explore in this paper another class of combinatorial structures, which we call increasing diamonds:
they are labelled, directed acyclic graphs (DAGs) with a source and a sink such that the labels along
any path are increasing; see Figure 1 for an illustration of two different diamonds. In standard symbolic
notation (see [8]), increasing diamonds can be described as

F “ Z˝ ` Z˝ ‹ GpFq ‹ Z‚. (1)

where G is some functional operation specifying possible degrees and construction rules, and the two
symbols ˝ and ‚ represent the smallest and the largest labels, respectively. This equation then translates
into the differential equation satisfied by the enumerating generating function1

f2pzq “ Gpfpzqq, with fp0q “ 0 and f 1p0q “ 1. (2)

Here fpzq “
ř

ně1 anz
n{n!, where an enumerates the number of increasing diamonds with n labels.

1

4 2

5 3
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14

Figure 1: A binary (left) and a ternary (right) increasing diamonds of size 9 and 14, respectively.

We study in this paper three simple representative cases, and focus on asymptotic enumeration
and random generation. The following table lists the dominant term in the corresponding asymptotic
approximation in each case.

1We limit our discussion in this paper to the situation when f 1p0q “ 1 for simplicity.
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G OEIS other description an
n! „

error term
of order

exppzq A000111
Euler or

up/down numbers
2np 2π q

n exponential

p1` zq2 A007558
shifts 2 places

left after squared
6nρ´n´2binary exponential

1` zm

pm ě 3q
– – Cmn

´m´3
m´1 ρ

´n´ 2
m´1

m-ary polynomial

1
1´z A032035

triangular cacti
with bridges

ρ1´nplane

n2
?
2 logn

logarithmic

1
p1´zq3

A001147 double factorial 2n?
πn

polynomial

Here OEIS stands for Sloane’s Online Encyclopedia of Integer Sequences, Cm is a constant (see
Theorem 5), and ρbinary, ρm-ary and ρplane are three constants given in (9), (12) and (14), respectively.
While most properties are expected to be similar to those of increasing trees (see [3]), the higher order
derivative introduces more technical difficulties, as visible from the less common asymptotic order
produced when G “ 1{p1´ zq.

Structurally, increasing diamonds are bipolar digraphs with a downward planarity; they are also
special cases of series-parallel graphs and are more expressive than quasi-trees in [2]. Since DAGs
with a unique source and a unique sink appear naturally in many concrete applications, our increasing
diamonds may be of potential use in modelling structural parameters or problem complexity in these
contexts. Typical examples include: partial orders and their linear extensions, computational processes
and their executions in parallel computing, network or data flows, food-webs, register sharing, machine
learning, streaming analysis, grid computing, etc.

To be useful for modelling concrete structures in applications, we need either more precise statistical
properties or more efficient generation algorithms for random increasing diamonds. The former will
be addressed elsewhere, and for the latter, we will focus on the by now popular Boltzmann sampling
algorithm proposed in [7], which was recently extended in [5] to deal with the situation of first-order
differential equations. We develop further techniques to handle the second-order differential equations.

On the other hand, the type of differential equations we study in this paper (f2 “ Gpfq) also emerges
naturally in other contexts, notably in a recent paper by Kuba and Panholzer [10] on multi-labeled
increasing trees and hook-length formulae; see also their earlier paper [12]. While the equations are
the same, our combinatorial structures here are different and to some extent more natural, and such
a difference is reflected by the initial conditions: we focus on fp0q “ 0 and f 1p0q “ 1 whereas they
deal with fp0q “ f 1p0q “ 0. Also we will derive asymptotic expansions. Along the same direction,
Kuba and Panholzer examined in [11] another class of tree structures whose exponential generating
function satisfies f pmq “ pm´ 1q!emf , where m ě 2, which coincides with our model when m “ 2.
They studied in detail some shape characteristics in such random trees. Further connections can be
made between such bucket trees and our increasing diamonds.

The paper is organized as follows. In the next section, we analyze the three classes of increasing
diamonds in detail. Then Section 3 is devoted to the development of algorithmic tools for generating
efficiently random diamonds that rely on the notion of uniform Boltzmann sampling.

2 Exact enumeration and asymptotics

In this section, we first discuss the general solution of the differential equation f2 “ Gpfq subject to
the initial conditions fp0q “ 0 and f 1p0q “ 1 (other initial conditions can be dealt with in a similar
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manner), and then concentrate our discussion on a few special cases for which we will derive more
precise asymptotic approximations.

2.1 General solution of f2 “ Gpfq.

Multiplying both sides of (2) by 2f 1, we obtain 2f2f 1 “ 2Gpfqf 1, which implies that

f 1pzq2 “ f 1p0q2 `

ż z

0
2Gpfptqqf 1ptqdt “ 1` 2G pfpzqq,

where G pzq :“
şz
0 Gptqdt. Thus f 1pzq “ ˘

a

1` 2G pfpzqq, or

˘

ż fpzq

0

1
a

1` 2G ptq
dt “ z. (3)

Lemma 1. The solution to the differential equation f2 “ Gpfq with fp0q “ 0 and f 1p0q “ 1 is given
by

ż fpzq

0

1
a

1` 2G ptq
dt “ z. (4)

Proof. By expanding the left-hand side of the second equation in (3) as a Taylor series, we exclude the
negative solution and conclude (4).

The solution (4) is, although implicit, useful in our asymptotic analysis even when no further
simplification is possible. First recall a useful property when f blows up near the dominant singularity,
which is readily modified from Lemma 1 of [3].

Lemma 2. Given an entire function G, the dominant real positive singularity of the function fpzq,
solution to Y 2 “ GpY q with Y p0q “ 0 and Y 1p0q “ 1, is given by

ρ “

ż 8

0

dt
b

1` 2
şt
0Gpvqdv

,

provided that the integral converges.

From the brief discussion in Introduction, we see that the coefficient an of f is well-approximated by
an „ Cn!ρ´nnαplog nqβ , and from this observation we expect that the singularity analysis of Flajolet
and Odlyzko (see [8]) will be useful in such an analysis, as in [3].

2.2 Non-plane (unordered) increasing diamonds

We discuss in detail the class of non-plane increasing diamonds, which can be decomposed as sets of
increasing diamonds:

F “ Z˝ ` Z˝ ‹ SET pFq ‹ Z‚,

so that the corresponding exponential generating function satisfies f2 “ ef . The two diamonds in
Figure 1 may be regarded, neglecting the order of subtrees, as two instances of non-plane increasing
diamonds.
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By (4) with Gpzq “ ez and G pzq “ ez ´ 1, we see that the exponential generating function f of an
has the solution

fpzq “ ´ logp1´ sin zq, (5)

and the number an of such increasing diamonds with n labels starts with

tanuně1 “ t1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, 353792, . . . u,

which coincides with A000111 in Sloane’s OEIS, where many other structures with identical enumerat-
ing sequence are also given (alternating permutations, zig-zag posets, some increasing trees, etc.). This
shows the richness and usefulness of the equation f2 “ ef in combinatorial objects.

Note that, by the differential equation f3 “ f 1f2 (obtained by the differentiation of f2 “ ef ), we
have the recurrence relation

an “
ÿ

2ďkăn

ˆ

n´ 3

k ´ 2

˙

akan´k pn ě 3q,

which is useful for numerical pusposes.

Theorem 3. The number an of non-plane increasing diamonds with n labels satisfies

an “
2n`1 pn´ 1q!

πn

`8
ÿ

j“´8

1

p1` 4jqn
. (6)

It is less obvious that the right-hand side represents an integer.

Proof. By (5), we have f 1pzq “ tan z ` sec z, which has only simple poles at z “ p2k ` 1
2qπ. By

standard expansion for meromorphic functions ([8, Ch. IV]), we obtain the expansion (6), which is not
only an asymptotic expansion (expressible as Hurwitz’s zeta function)

an “
2n`1 pn´ 1q!

πn

ÿ

jě0

ˆ

1

p1` 4jqn
`

p´1qn

p4j ` 3qn

˙

,

but also an identity for n ě 1.

Another exactly solvable case is when Gpzq “ p1 ´ zq´3. In this case, we have the surprisingly
simple solution (cf. [10])

fpzq “ 1´
?

1´ 2z, (7)

leading to the simple expression for the total number of size-n diamonds

an “ p2n´ 3q!! “
p2n´ 2q!

2n´1pn´ 1q!
pn ě 1q.

However, exact solutions as (7) and (5) are exceptional rather than commonplace, and different
techniques are needed in most cases as we will see below.
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2.3 m-ary increasing diamonds

Consider now increasing diamonds in which the degrees of nodes are limited to m ě 2; see Figure 1
for a binary and a ternary diamond. In this case, we have the specification

F “ Z˝ ` Z˝ ‹ Fm ‹ Z‚, (8)

which leads to the differential equation f2 “ 1 ` fm with fp0q “ 0 and f 1p0q “ 1. Closed-form
solutions are possible when m “ 2 and m “ 3 (in terms of elliptic integrals), but they are not simple.
So we present only the solution for m “ 2 and derive asymptotic approximation for m ě 3 (in a
slightly more general formulation).

Binary increasing diamonds and Weierstrass’s ℘-function. From (4), we see that f satis-
fies the equation

ż fpzq

0

1
b

1` 2t` 2
m`1 t

m`1
dt “ z.

When m “ 2, we can express the solution in terms of Weierstrass’s elliptic function ℘ (see [1]), which
is defined periodically over a lattice that contains one double pole in a corner of each cell. Thus, by
construction,

℘pz;ω1, ω2q “
1

z2
`

ÿ

pk,lqPZ2ztp0,0qu

ˆ

1

pz ` kω1 ` lω2q
2
´

1

pkω1 ` lω2q
2

˙

,

where ω1 and ω2 are the periods of ℘.

Theorem 4. The exponential generating function of the number of binary increasing diamonds can be
expressed as

fpzq “ 6℘
`

z ´ ρ;´1
3 ,´

1
36

˘

where ρ :“

ż 8

0

dt
b

1` 2t` 2
3 t

3
, (9)

and the number of size-n binary increasing diamonds is given by

an “ 6
pn` 1q!

ρn`2

ÿ

pk,lqPZ2

1
´

1` kω1
ρ ` lω2

ρ

¯n`2 , (10)

where ω1 and ω2 are computable constants.

Asymptotically, an „ 6pn` 1q!ρ´n´2, with an exponentially small error. Note that, by starting with
the initial conditions fp0q “ f 1p0q “ 0, we then obtain the bi-labelled increasing trees defined in [10],
which corresponds to the sequence A144849 in OEIS.

Proof. (Sketch) The ℘-function satisfies the differential equation

℘12pzq “ 4℘3pzq ´ g2℘pzq ´ g3,

and we need only to identify the corresponding parameters.
By Lemma 2, we first determine the dominant singularity ρ; then from the series expansion of ℘, we

deduce (10) by a direct application of singularity analysis (see [8]). ˝

Although few cases lead to closed-form expressions in terms of known functions, it is not difficult
to derive asymptotic approximations based on complex analysis and singularity analysis, as already
highlighted in the classical paper [3].
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Polynomial varieties of increasing diamonds. As in [3], we consider the polynomial varieties
of increasing diamonds, which are characterized by Gpzq being a polynomial, say

Gpzq “
ÿ

0ďjďm

bjz
j , (11)

where m ě 2 and bm ą 0. For simplicity, we may assume that Gpzq ı z`Hpzkq, for some k ě 2 and
` ě 0, namely, G is aperiodic.

Then by (2), the dominant singularity is given by

ρ “

ż 8

0

1
b

1` 2
ř

0ďjďm
bj
j`1 t

j`1
dt, (12)

which is absolutely convergent since m ě 2. Then we apply the same idea used in [3], and obtain

ρ´ z “

ż 8

fpzq

1
b

1` 2
ř

0ďjďm
bj
j`1 t

j`1
dt

“

?
m` 1

pm´ 1q
?

2bm
f´

m´1
2 ´

bm´1
?
m` 1

mb
3{2
m

f´
m`1

2 ` ¨ ¨ ¨ ,

as z Ñ8. Then by inverting, we get

fpzq “

˜

pm´ 1q
?
bm

a

2pm` 1q

¸´ 2
m´1

pρ´ zq´
2

m´1

´

1`O
´

|ρ´ z|
2

m´1

¯¯

,

as z „ ρ, the justification following also standard line. We then deduce by the singularity analysis the
following asymptotic approximation.

Theorem 5. Assume that G is a polynomial given in (11) and an ą 0 for n ě n0 for some n0 ą 0.
Then the number of increasing diamonds with n labels in a polynomial variety satisfies

an “

˜

a

2pm` 1q

pm´ 1q
?
bm

¸
2

m´1 n´
m´3
m´1

Γp 2
m´1q

ρ´n´
2

m´1

´

1`O
´

n´
4

m´1

¯¯

,

for m ě 2, where ρ is given in (12).

Note that the asymptotic estimates here are independent of the initial conditions.
In the special case when m “ 3, it is possible to express f in terms of Jacobi elliptic functions, but

the expression is messy.

2.4 Plane increasing diamonds

We now focus on plane (ordered) increasing diamonds, which are described by

F “ Z˝ ` Z˝ ‹ SEQ pFq ‹ Z‚, (13)

leading to the differential equation f2 “ 1
1´f with the initial conditions fp0q “ 0 and f 1p0q “ 1.

The analysis of such diamonds is more involved and the asymptotic expansion we obtain has a much
poorer convergence rate: instead of exponential or polynomial, the terms are now in decreasing powers
of log n.
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Theorem 6. The number of plane increasing diamonds with n labels satisfies

an “
n!ρ1´n

n2
?

2 log n

˜

ÿ

0ďkăK

Pkplog lognq

plog nqk
`O

ˆ

plog log nqK

plog nqK

˙

¸

,

where

ρ :“

ż 8

0

1
a

1´ 2 logp1´ tq
dt “

?
e

2

ż 8

0
v´

1
2 e´vdv « 0.65567 95424 . . . , (14)

and the Pk’s are computable polynomials (of degree k).

In particular, P0pxq “ 1 and P1pxq “
1
8px´ 3´ 2γ ` log 2` 2 log ρq.

The method of proof is the same as above, details being omitted here. The first few terms of an are

t1, 1, 1, 3, 13, 77, 573, 5143, 54025, 650121, 8817001, 133049339, . . . u,

and corresponds to sequence A032035 in OEIS, which also enumerates increasing rooted (2,3)-cacti
with n´ 1 nodes. Note that f1 “ f 1 ´ 1 satisfies the differential equation f 11 “ ef1`f

2
1 {2.

3 Random generation via Boltzmann samplers

3.1 Boltzmann Samplers for the differential classes

The Boltzmann sampling technique was first proposed in the seminal paper [7], and has been widely
developed and extended since then. It captures the features any successful algorithm must have: simple,
efficient and easily extensible.

In this subsection, we briefly recall this technique for labeled structures.

Definition 7. A Boltzmann sampler of parameter x ą 0 is an algorithm that draws an object α of size

|α| in a given combinatorial class A with the probability Pxpαq “
x|α|

|α|!Apxq
.

Figure 2: A random diamond of size 591 satisfying f2 “ 1` f3, with fp0q “ 0 et f 1p0q “ 1.

Note that the output size N of a Boltzmann sampler is a random variable with the law PxpN “

nq “ anx
n{pn!Apxqq, and the expectation of N is ExpNq “ xA1pxq{Apxq. Here x is a free variable.

To generate an object of size n, one can choose the parameter x to be the solution of the saddle
point equation ExpNq “ n. With this choice, it is possible to devise a linear-time algorithm to
generate a random instance by repeated use of trial-and-rejection until reaching an output of size in
rp1´ εqn, p1` εqns) (referred to as an approximate-size algorithm).

This universal method is not only very efficient but also fully automatizable. What we need is a
complete symbolic (recursive or not) description of the class in order to construct a sampler. Indeed,
Boltzmann samplers for the neutral and atomic classes E and Z are trivial, and from there general
procedures exist for constructing more complex samplers through elementary operations such as
addition, multiplication, cycle, set, etc. We refer the reader to the original paper [7] for more details.
On the other hand, the Boltzmann sampler for the box-operator of two classes was addressed in [5].

Note that Boltzmann samplers does not return a labeled object, but only the unlabeled skeleton. To
complete the process, a labeling algorithm is needed.
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3.2 Boltzmann samplers for second-order differential classes

It is natural to divide the problem into two cases, one in which the differential equation is induced by
the general shape specification F2 “ φpZ,Fq, where F2 denotes the class of objects of F in which
two nodes are pointed, and the other by F2 “ φpFq.

Before considering these two issues, we recall some basic and classical properties. First, the box
product and the derivative operator are linked together by the fact that C “ A ˝ ‹ B entails that
C1 “ A1 ˆ B. Secondly, we know how to get a sampler of parameter x for F by just using a sampler
of F 1. This surprising result is obtained by multiplying the Boltzmann parameter x by a suitable
continuous random variable u in r0, 1s. Indeed, this yields the following algorithm described in [4],
which can also be derived from results in [5].

Algorithm 1: ΓxF from ΓF 1
1: if Bernoullipfp0q{fpxqq then
2: return an object of size 0
3: else
4: Draw U P r0, 1s with the density δxpuq “ f 1puxqx{pfpxq ´ fp0qq ¨ 1r0,1spuq
5: Draw γ1 “ ΓUxF 1
6: return γ1 where the bud is replaced by an atom.
7: end if

In line 5, the object contains what is called a bud in Species Theory. It can be seen as a hole, that is the
reason why it is replaced by an atom (in line 6).

General Case F2 “ φpZ,Fq. We consider now the case F2 “ φpZ,Fq, which can be dealt with
by applying twice Algorithm 1. But this requires to draw two continuous random variables U and V ,
and use only their product UV . Clearly, this can be factored by calculating directly the random variable
S “ UV . This gives the following algorithm for which the proof is similar to that of F2 “ φpZ,Fq
in [5].

Algorithm 2: ΓxF generates an object in F from a sampling in F2
1: Draw W P r0, 1s uniformly

2: if W ă
fp0q

fpxq
then

3: return an object of size 0

4: else if W ă
fp0q ` xf 1p0q

fpxq
then

5: return an object of size 1
6: else
7: Draw S P r0, 1s according to the density δxpsq “

x2p1´ sqf2psxq

fpxq ´ xf 1p0q ´ fp0q
1r0,1spsq

8: Draw γ2 using ΓSxF2
9: return replace the buds in γ2 by two atoms.

10: end if

Particular Case F2 “ φpFq. We consider here the special case where φ does not explicitly depend
on Z . The Algorithm from [4] can be amended to deal with uniform continuous random variables
rather than non-uniform random variables that are hard to simulate.

Classical Boltzmann samplers Γ are parametrized by x, so the sampler draws an object α in A with
probability Pxpαq “ x|α|{p|α|!Apxqq. But in the case of functional equations where x is not explicit
(such as F 1 “ φpFq), it has been observed in [4] that it is preferable to deal with another parameter
τ “ fpxq. In this case, the output is distributed as PpN “ nq “ anf

´1pτqn{pn!τq. It is nevertheless
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always a Boltzmann sampler but with a different parametrization. To avoid confusion, we then indicate
Γrτ sF instead of ΓxF . Thus we can now give an algorithm similar to Algorithm 1 that uses only
uniform random variables.

Algorithm 3: Γrτ sF generates an object in F from a sampling in F 1

1: if Bernoullipfp0q{τq then
2: return an object of size 0
3: else
4: Draw U uniformly P r0, 1s
5: τnew Ð Uτ ` p1´ Uqfp0q
6: Draw γ1 using ΓrτnewsF

1

7: return γ1 where we replace the bud by an atom.
8: end if

In order to apply twice this procedure (because F2 “ pF 1q1), we need to obtain ΓrτnewsF 1 by using
the Boltzmann sampler of F2. For this, let y “ f´1pτnewq. We have f 1pvyq “ V f 1pyq` p1´V qf 1p0q
where V is a uniform random variable on r0, 1s. Since we are looking for an algorithm ΓrτnewsF 1
where τnew “ fpyq, we need an expression of fpvyq in function of τnew. But since the differential
equation f2pzq “ φpfpzqq can be integrated (by multiplying both sides by f 1pzq), we then get
f 1pzq “ gpfpzqq, where 1

2g
2 is the primitive of φ such that fp0q “ f 1p0q2

2 . Then we get the expression
fpvyq “ g´1pV gpfpyqq ` p1´ V qf 1p0qq. Finally, we obtain the following algorithm.

Algorithm 4: Γrτ0sF generates an object of F following the Boltzmann distribution of parameter
x “ f´1pτ0q, from a sampler of F2 “ ΦpFq

1: if Bernoullipfp0q{τ0q then
2: return an object of size 0
3: else
4: Draw U uniformly on r0, 1s
5: σ Ð Uτ0 ` p1´ Uqfp0q
6: if Bernoulli

`

f 1p0q{gpσq
˘

then
7: return an object of size 1
8: else
9: Draw V uniformly on r0, 1s

10: τ Ð g´1
pV gpσq ` p1´ V qf 1p0qq

11: Draw γ2 using ΓrτsF2 “ ΓrτsΦpFq
12: return γ2 where the buds are replaced by two atoms.
13: end if
14: end if

In contrast to the previous algorithm, we do not need here to draw random variables with complicated
laws. This very simple sampler is easily implemented for testing purposes. It remains to analyze its
complexity. As already discussed above, the dominant singularity ρ of f is of the form p1´ z{ρq´α

for some α ą 0. This ensures the following theorem.

Theorem 8. Algorithm 4 provides a Boltzmann sampler, and its approximate-size version gives a
linear time algorithm for drawing uniformly at random a diamond of type F2 “ ΦpFq, where Φ is a
polynomial.

We implemented this algorithm in Java, and obtained the following table, which synthesizes bench-
marks computed on a laptop (1.5 GHz CPU and 4G RAM). The examples we tested consist of ternary
diamonds f2 “ 1 ` f3 with initial conditions fp0q “ 0 and f 1p0q “ 1, and with size tolerance set
at 10 percent. One of such diamonds is depicted in Figure 2. We observe that the timing results are
consistent with our analysis.
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Size n 10 100 1000 5000 10000 50000 100000 150000
τ0 8.73 80.44 794 3972 7941 39752 79559 119086

Time (ms) 1 7 66 322 668 3887 7098 9812
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