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Abstract. We address the problem of quantitative comparison of clas-
sical and intuitionistic logics within the language of the full propositional
system. We apply two different approaches, to estimate the asymptotic
fraction of intuitionistic tautologies among classical tautologies, obtain-
ing the same results for both. Our results justify informal statements
such as “about 5/8 of classical tautologies are intuitionistic”.

1 Introduction

It is a standard approach to use the notion of density [6,1] to analyse quanti-
tative relations between countable sets. The general idea is to consider subsets
of elements of bounded size, and to observe the uniform measure of one subset
in the other when the maximal allowed size tends to infinity. This approach
requires that the number of elements of bounded size is finite.

One of the first papers to address the quantitative aspects of intuitionistic
logic was [6], which (according to the authors) was partially motivated by the
short note in some paper of Statman saying:“It is a good bet but not a sure thing,
that ρ (type) contains a closed term”. Most results of that paper were formulated
in terms of inhabitation of types in simple λ-calculus. However, under Curry-
Howard isomorphism (see e.g. [8]), they translate directly to the framework of
intuitionistic logic.

The authors of [6] considered calculus with a finite number of ground types,
and only functional types. In terms of logical formulae it means that the number
of different variables in a formula was bounded by some constant, and the only
allowed connective was ⇒. The authors proved that at least 1/3 of classical
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tautologies are intuitionistic and gave some lower and upper bounds (dependent
on the number of allowed variables) for the density of intuitionistic tautologies
among all the formulae. They have also conjectured that, among the formulae
with the number of different variables bounded by any constant, the probability
that a classical tautology of size n, chosen uniformly at random, is intuitionistic,
tends to one, when n goes to infinity. The conjecture was known to be true
for the formulae using only one variable for the trivial reason that both sets of
tautologies are equal in this case.

Although the conjecture of [6] is false, a slight reformulation turned out
to be true. The authors of [3] proved that the lower bound for the density of
intuitionistic logic in the classical one tends to 1, when the number of allowed
variables tends to infinity. This counter-intuitive result raised a question about
the appropriateness of the approach. In fact, the assumption about the bounded
number of variables seemed to have a strong influence on the result. In the paper
[4] the authors suggested another approach, in which formulae was considered
up to a renaming of variables (i.e. two formulae which differ only in the naming
of variables were assumed to be equal). In that case the authors could deal with
formulae with an unbounded number of variables, while preserving the property
that there is only a finite number of formulae of bounded size. In that setup,
using methods similar as in [3], the authors obtained an analogous result - the
density is equal to 1. We want to emphasize at this point that the fact that
both results coincide is in our opinion no less surprising that the fact that the
densities tend to 1.

The work presented in this paper is a continuation of this research, consider-
ing other languages of propositional formulae. Among them the most interesting
is the language which admits all the usual connectives ⇒,∧,∨, and the constant
⊥. We prove that in this case the coherence of the results in both approaches is
preserved, even though the limit is no longer equal to 1, but to 5/8.

2 Prerequisites and results

For any set of finite elements A and n ∈ N we denote by A(n) the number of
elements of set A with size n (the element is finite if it has finite size).

Formulae and terms. Let Var = {x1, x2, x3, . . .} be a countable set of vari-
ables, ⊥ be a constant, and C = {⇒,∨,∧} be a set of binary connectives. A term
in our system is a binary complete tree with internal nodes labelled by the ele-
ments of C and leaves labelled by the elements of Var∪{⊥} (precisely the tree is
rooted and planar i.e. the order of descendants matters). For every k ∈ N let Fk

denote the set of terms whose variables belong to the set Vark = {x1, . . . , xk}.
The set of all terms is denoted by Term. The size of a tree is its number of leaves.

Two terms are α-equivalent if they differ only in the naming of variables, i.e.
(ϕ, ψ) ∈ α if there exists injective relabelling function r : Var → Var, such that
we obtain ψ after relabelling variables from ϕ according to r. Clearly, α is an



equivalence relation. We denote Term/α by F∞. We use the name formula both
for terms and for elements from F∞.

Intuitionistic logic. For a general reference about intuitionistic logic we sug-
gest e.g. [8]. These are well known facts that every intuitionistic tautology is
classical, and that the converse is not true (even for implicational fragment). In
our proofs we use also the fact that the Heyting algebra of open subsets of R

(with respect to euclidean topology) is a complete model for the propositional
intuitionistic logic.

2.1 Main results

Let Cl, Int ⊂ Term denote the sets of terms which are respectively classical and
intuitionistic tautologies. For every k ∈ N we put

Clk = Cl ∩ Termk, Intk = Int ∩ Termk,

and
Cl∞ = Cl/α, Int∞ = Int/α.

Let a sequence (dk(n))n∈N be defined as: dk(n) = Intk(n)/Clk(n). Each
fraction dk(n) equals the probability that a formula, chosen uniformly at random
among the set of elements of Clk of size n, is an intuitionistic tautology. If the
sequence converges, its limit is denoted by Dk and is called the (relative) density
of Intk in Clk. We do not address the problem of existence of Dk. We use the
following bounds instead:

D−
k = lim inf

n→∞
dk(n), and D+

k = lim sup
n→∞

dk(n).

The first of our main results says:

lim
k→∞

D−
k = lim

k→∞
D+

k =
5

8
.

This is analogous to the approach taken in [3] for the implicational fragment.
In that case the limit was 1.

Considering the formulae “up to the names of variables” enables an arbitrary
number of different variables in formula, while preserving the property that
there is only a finite number of formulae with bounded size. In this approach we
consider the sequence (d∞(n))n∈N defined as follows: d∞(n) = Int∞(n)/Cl∞(n).

The second of our main results says that

lim
n→∞

d∞(n) =
5

8
.

We could give an informal interpretation that “about 5
8 of classical tautologies

are intuitionistic”. It was proved in [4] that the analogous approach for the
implicational fragments gives the density 1.

We derive both results in an unified way from some structural properties of
tautologies.



2.2 Structure and labelling

For every formula ϕ, the structure of ϕ is a binary tree constructed from ϕ by
forgetting about the labelling of its leaves (e.g. by changing it so that each leaf
is labelled by •). The definition can be naturally extended to the formulae from
F∞, since all the terms in each equivalence class have the same structure. The
set of structures in our system is denoted by T . It is the set of binary complete
trees with internal nodes labelled by ⇒,∧ or ∨ and all leaves labelled by •.

We say that a node is an ⇒-node if the node is labelled with ⇒. We use an
analogous convention for the other connectives.

For a formula ϕ ∈ Fk with n leaves, a leaf labelling of ϕ is a function
f : {1, . . . , n} → Vark ∪ {⊥} such that f(i) coincides with the label at the i-th
leaf of ϕ. We call such a function a k-labelling of size n.

For a formula [ϕ] ∈ F∞ with n leaves, a leaf labelling of [ϕ] is the equiva-
lence relation R on the set {0, 1, . . . , n} consisting of all the pairs of numbers
of leaves which are labelled by the same symbol (variable or ⊥) and all the
pairs (0, j), (j, 0) for each leaf j labelled with ⊥. Note that the relation R does
not depend on the chosen representative of the equivalence class [ϕ]. It contains
information about which leaves are labelled by the same variable (but not by
which variable), and which leaves are labelled with ⊥. We call such a relation a
∞-labelling of size n.

As usual the size of a formula is the number of its leaves. We use the same
convention for the size of a structure. We denote by T (n) the number of trees
from T of size n.

Note, that in all the considered cases (bounded for every k ∈ N and un-
bounded) we have a one-to-one correspondence between the structure-labelling
pairs of the size n and the formulae of that size. That fact is reflected in simple
expressions for the numbers of formulae of size n. We have

Fk(n) = T (n)(k + 1)n, F∞(n) = T (n)B(n + 1), (1)

where B(n + 1) is the number of equivalence relations on the set {0, 1, . . . , n},
known as Bell number (see e.g. [5]).

2.3 Generating functions

Within this paper we make an extensive use of the theory of generating functions
and analytic combinatorics (see [2]). All the generating functions in this paper
are ordinary ones.

We use a notation which always exposes the formal parameters of a generating
function. E.g. we write g(z) instead of g for some generating function

∑
n∈N

gnz
n.

Although the notation may be a little bit misleading it provides a convenient way
of expressing substitutions for formal parameters. It is a standard convention to
denote by [zn]g(z) the coefficient gn (for the function g(z) defined as above).

One of the most basic generating functions in this paper is the one enumer-
ating all the structures. We denote it by t(z). By a standard constructions we



get an algebraic equation for t(z), where z marks the size:

t(z) = 3t(z)2 + z.

Solving this equation (and choosing the proper solution) we get

t(z) = (1 −
√

1 − 12z)/6.

The radius of convergence of t(z) is ρ = 1
12 , t(z) is bounded within its circle

of convergence, and t(ρ) = limz→Rρ− t(z) = 1
6 .

Lemma 1 Let f, g ∈ Z[[z]] be algebraic generating functions, having a common
unique dominating singularity at ̺ ∈ R+. Suppose that these functions have
Puiseux expansions around ̺ of the form

f(z) = cf + (z − ̺)
1

2 (df + o(1)) , g(z) = cg + (z − ̺)
1

2 (dg + o(1)) .

with both df , dg being nonzero. Then: limn→∞
[zn]f(z)
[zn]g(z) = limz→R̺−

f ′(z)
g′(z) .

Using Theorem VII.8 from [2] we obtain this equality because both sides are
equal to df/dg.

3 Structural properties of tautologies

Within this section we consider structural properties of tautologies, which are
independent of the approach we use (bounded or unbounded). In order to obtain
results independent from the kind of labelling, we use F to denote the set of
formulae under consideration, and the function Lab : N → N which for every
n ∈ N returns the number of all different labellings of the structure of size n. In
particular we get results for the unbounded approach by setting F equal to F∞

and Lab(n) = B(n + 1). In an analogous way the results are translated to the
bounded case for every fixed number of variables k by substituting F with Fk

and Lab(n) with (k + 1)n. E.g. in this convention equations (1) are formulated
as

F(n) = T (n)Lab(n).

Pointed structures. An m-pointed structure is a pair (t, s) of a structure t
and a sequence of m different leaves of t. Usually we use a pointed structure
to encode some constraints on the allowed labellings. For example let A denote
some set of 1-pointed structures and consider the set of formulae FA, which
can be constructed from elements of A by the labellings which assign ⊥ to the
pointed leaf. For every structure a ∈ A of size n we are free to label all the
remaining leaves. Therefore, there are Lab(n−1) labellings which give a formula
from FA from the structure a. Therefore FA(n) 6 A(n)Lab(n− 1).



Tree decomposition. We say that a node v in a tree t ∈ T is k-shallow if the
path from the root to v goes at most k times to the left from a node labelled
with ⇒. We say it is a k-layer node if it is k-shallow but not (k − 1)-shallow.

To obtain an upper bound for the number of tautologies we focus on 3-shallow
leaves.

Let us consider the set of trees P ⊂ T such that every left subtree of every
node labelled with ⇒ is a leaf (i.e. all 1-layer nodes are leaves). Let p(t, u) be the
generating function for such trees with t marking leaves which are left sons of
⇒-node, and u marking the remaining leaves (t denotes a formal parameter, not
the generating function for all trees which we denote by t(z)). The generating
function is given implicitly by an initial condition and by the equation

p(t, u) = t · p(t, u) + 2p(t, u)2 + u, (2)

which reflects the fact that every such a tree is either an implication with the left
subtree being a 1-layer leaf and the right subtree belonging to P , or a conjunction
or a disjunction with both subtrees belonging to P , or a leaf (which is a 0-shallow
leaf).

Clearly, p(t(z), uz) is the generating function of all structures, with z marking
the size and u marking 0-shallow leaves. We define a sequence of generating
functions:

p60(t, u) = t p6n+1(t, u) = p(p6n(t, u), u).

Each function p6n(t, u) is the generating function of the set of structures in
which all (n + 1)-layer nodes are leaves, with u marking n-shallow leaves, and
t marking leaves which are left sons of n-layer ⇒-nodes (i.e. all (n + 1)-layer
leaves). Since every node in every tree is an i-layer node for exactly one i, we
get for every n ∈ N, t(z) = p6n(t(z), z).

Proposition 1 For s,m ∈ N let T (m)
6s denote the set of m-pointed structures

with all pointed leaves being s-shallow (we call them s-shallow m-pointed struc-
tures). There exists a positive constant cs,m ∈ R such that

lim
n→∞

T (m)
6s (n)

T (n)
= cs,m.

Proof. Solving the equation (2) and using the fact that p(0, 0) = 0 we get

p(t, u) =
1

4
(1 − t−

√
(1 − t)2 − 8u).

It shows that the function p(t, u) is holomorphic in the set Dε = {(t, u) ∈ C2 :
|t| 6 1

6 + ε, |u| 6 1
12 + ε} for some small positive ε ∈ R (note that t(ρ) = 1

6
and ρ = 1

12 ). By non-negativity of the coefficients of the expansion of p(t, u) at
0 we get that max(t,u)∈D0

|p(t, u)| = p(1
6 ,

1
12 ) = 1

6 . Therefore each p6s(t, u) is
holomorphic in Dǫ (for some positive ǫ ∈ R) and so are all its partial derivatives,

in particular
∂mp6s(t,u)

(∂u)m . The latter function is exactly the generating function



of s-shallow m-pointed structures in which all (m + 1)-layer nodes are leaves
(marked with variable t). It remains to substitute the generating function of all
structures for t to obtain the generating function for all s-shallow m-pointed
structures. We substitute u with z so that the variable z marks all the leaves
(after pointing we are no longer interested in s-shallow leaves). As a result we
obtain a function

pm,s(z) =
∂mp6s(t, u)

(∂u)m
|u:=z,t:=t(z),

which is the generating function of the set of all s-shallow m-pointed structures.
Let D̂ǫ denote the set Dǫ \ [ρ,∞]. Then the function t(z) is analytically continu-

able to the set D̂ǫ, and since the outer function is holomorphic in D̂ǫ we know
that the function pm,s(z) is analytically continuable to that set. On the other
hand the combinatorial interpretation shows that pm,s(z) must have singularity
in ρ. Therefore we know that pm,s(z) has unique dominating singularity in ρ. In
fact we know also that the limit limz→Rρ− pm,s(z) <∞, therefore the singularity
is not a pole. Since pm,s(z) is algebraic, the singularity must be a branching
point. By the fact that t(v2) is analytic at ρ we get that pm,s(v

2) is analytic
as well, which shows that the branching type of pm,s(z) at ρ is 2 (we excluded
the existence of pole). Finally, the fact that limz→Rρ− p′m,s(z) = ∞ shows that
the singularity is of the square root type. A straightforward application of the
Lemma 1 proves the result.

In fact we need the Proposition 1 only for the sets T (2)
63 , T

(3)
63 , T

(4)
63 , and the

results for these sets can be easily established by explicit calculations of their
generating functions.

Shallow repetitions. For every formula ϕ and set of its leaves L we say that
ϕ has r repetitions among the leaves from L if r equals the difference between
the cardinality of L and the number of different variables assigned to the leaves
from L. If the set L is the set of k-shallow leaves we say that ϕ has r k-shallow
repetitions. Note, that the occurrence of the constant is treated as a repetition
e.g. the formula x⇒ ⊥ has one repetition among all its leaves.

Proposition 2 Within the set of elements of F of size n, the fraction of formu-
lae with at least two 3-shallow repetitions is asymptotically bounded from above

by cLab(n−2)
Lab(n) . Formally, let F [>2]

63 denote the set of formulae with at least two

3-shallow repetitions, we have

F [>2]
63 (n)

F(n)
. c

Lab(n− 2)

Lab(n)

Proof. Every formula ϕ ∈ F [>2]
63 satisfies at least one of the following properties:

A . ϕ contains two 3-shallow leaves labelled with ⊥;
B . ϕ contains one 3-shallow leaf labelled with ⊥ and two 3-shallow leaves

labelled by the same variable;



C . ϕ contains three 3-shallow leaves labelled by the same variable;

D . two variables occur at least twice among 3-shallow leaves of ϕ.

Let FA,FB,FC ,FD denote the sets of formulae from ϕ ∈ F [>2]
63 with the

previous properties. Clearly

F [>2]
63 (n) 6 FA(n) + FB(n) + FC(n) + FD(n),

and the inequality is usually strict.
Every formula from FA contains at least two 3-shallow leaves labelled with

⊥. Therefore it can be constructed from a 3-shallow 2-pointed structure by some
labelling which assigns ⊥ to the pointed leaves. Hence

FA(n) 6 T (2)
63 (n) · Lab(n− 2).

An analogous reasoning for the other sets gives:

FB(n) + FC(n) 6 2 · T (3)
63 (n) · Lab(n− 2),

FD(n) 6 T (4)
63 (n) · Lab(n− 2).

Using these equations and Proposition 1 we obtain

F [2]
63(n)

F(n)
6

(T (2)
63 (n) + 2T (3)

63 (n) + T (4)
63 (n))

T (n)

Lab(n− 2)

Lab(n)

∼ (c2,3 + 2c3,3 + c4,3) ·
Lab(n− 2)

Lab(n)
.

The above proposition will be used to show that we can neglect all formulae
with at least two 3-shallow repetitions, since the number of them will be shown
to be essentially smaller than the number of tautologies.

Simple Classical Tautologies. For a formula ϕ let a boolean valuation v1
ϕ

assign True only to those variables which have occurrences on the first layer,
and v1,3

ϕ only to those which have occurrences on the first or third layer. The
following proposition is a consequence of the fact that if there is no 1-shallow
repetitions in ϕ, then the formula is valuated to False by v1

ϕ.

Proposition 3 If a formula ϕ does not contain at least one 1-shallow repetition,
it is not a classical tautology.

Definition 1 A positive path in a formula (tree) is a path from the root to some
node, which never crosses a ∧-node, and never goes left from a ⇒-node. A node
is called positive if there exists a positive path to it (see Fig. 1).
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⊥

Fig. 1. From left to right: a positive path, not a positive path, a negative path, a tree
with a negative leaf labelled with ⊥.

Definition 2 A negative path in a formula (tree) is a path from the root, which
contains a positive ⇒-node h, such that the path is going left from h and then
follows only ∧-nodes (if any). A node is called negative if there exists a negative
path to it (see Fig. 1).

For every formula it is enough to valuate one of its positive nodes to True
or one of its negative nodes to False, to ensure that the valuation of the whole
formula is True.

These two definitions give rise to two large families of classical tautologies.

Observation 1 All the formulae in which some negative leaf is labelled with ⊥
are classical tautologies. The set of those formulae is denoted by S⊥ (see Fig.
1).

Observation 2 All the formulae in which some positive leaf is labelled by the
same variable as some negative leaf are classical tautologies. We denote this
family by SR.

We call the formulae from the set SR ∪ S⊥, simple tautologies. We focus
on the formulae with exactly one 2-shallow repetition and no more than one
3-shallow repetition. The set of such formulae is denoted by H. In the next two
propositions we show that all tautologies belonging to H are simple.

Proposition 4 If a formula ϕ ∈ H\S⊥ contains a 3-shallow leaf l labelled with
⊥, then it is not a tautology.

Proof. If the leaf l is not 1-shallow then there are no 1-shallow repetitions and
the boolean function defined by the formula is not a tautology (Proposition 3).
If l is 0-shallow then we can use the valuation v1

ϕ which valuates all the 0-shallow
leaves to False and all the 1-layer leaves to True. In that case the formula is
valuated by v1

ϕ to False.
In the remaining case l is a 1-layer leaf but is not negative. Let s be the last

∨-node or ⇒-node on the path from the root to l. The node s is a 1-layer node,
because l is not negative.

Suppose that s is labelled by ∨. One of its subtrees does not contain shallow
occurrences of l. In that subtree all the 0-shallow leaves are valuated by v1,3

ϕ to



True (because they are all 1-layer in ϕ) therefore the whole subtree with root s
is valuated to True by v1,3

ϕ .
If s is labelled by ⇒ then let s2 be its left son. Clearly s2 is a 2-layer node.

Since we have only one 3-shallow repetition and it is realized by a 1-shallow
node labelled with ⊥, all the labels of 2-layer and 3-layer leaves are not repeated
among the 3-shallow leaves. Therefore the valuation v1,3

ϕ assigns False to all the
2-layer leaves, and True to all the 3-layer leaves. Consequently, every 2-layer
node is valuated to False. Is means that also s2 is valuated to False, but then
s is valuated to True.

In both cases the only 1-layer nodes which are valuated by v1,3
ϕ to False are

below the node s, which is valuated to True anyway. Hence every 1-layer node
which is a left son of a 0-shallow node is valuated to True. But then all 0-shallow
nodes are valuated to False, which proves that ϕ is not a classical tautology.

Proposition 5 If a formula ϕ ∈ H \ SR contains a variable repetition, then it
is not a tautology.

Proof. If ϕ does not contain any 1-shallow repetition, then according to the
Proposition 3, the formula does not define a constant function. If both leaves
with repeated variable are on the same level, then the valuation v1

ϕ valuates all
the 0-shallow leaves to False and all 1-layer leaves to True, and the formula is
valuated by v1

ϕ to False.
Let l1, l2 be the 3-shallow leaves labelled with the same variable. We can

assume that l1 is 0-shallow and l2 is a 1-layer leaf. If l1 is not positive then there
exists a node s on the path from the root to l1, which is labelled with ∧. In that
case the only 0-shallow nodes which can be valuated to True by v1

ϕ are below
s. But s is valuated to False, because it is a ∧-node and one of its subtrees is
valuated by v1

ϕ to False (the one which does not contain l1).
In the remaining case we have two leaves l1, l2 labelled with the same variable,

such that l1 is positive (and hence 0-shallow), l2 is not negative but is a 1-layer
leaf. In this case we use boolean valuation b which assigns False only to those
variables which have occurrences among 0-shallow or 2-layer leaves. Then the
leaf l2 is valuated to False and we can use the same reasoning as in the case
when some not negative 1-layer leaves is labelled with ⊥, to prove that ϕ is not
a tautology.

We have

S⊥(n) + SR(n) −F [>2]
63 (n) 6 Cl(n) 6 S⊥(n) + SR(n) + F [>2]

63 (n) (3)

The lower bound comes from the fact that every formula which belongs to S⊥∩SR

has at least two 3-shallow repetitions. The upper bound is a consequence of
Propositions 4 and 5, which together say that all tautologies which are not

simple belong to F [>2]
63 .

Simple Intuitionistic Tautologies. It is easy to show that all the formulae
from S⊥ are intuitionistic tautologies. This is not true for SR, and a simple



counterexample is x∨ (x⇒ y). However, we can prove the following proposition
(e.g. by using the Heyting algebra of open subsets of R).

Proposition 6 A formula from SR ∩ H is an intuitionistic tautology if and
only if the positive prefix of the path leading to the negative leaf with the repeated
variable is a prefix of the path leading to the positive leaf with the repeated variable
(i.e. the last common node is a ⇒-node). The set of those formulae is denoted
by SRI (see Fig. 2).

∨

⇒

∨

⇒

∧

α

∨

⇒

α

Fig. 2. A tree with a negative path and a positive path with the same prefix.

Analogously to the inequality (3) we get

S⊥(n) + SRI(n) −F [>2]
63 (n) 6 Int(n) 6 S⊥(n) + SRI(n) + F [>2]

63 (n). (4)

4 Counting simple families

Within this section we denote by T (2,3,4)
≤3 (n) the value T (2)

63 (n) + 2T (3)
63 (n) +

T (4)
63 (n). For any i ∈ N, a i-positive-pointed structure is a i-pointed structure,

whose pointed leaves are all positive (note that positivity of leaves depends only
on the structure). Negative-pointed structures are defined analogously. We use
the following sets of structures:

– TN - the set of 1-negative-pointed structures,
– TPN - the set of 2-pointed structures such that the first pointed leaf is positive

and the second one is negative,
– TdPN

- the subset of TPN consisting of all the structures for which the positive
prefix of the path to the negative pointed leaf is a prefix of the (positive)
path to the positive pointed leaf.

In the following propositions we give bounds on the number of elements of
S⊥ and SR of size n.

Proposition 7

TN (n) · Lab(n− 1) − T (2,3,4)
≤3 (n) · Lab(n− 2) 6 S⊥(n) 6 TN (n) · Lab(n− 1).



Proof. From every 1-negative-pointed structure we can construct a formula from
S⊥ by a labelling which assigns ⊥ to the pointed leaf. If the pointed structure
has n leaves we have exactly Lab(n−1) such labellings. Since every formula from
S⊥ can be constructed in this way we get:

S⊥(n) 6 TN (n)Lab(n− 1).

The inequality is usually strict, since some formulae can be generated with more
than one structure-labelling pair of considered type. Those are exactly the for-
mulae, that have at least two negative leaves labelled with ⊥ (hence they have
at least two 3-shallow repetitions). But the number of pairs which generate for-
mulae with that property is smaller than the number of pairs which generate all
the formulae with at least two 3-shallow repetition. We get (just as in the proof
of Proposition 2),

TN (n)Lab(n− 1) − T (2,3,4)
≤3 (n) · Lab(n− 2) 6 S⊥(n).

An analogous result holds for SR.

Proposition 8

TPN (n) · Lab(n− 1) − T (2,3,4)
≤3 (n) · Lab(n− 2) 6 SR(n),

SR(n) 6 TPN (n) · Lab(n− 1)

We omit the technical proof.

Corollary 1 Applying the same reasoning for SRI as in Proposition 8, we get
both following inequalities

TdPN
(n) · Lab(n− 1) − T (2,3,4)

≤3 (n) · Lab(n− 2) 6 SRI(n),

SRI(n) 6 TdPN
(n) · Lab(n− 1).

4.1 Structural limits

To prove our main results we need to calculate the following three “structural
limits”:

DN = lim
n→∞

TN (n)

T (n)
, DPN = lim

n→∞

TPN (n)

T (n)
, DdPN

= lim
n→∞

TdPN
(n)

T (n)
.

Proposition 9 DN = limn→∞
TN (n)
T (n) = 5

8 .

Proof. Let T (z) be the generating function for T and gN(y, z) be the generating
function for T , with z marking the size and y marking the leaves that can be
obtained from root by paths containing only ∧-nodes. It satisfies:

gN (y, z) = 2T (z)2 + gN (y, z)2 + yz.



Let fN (y, z) be the generating function for all structures with z marking the
size and with negative leaves marked with y. We have

fN(y, z) = fN (y, z)2 + gN (y, z)fN(y, z) + T (z)2 + z. (5)

The first term is obtained when the root is labelled by ∨. The second one, by
⇒, and the third term corresponds to ∧.

By a classical construction (pointing corresponds to differentiation), to obtain
the generating function for 1-negative-pointed structures SN(z) it is enough to
differentiate fN (y, z) with respect to the variable y, and then to substitute y by 1
(we no longer need bivariate function). Algebraic calculations and the application
of the Lemma 1 give:

lim
n→∞

TN (n)

T (n)
= lim

n→∞

[zn]SN(z)

[zn]T (z)
= lim

z→R
1

12

−

SN ′(z)

T ′(z)
=

5

8
.

In the similar way we prove the following two propositions.

Proposition 10 DPN = limn→∞
TPN (n)
T (n) = 11

8 .

Proposition 11 DdPN
= limn→∞

T dPN
(n)

T (n) = 5
8 .

Using the bounds from the Proposition 7 and the limits we have computed,
we get:

S⊥(n)

F(n)
6

TN (n)

T (n)
· Lab(n− 1)

Lab(n)
∼ 5

8

Lab(n− 1)

Lab(n)

and

S⊥(n)

F(n)
>

TN (n)

T (n)

Lab(n− 1)

Lab(n)
−

T (2,3,4)
≤3 (n)

T (n)

Lab(n− 2)

Lab(n)

∼ 5

8

Lab(n− 1)

Lab(n)
− C

Lab(n− 2)

Lab(n)
,

for some C ∈ R. Analogous estimates (using values DPN and DdPN
) hold for SR

and SRI .

4.2 Main results

Unbounded case. The asymptotic behaviour of the Bell numbers is known
due to the result of Moser and Wyman [7]. We are going to use the following
property: B(n− 2)/B(n) = o(B(n− 1)/B(n)). The estimates from the previous
subsection specialize to the unbounded case; inequalities 3 and 4 gives:

Int∞(n)

F∞(n)
=
S⊥(n) + SRI(n)

F∞(n)
+ o

(
B(n)

B(n+ 1)

)



∼ B(n)

B(n+ 1)

(
10

8
+ o(1)

)
,

Cl∞(n)

F∞(n)
=
S⊥(n) + SR(n)

F∞(n)
+ o

(
B(n)

B(n+ 1)

)

∼ B(n)

B(n+ 1)

(
16

8
+ o(1)

)

therefore
Int∞(n)

Cl∞(n)
∼ 5

8
.

Bounded case. We specialize now to the case with the number of variables
bounded by k. We get

lim sup
n→∞

S⊥(n)

F(n)
6

5

8k

and

lim inf
n→∞

S⊥(n)

F(n)
>

5

8k
− C

k2
.

Analogous reasoning for families SR and SRI gives

lim sup
n→∞

SR(n)

F(n)
6

11

8k
lim inf
n→∞

SR(n)

F(n)
>

11

8k
− C

k2
,

and

lim sup
n→∞

SRI(n)

F(n)
6

5

8k
lim inf
n→∞

SRI(n)

F(n)
>

5

8k
− C

k2
.

Therefore we get

lim sup
n→∞

Intk(n)

Clk(n)
6

lim supn→∞ Fk(n)−1(S⊥(n) + SRI(n) + F [>2]
63 (n))

lim infn→∞ Fk(n)−1(S⊥(n) + SR(n) −F [>2]
63 (n))

=
10
8k

− o( 1
k
)

2
k

+ o( 1
k
)
∼k

5

8

and

lim inf
n→∞

Intk(n)

Clk(n)
>

lim infn→∞ Fk(n)−1(S⊥(n) + SRI(n) −F [>2]
63 (n))

lim supn→∞ Fk(n)−1(S⊥(n) + SR(n) + F [>2]
63 (n))

=
10
8k

− o( 1
k
)

2
k

+ o( 1
k
)
∼k

5

8
.

Hence

lim
k→∞

D−
k = lim

k→∞
D+

k =
5

8
,

which is the second of our main results.



5 Final remarks

The reasoning we used for the full propositional system is also appropriate for
other sets of connectives. If we allow only implication the method we presented
reconstructs the results from [3] and [4] (i.e. in this case the density of intuition-
istic logic in classical is 1). Adding conjunction and ⊥ to the system does not
change the situation. However, it suffices to consider the language which uses
only ⇒ and ∨ to observe a difference. For this language the asymptotic density
of intuitionistic logic in the classical one equals 3/13.

Finally, we want once again to emphasize that the coherence of the results
in the bounded and unbounded approaches is quite an interesting fact in itself.
We believe that Proposition 1 sheds some light on this phenomenon.
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